background image

POWDER CORES

Molypermalloy  |   High Flux   |   Kool Mµ

®

   |   XF

lux

®

   |   Kool Mµ

® 

MAX

2017-Magnetics-Powder-Core-Catalog-html.html
background image

We offer the confidence of over sixty years of expertise in the 
research, design, manufacture and support of high quality magnetic 
materials and components. 

A major manufacturer of the highest performance materials in the 
industry including: MPP, High Flux, Kool Mµ®, Kool Mµ® MAX, 
XFlux®, power ferrites, high permeability ferrites and strip wound 
cores, Magnetics’ products set the standard for providing consistent 
and reliable electrical properties for a comprehensive range of core 
materials and geometries. Magnetics is the best choice for a variety 
of applications ranging from simple chokes and transformers used 
in telecommunications equipment to sophisticated devices for 
aerospace electronics. 

Magnetics backs it products with unsurpassed technical expertise 
and customer service. Magnetics’ Sales Engineers offer the 
experience necessary to assist the designer from the initial design 
phase through prototype approval. Knowledgeable Sales Managers 
provide dedicated account management.  Skilled Customer Service 
Representatives are easily accessible to provide exceptional sales 
support. This support, combined with a global presence via a 
worldwide distribution network, including a Hong Kong distribution 
center, makes Magnetics a superior supplier to the international 
electronics industry.

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

1

Contents

Contents

Core Locator by Part Number

Core Index and Unit Pack Quantities  .  .  .  .  .  .  . 2

General Information

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8
Applications and Materials    .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Material Properties    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Core Weights and Unit Conversions   .  .  .  .  .  . 11
Core Identification   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
Inductance and Grading   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
Core Coating    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14

Core Selection

Inductor Core Selection Procedure   .  .  .  .  .  .  . 15
Core Selection Example    .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
Toroid Winding    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
Powder Core Loss Calculation    .  .  .  .  .  .  .  .  .  . 18
Core Selector Charts    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Wire Table   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

Material Data

Permeability versus DC Bias Curves   .  .  .  .  .  . 29
Core Loss Density Curves  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
DC Magnetization Curves   .  .  .  .  .  .  .  .  .  .  .  .  .  . 47
Permeability versus Temperature Curves   .  .  . 51
Permeability versus Frequency Curves    .  .  .  . 55

Core Data

Toroid Data   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
E Core Data    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96
Block Data    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97
U Core Data   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
MPP THINZ

®

 Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99

Hardware

E Core Hardware    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100
Toroid Hardware   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101

Winding Tables

Winding Tables   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103 

Index

< Click the page name 

or page number to go 
directly to the page

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

2

Core Locator & Unit Pack Quantity

 55014 

61 

10,000

 55015 

61 

10,000

 55016 

61 

10,000

 55017 

61 

10,000

 55018 

61 

10,000

 55019 

61 

10,000

 55020 

61 

10,000

 55021 

61 

10,000

 55022 

61 

10,000

 55023 

61 

10,000

 55024 

65 

10,000

 55025 

65 

10,000

 55026 

65 

10,000

 55027 

65 

10,000

 55028 

65 

10,000

 55029 

65 

10,000

 55030 

65 

10,000

 55031 

65 

10,000

 55032 

65 

10,000

 55033 

65 

10,000

 55034 

68 

8,000

 55035 

68 

8,000

 55036 

68 

8,000

 55037 

68 

8,000

 55038 

68 

8,000

 55039 

68 

8,000

 55040 

68 

8,000

 55041 

68 

8,000

 55042 

68 

8,000

 55043 

68 

8,000

 55044 

70 

5,000

 55045 

70 

5,000

 55046 

70 

5,000

 55047 

70 

5,000

 55048 

70 

5,000

 55049 

70 

5,000

 55050 

70 

5,000

 55051 

70 

5,000

 55052 

70 

5,000

 55053 

70 

5,000

 55059 

74 

1,000

 55070 

88 

35

 55071 

77 

250

 55072 

88 

35

 55074 

88 

35

 55075 

88 

35

 55076 

79 

220

 55082 

81 

120

 55083 

80 

180

 55084 

81 

120

 55086 

81 

120

 55087 

81 

120

 55088 

81 

120

 55089 

81 

120

 55090 

81 

120

 55091 

81 

120

 55092 

81 

120

 55098 

93 

25

 55099 

93 

25

 55101 

93 

25

 55102 

93 

25

 55103 

85 

90

 55104 

85 

90

 55106 

85 

90

 55107 

85 

90

 55108 

85 

90

 55109 

85 

90

 55110 

85 

90

 55111 

85 

90

 55112 

85 

90

 55114 

71 

2,000

 55115 

71 

2,000

 55116 

71 

2,000

 55117 

71 

2,000

 55118 

71 

2,000

 55119 

71 

2,000

 55120 

71 

2,000

 55121 

71 

2,000

 55122 

71 

2,000

 55123 

71 

2,000

 55124 

69 

6,000

 55125 

69 

6,000

 55127 

69 

6,000

 55128 

69 

6,000

 55129 

69 

6,000

 55130 

69 

6,000

 55131 

69 

6,000

 55132 

69 

6,000

 55133 

69 

6,000

 55134 

58 

7,500

 55135 

58 

7,500

 55137 

58 

7,500

 55138 

58 

7,500

 55139 

58 

7,500

 55140 

58 

7,500

 55144 

59 

7,500

 55145 

59 

7,500

 55147 

59 

7,500

 55148 

59 

7,500

 55149 

59 

7,500

 55150 

59 

7,500

 55164 

95 

6

 55165 

95 

6

 55167 

95 

6

 55174 

60 

5,000

 55175 

60 

5,000

 55177 

60 

5,000

 55178 

60 

5,000

 55179 

60 

5,000

 55180 

60 

5,000

 55181 

60 

5,000

 55190 

86 

80

 55191 

86 

80

 55192 

86 

80

 55195 

86 

80

 55196 

86 

80

 55197 

86 

80

 55198 

86 

80

 55199 

86 

80

 55200 

73 

1,600

 55201 

73 

1,600

 55202 

73 

1,600

 55203 

73 

1,600

 55204 

73 

1,600

 55205 

73 

1,600

 55206 

73 

1,600

 55208 

73 

1,600

 55209 

73 

1,600

 55234 

62 

10,000

 55235 

62 

10,000 

 55236 

62 

10,000

 55237 

62 

10,000

 55238 

62 

10,000

 55239 

62 

10,000

 55240 

62 

10,000

 55241 

62 

10,000

 55242 

62 

10,000

 55243 

62 

10,000

 55248 

80 

180

 55249 

80 

180

 55250 

80 

180

 55251 

80 

180

 55252 

80 

180

 55253 

80 

180

 55254 

80 

180

 55256 

80 

180

 55257 

80 

180

 55264 

63 

10,000

 55265 

63 

10,000

 55266 

63 

10,000

 55267 

63 

10,000

 55268 

63 

10,000

 55269 

63 

10,000

 55270 

63 

10,000

 55271 

63 

10,000

 55272 

63 

10,000

 55273 

63 

10,000

 55274 

66 

8,000

 55275 

66 

8,000

 55276 

66 

8,000 

 55277 

66 

8,000

 55278 

66 

8,000

 55279 

66 

8,000

 55280 

66 

8,000

 55281 

66 

8,000

 55282 

66 

8,000

 55283 

66 

8,000

 55284 

67 

8,000

 55285 

67 

8,000

 55286 

67 

8,000

 55287 

67 

8,000

 55288 

67 

8,000

 55289 

67 

8,000

 55290 

67 

8,000

 55291 

67 

8,000

 55292 

67 

8,000

 55293 

67 

8,000

 55304 

74 

1,000

 55305 

74 

1,000

 55306 

74 

1,000

 55307 

74 

1,000

 55308 

74 

1,000

 55309 

74 

1,000

 55310 

74 

1,000

 55312 

74 

1,000

 55313 

74 

1,000

 55318 

79 

220

 55319 

79 

220

 55320 

79 

220

 55321 

79 

220

 55322 

79 

220

 55323 

79 

220

 55324 

79 

220

 55326 

79 

220

 55327 

79 

220

 55336 

94 

16

 55337 

94 

16

 55339 

94 

16

 55340 

94 

16

 55341 

94 

16

 55344 

75 

720

 55345 

75 

720

 55347 

75 

720

 55348 

75 

720

 55349 

75 

720

 55350 

75 

720

 55351 

75 

720

 55352 

75 

720

  55353 

75 

720     

 55374 

72 

2,000

 55375 

72 

2,000

 55377 

72 

2,000

 55378 

72 

2,000

 55379 

72 

2,000

 55380 

72 

2,000

 55381 

72 

2,000

 55382 

72 

2,000

 55383 

72 

2,000

 55404 

64 

10,000

 55405 

64 

10,000

 55407 

64 

10,000

 55408 

64 

10,000

 55409 

64 

10,000

 55410 

64 

10,000

 55411 

64 

10,000

 55412 

64 

10,000

 55413 

64 

10,000

 55432 

82 

105

 55433 

82 

105

 55435 

82 

105

 55436 

82 

105

 55437 

82 

105

 55438 

82 

105

 55439 

82 

105

 55440 

82 

105

 55441 

82 

105

 55542 

77 

250

 55543 

77 

250

 55544 

77 

250

 55545 

77 

250

 55546 

77 

250

 55547 

77 

250

 55548 

77 

250

 55550 

77 

250

 55551 

77 

250

 55579 

78 

300

 55580 

78 

300

 55581 

78 

300

 55582 

78 

300

 55583 

78 

300

 55584 

78 

300

 55585 

78 

300

 55586 

78 

300

 55587 

78 

300

 55588 

78 

300

 55614 

87 

45

 55615 

87 

45

 55617 

87 

45

 55620 

87 

45

 55709 

84 

90

 55710 

84 

90

 55712 

84 

90

 55713 

84 

90

 55714 

84 

90

 55715 

84 

90

 55716 

84 

90

 55717 

84 

90

 55718 

84 

90

 

55725 83 

70 

 55726 

83 

70

 55727 

83 

70 

 55728 

83 

70 

 55734 

89 

24

 55735 

89 

24

 55737 

89 

24

 55740 

89 

24

 55774 

92 

20

 55775 

92 

20

 55777 

92 

20

 55778 

92 

20

 55848 

73 

1,600

 55866 

90 

45

 55867 

90 

45

 55868 

90 

45

 55869 

90 

45

 55894 

76 

400

 55906 

91 

40

 55907 

91 

40

 55908 

91 

40

 55909 

91 

40

 55924 

76 

400

  55925 

76 

400

 55926 

76 

400

 55927 

76 

400

 55928 

76 

400

 55929 

76 

400

 55930 

76 

400

 55932 

76 

400

 55933 

76 

400

MPP Toroids

Index

P/N    PAGE  BOX QTY

P/N    PAGE  BOX QTY P/N    PAGE  BOX QTY

P/N    PAGE  BOX QTY

P/N    PAGE  BOX QTY

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

3

Core Locator & Unit Pack Quantity

High Flux Toroids

Index

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

 58018 

61 

10,000

 58019 

61 

10,000

 58020 

61 

10,000

 58021 

61 

10,000

 58022 

61 

10,000

 58023 

61 

10,000

   58028 

65 

10,000

 58029 

65 

10,000

 58030 

65 

10,000

 58031 

65 

10,000

 58032 

65 

10,000

 58033 

65 

10,000

 58038 

68 

8,000

 58039 

68 

8,000

 58040 

68 

8,000

 58041 

68 

8,000

 58042 

68 

8,000

 58043 

68 

8,000

 58048 

70 

5,000

 58049 

70 

5,000

 58050 

70 

5,000

 58051 

70 

5,000

 58052 

70 

5,000

 58053 

70 

5,000

 58059 

74 

1,000

 

58070 88 

35

 58071 

77 

250

 58072 

88 

35

 58073 

88 

35

 58074 

88 

35

 58075 

88 

35

 58076 

79 

220

 58083 

80 

180

 58089 

81 

120

 58090 

81 

120

 58091 

81 

120

 58092 

81 

120

 58099 

93 

25

 58100 

93 

25

 58101 

93 

25

 58102 

93 

25

 58109 

85 

90

 58110 

85 

90

 58111 

85 

90

 58112 

85 

90

 58118 

71 

2,000

 58119 

71 

2,000

 58120 

71 

2,000

 58121 

71 

2,000

 58122 

71 

2,000

 58123 

71 

2,000

 58128 

69 

6,000

 58129 

69 

6,000

 58130 

69 

6,000

 58131 

69 

6,000

 58132 

69 

6,000

 58133 

69 

6,000

 58164 

95 

6

 58165 

95 

6

 58190 

86 

80

 58191 

86 

80

 58192 

86 

80

 58195 

86 

80

 58204 

73 

1,600

 58205 

73 

1,600

 58206 

73 

1,600

 58208 

73 

1,600

 58209 

73 

1,600

 58238 

62 

10,000

 58239 

62 

10,000

 58240 

62 

10,000

 58241 

62 

10,000

 58242 

62 

10,000

 58243 

62 

10,000

 58252 

80 

180

 58253 

80 

180

 58254 

80 

180

 58256 

80 

180

 58257 

80 

180

 58268 

63 

10,000

 58269 

63 

10,000

 58270 

63 

10,000

 58271 

63 

10,000

 58272 

63 

10,000

 58273 

63 

10,000

 58278 

66 

8,000

 58279 

66 

8,000

 58280 

66 

8,000

 58281 

66 

8,000

 58282 

66 

8,000

 58283 

66 

8,000

 58288 

67 

8,000

 58289 

67 

8,000

 58290 

67 

8,000

 58291 

67 

8,000

 58292 

67 

8,000

 58293 

67 

8,000

 58308 

74 

1,000

   58309 

74 

1,000

 58310 

74 

1,000

 58312 

74 

1,000

 58313 

74 

1,000

 58322 

79 

220

 58323 

79 

220

 58324 

79 

220

 58326 

79 

220

 58327 

79 

220

 58336 

94 

16

 58337 

94 

16

 58338 

94 

16

 58339 

94 

16

 58348 

75 

720

 58349 

75 

720

 58350 

75 

720

 58351 

75 

720

 58352 

75 

720

 58353 

75 

720

 58378 

72 

2,000

 58379 

72 

2,000

 58380 

72 

2,000

 58381 

72 

2,000

 58382 

72 

2,000

 58383 

72 

2,000

 58408 

64 

10,000

 58409 

64 

10,000

 58410 

64 

10,000

 58411 

64 

10,000

 58412 

64 

10,000

 58413 

64 

10,000

 58437 

82 

105

 58438 

82 

105

 58439 

82 

105

 58440 

82 

105

 58441 

82 

105

 58546 

77 

250

 58547 

77 

250

 58548 

77 

250

 58550 

77 

250

 58551 

77 

250

 58583 

78 

300

 58584 

78 

300

 58585 

78 

300

 58586 

78 

300

 58587 

78 

300

 58588 

78 

300

 58614 

87 

45

 58615 

87 

45

 58616 

87 

45

 58617 

87 

45

 58620 

87 

45

 58714 

84 

90

 58715 

84 

90

 58716 

84 

90

 58717 

84 

90

 58718 

84 

90

 

58725 83 

70

 58726 

83 

70

 58727 

83 

70

 58728 

83 

70

 58734 

89 

24

 58735 

89 

24

 58736 

89 

24

 58737 

89 

24

 58774 

92 

20

 58775 

92 

20

 58776 

92 

20

 58777 

92 

20

 58778 

92 

20 

 58848 

73 

1,600

 58866 

90 

45

 58867 

90 

45

 58868 

90 

45

 58869 

90 

45

 58894 

76 

400

 58906 

91 

40

 58907 

91 

40

 58908 

91 

40

 58909 

91 

40

   58928 

76 

400

 58929 

76 

400

 58930 

76 

400

 58932 

76 

400

 58933 

76 

400

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

4

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

Core Locator & Unit Pack Quantity

Kool Mµ

®

 Toroids

 77020 

61 

10,000

 77021 

61 

10,000

 77030 

65 

10,000

 77031 

65 

10,000

 77040 

68 

8,000

 77041 

68 

8,000

 77050 

70 

5,000

 77051 

70 

5,000

 77052 

70 

5,000

 77054 

70 

5,000

 77055 

70 

5,000

 77059 

74 

1,000

 

77068 88 

35

 77069 

88 

35

 77070 

88 

35

 77071 

77 

250

 77072 

88 

35

 77073 

88 

35

 77074 

88 

35

 77075 

88 

35

 77076 

79 

220

 77083 

80 

180

 77089 

81 

120

 77090 

81 

120

 77091 

81 

120

 77093 

81 

120

 77094 

81 

120

 77095 

81 

120

 77098 

93 

25

 77099 

93 

25

 77100 

93 

25

 77101 

93 

25

 77102 

93 

25

 77109 

85 

90

 77110 

85 

90

 77111 

85 

90

 77120 

71 

2,000

 77121 

71 

2,000

 77130 

69 

6,000

 77131 

69 

6,000

 77140 

58 

7,500

 77141 

58 

7,500

 77150 

59 

7,500

 77151 

59 

7,500

 77154 

59 

7,500

 77155 

59 

7,500

 77164 

95 

6

 77165 

95 

6

 77180 

60 

5,000

 77181 

60 

5,000

 77184 

60 

5,000

 77185 

60 

5,000

 77189 

86 

80

 77191 

86 

80

 77192 

86 

80

 77193 

86 

80

 77194 

86 

80

 77195 

86 

80

 77206 

73 

1,600

 77210 

73 

1,600

 77211 

73 

1,600

 77212 

85 

90

 77213 

85 

90

 77214 

85 

90

 77224 

71 

2,000

 77225 

71 

2,000

 77240 

62 

10,000

 77241 

62 

10,000

 77244 

62 

10,000

 77245 

62 

10,000

 77254 

80 

180

 77256 

80 

180

 77258 

80 

180

 77259 

80 

180

 77260 

80 

180

 77270 

63 

10,000

 77271 

63 

10,000

 77280 

66 

8,000

 77281 

66 

8,000

 77290 

67 

8,000

 77291 

67 

8,000

 77294 

67 

8,000

 77295 

67 

8,000

 77310 

74 

1,000

 77312 

74 

1,000

 77314 

74 

1,000

 77315 

74 

1,000

 77316 

74 

1,000 

 77324 

79 

220

 77326 

79 

220

 77328 

79 

220

 77329 

79 

220

 77330 

79 

220 

 77334 

69 

6,000

 77335 

69 

6,000

 77336 

94 

16

    77337 

94 

16

 77338 

94 

16

 77339 

94 

16

 77350 

75 

720

 77351 

75 

720

 77352 

75 

720

 77354 

75 

720

 77355 

75 

720

 77356 

75 

720 

 77380 

72 

2,000

 77381 

72 

2,000

 77384 

72 

2,000

 77385 

72 

2,000

 77410 

64 

10,000

 77411 

64 

10,000

 77414 

64 

10,000

 77415 

64 

10,000

 77431 

82 

105

 77438 

82 

105

 77439 

82 

105

 77440 

82 

105

 77442 

82 

105

 77443 

82 

105

 77444 

58 

7,500

 77445 

58 

7,500

 77548 

77 

250

 77550 

77 

250

 77552 

77 

250

 77553 

77 

250

 77555 

77 

250

 77585 

78 

300

 77586 

78 

300

 77587 

78 

300

 77589 

78 

300

 77590 

78 

300

 77591 

78 

300

 77614 

87 

45

 77615 

87 

45

 77616 

87 

45

 77617 

87 

45

 77618 

87 

45

 77619 

87 

45

 77620 

87 

45

 77715 

84 

90

 77716 

84 

90

 77717 

84 

90

 77719 

84 

90

 77720 

84 

90

 77721 

84 

90

 77725 

83 

70

 77726 

83 

70

 77727 

83 

70

 77729 

83 

70

 77730 

83 

70

 77733 

83 

70

 77734 

89 

24

 77735 

89 

24

 77736 

89 

24

 77737 

89 

24

 77738 

89 

24

 77739 

89 

24

 77740 

89 

24

 77774 

92 

20

 77775 

92 

20

 77776 

92 

20

 77777 

92 

20

 77778 

92 

20

 77824 

61 

10,000

 77825 

61 

10,000

 77834 

65 

10,000

 77835 

65 

10,000

 77844 

68 

8,000

 77845 

68 

8,000

 77847 

73 

1,600 

    77848 

73 

1,600

 77866 

90 

45

 77867 

90 

45

 77868 

90 

45

 77869 

90 

45

 77872 

90 

45

 77874 

63 

10,000

 77875 

63 

10,000

 77884 

66 

8,000

 77885 

66 

8,000

 77894 

76 

400

 77906 

91 

40

 77907 

91 

40

 77908 

91 

40

 77909 

91 

40

 77912 

91 

40

 77930 

76 

400

 77932 

76 

400

 77934 

76 

400

 77935 

76 

400

  77936 

76    

400

Index

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

5

Core Locator & Unit Pack Quantity

 K114LE026 

96 

18

 K114LE040 

96 

18

 K114LE060 

96 

18

 K130LE026 

96 

12

 K130LE040 

96 

12

 K130LE060 

96 

12

 K160LE026 

96 

16

 K160LE040 

96 

16

 K160LE060 

96 

16

 K1808E026 

96 

2,880

 K1808E040 

96 

2,880

 K1808E060 

96 

2,880

 K1808E090 

96 

2,880

 K2510E026 

96 

1,728

 K2510E040 

96 

1,728

 K2510E060 

96 

1,728

 K2510E090 

96 

1,728

 K3007E026 

96 

720

 K3007E040 

96 

720

 K3007E060 

96 

720

 K3007E090 

96 

720

 K3112U040 

98 

672

 K3112U060 

98 

672

 K3112U090 

98 

672

 K3515E026 

96 

720

 K3515E040 

96 

720

 K3515E060 

96 

720

 K3515E090 

96 

720

 K4017E026 

96 

264

 K4017E040 

96 

264

 K4017E060 

96 

264

 K4017E090 

96 

264

 K4020E026 

96 

192

 K4020E040 

96 

192

 K4020E060 

96 

192

 K4020E090 

96 

192

 K4022E026 

96 

168

 K4022E040 

96 

168

 K4022E060 

96 

168

 K4022E090 

96 

168

 K4110U040 

98 

480

 K4110U060 

98 

480

 K4110U090 

98 

480

 K4111U040 

98 

480

 K4111U060 

98 

480

 K4111U090 

98 

480

 K4119U040 

98 

240

 K4119U060 

98 

240

 K4119U090 

98 

240

 K4317E026 

96 

270

 K4317E040 

96 

270

 K4317E060 

96 

270

 K4317E090 

96 

270

 K4741B026 

97 

48

 K4741B040 

97 

48

 K4741B060 

97 

48

 K5030B026 

97 

64

 K5030B040 

97 

64

 K5030B060 

97 

64

 K5527U026 

98 

128

 K5528B026 

97 

112

 K5528B040 

97 

112

 K5528B060 

97 

112

 K5528E026 

96 

112

 K5528E040 

96 

112

  K5528E060 

96  

112

 K5529U026 

98 

96

 K5530E026 

96 

96

 K5530E040 

96 

96

 K5530E060 

96 

96

 K6030B026 

97 

80

 K6030B040 

97 

80

 K6030B060 

97 

80

 K6527E026 

96 

54

 K6527E040 

96 

54

 K6527E060 

96 

54

 K6527U026 

98 

54

 K6533U026 

98 

54

 K7020B026 

97 

90

 K7020B040 

97 

90

 K7020B060 

97 

90

 K7030B026 

97 

60

 K7030B040 

97 

60

 K7030B060 

97 

60

 K7228E026 

96 

84

 K7228E040 

96 

84

 K7228E060 

96 

84

 K7236U026 

98 

60

 K8020E026 

96 

63

 K8020E040 

96 

63

 K8020E060 

96 

63

 K8020U026 

98 

63

 K8024E026 

96 

45

 K8024E040 

96 

45

 K8024E060 

96 

45

 K8030B026 

97 

48

 K8030B040 

97 

48

 K8030B060 

97 

48

 K8038U026 

98 

63

 K8044E026 

96 

63

 K8044E040 

96 

63

 K8044E060 

96 

63

 K9541B026 

97 

30

Kool Mµ

®

 Blocks, E Cores, and U Cores

P/N 

PAGE    BOX QTY

P/N 

PAGE    BOX QTY

P/N 

PAGE    BOX QTY

Index

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

6

Core Locator & Unit Pack Quantity

P/N 

PAGE    BOX QTY

P/N 

PAGE    BOX QTY

P/N 

PAGE    BOX QTY

 X114LE026 

96 

18

 X114LE040 

96 

18

 X114LE060 

96 

18

 X1808E026 

96 

2,880

 X1808E040 

96 

2,880

 X1808E060 

96 

2,880

 X3515E026 

96 

720

 X3515E040 

96 

720

 X3515E060 

96 

720

 X4017E026 

96 

264

 X4017E040 

96 

264

 X4017E060 

96 

264

 X4020E026 

96 

192

 X4020E040 

96 

192

 X4020E060 

96 

192

 X4022E026 

96 

168

 X4022E040 

96 

168

 X4022E060 

96 

168

 X4317E026 

96 

270

 X4317E040 

96 

270

 X4317E060 

96 

270

 X4741B026 

97 

48

 X4741B040 

97 

48

 X4741B060 

97 

48

 X5030B026 

97 

64

 X5030B040 

97 

64

 X5030B060 

97 

64

 X5528B026 

97 

112

 X5528B040 

97 

112

 X5528B060 

97 

112

 X5528E026 

96 

112

 X5528E040 

96 

112

 X5528E060 

96 

112

 X5530E026 

96 

96

 X5530E040 

96 

96

 X5530E060 

96 

96

 X6030B026 

97 

80

 X6030B040 

97 

80

 X6030B060 

97 

80

 X6527E026 

96 

54

 X6527E040 

96 

54

 X6527E060 

96 

54

 X7020B026 

97 

90

 X7020B040 

97 

90

 X7020B060 

97 

90

 X7030B026 

97 

60

 X7030B040 

97 

60

 X7030B060 

97 

60

 X7228E026 

96 

84

 X7228E040 

96 

84

 X7228E060 

96 

84

 X8020E026 

96 

63

 X8020E040 

96 

63

 X8020E060 

96 

63

 X8024E026 

96 

45

 X8024E040 

96 

45

 X8024E060 

96 

45

 X8030B026 

97 

48

 X8030B040 

97 

48

 X8030B060 

97 

48

 X8044E026 

96 

63

 X8044E040 

96 

63

 X8044E060 

96 

63

XF

lux

®

 Blocks and E Cores

XF

lux

®

 Toroids

Index

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

P/N  PAGE  BOX QTY

 78051 

70 

5,000

 78052 

70 

5,000

 78054 

70 

5,000

 78055 

70 

5,000

 78056 

70 

5,000

 78059 

74 

1,000

 78068 

88 

35

 78069 

88 

35

 78071 

77 

250

 78072 

88 

35

 78073 

88 

35

 78074 

88 

35

 78076 

79 

220

 78083 

80 

180

 78090 

81 

120

 78091 

81 

120

 78093 

81 

120

 78094 

81 

120

 78095 

81 

120

 78096 

93 

25

 78099 

93 

25

 78100 

93 

25

 78102 

93 

25

 78110 

85 

90

 78111 

85 

90

 78113 

71 

2,000

 78121 

71 

2,000

 78122 

71 

2,000

 78159 

93 

25

 78189 

86 

80

 78191 

86 

80

 78192 

86 

80

 78193 

86 

80

 78194 

86 

80

 78208 

73 

1,600

 78210 

73 

1,600

 78211 

73 

1,600

 78212 

85 

90

 78213 

85 

90

 78214 

85 

90

 78224 

71 

2,000

 78225 

71 

2,000

 78256 

80 

180

 78258 

80 

180

 78259 

80 

180

 78260 

80 

180

 78312 

74 

1,000

 78314 

74 

1,000

 78315 

74 

1,000

 78316 

74 

1,000

 78326 

79 

220

 78328 

79 

220

 78329 

79 

220

 78330 

79 

220

 78337 

94 

16

 78338 

94 

16

 78342 

94 

16

 78351 

75 

720

 78352 

75 

720

 78354 

75 

720

 78355 

75 

720

 78356 

75 

720

 78381 

72 

2,000

 78382 

72 

2,000

 78384 

72 

2,000

 78385 

72 

2,000

 78386 

72 

2,000

 78431 

82 

105

 78439 

82 

105

 78440 

82 

105

 78442 

82 

105

 78443 

82 

105

 78550 

77 

250

 78552 

77 

250

 78553 

77 

250

 78555 

77 

250

 78586 

78 

300

 78587 

78 

300

 78589 

78 

300

 78590 

78 

300

 78591 

78 

300

 78615 

87 

45

 78616 

87 

45

 78617 

87 

45

 78618 

87 

45

 78619 

87 

45

 78716 

84 

90

 78717 

84 

90

 78719 

84 

90

 78720 

84 

90

 78721 

84 

90

 78726 

83 

70

 78727 

83 

70

 78729 

83 

70

 78730 

83 

70

 78733 

83 

70

 78735 

89 

24

 78736 

89 

24

 78737 

89 

24

 78738 

89 

24

 78739 

89 

24

 

78775 92 

20

 78776 

92 

20

 78777 

92 

20

 

 78847 

73 

1,600

 78848 

73 

1,600

 78867 

90 

45

 78868 

90 

45

 78870 

90 

45

 78871 

90 

45

 78872 

90 

45

 78894 

76 

400

 78907 

91 

40

 78908 

91 

40

 78910 

91 

40

 78911 

91 

40

 78912 

91 

40

 78932 

76 

400

 78934 

76 

400

 78935 

76 

400

 78936 

76 

400

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

7

Core Locator & Unit Pack Quantity

 79051 

70 

5,000

 79052 

70 

5,000

 79059 

74 

1,000

 79071 

77 

250

 79072 

88 

35

 79074 

88 

35

 79076 

79 

220

 79083 

80 

180

 79090 

81 

120

 79091 

81 

120

 79099 

93 

25

 79102 

93 

25

 79110 

85 

90

 79111 

85 

90

 79121 

71 

2,000

 79122 

71 

2,000

 79191 

86 

80

 79192 

86 

80

 79208 

73 

1,600

 79256 

80 

180

 79312 

74 

1,000

 79326 

79 

220

 79337 

94 

16

 79351 

75 

720

 79352 

75 

720

 79381 

72 

2,000

 79382 

72 

2,000

 79439 

82 

105

 79440 

82 

105

 79550 

77 

250

 79586 

78 

300

 79587 

78 

300

 79615 

87 

45

 79617 

87 

45

 79716 

84 

90

 79717 

84 

90

 79726 

83 

70

 79727 

83 

70

 79735 

89 

24

 79737 

89 

24

 79848 

73 

1,600

 79867 

90 

45

 79868 

90 

45

 79894 

76 

400

 79907 

91 

40

 79908 

91 

40

 79932 

76 

400

 

Kool Mµ

®

 MAX Toroids

P/N 

PAGE    BOX QTY

P/N 

PAGE    BOX QTY

P/N 

PAGE    BOX QTY

Index

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

8

General Information

Introduction

Magnetics Molypermalloy Powder (MPP)

 cores are 

distributed air gap toroidal cores made from a 81% nickel, 
17% iron, and 2% molybdenum alloy powder for the lowest 
core losses of any powder core material .  MPP cores (and all 
powder cores) exhibit soft saturation, which is a significant 
design advantage compared with gapped ferrites .  Also, 
unlike ferrites, the MPP saturation curve does not need to 
be derated with increasing device temperature .

MPP cores possess many outstanding magnetic 
characteristics, such as high resistivity, low hysteresis and 
eddy current losses, excellent inductance stability after high 
DC magnetization or under high DC bias conditions and 
minimal inductance shift under high AC excitation .

MPP THINZ

®

, or washer cores, put the premium 

performance of Magnetics’ superior MPP material into 
robust, low height toroid form, for low profile inductors .  
With MPP THINZ, exact permeability and height are 
easily adjusted to result in the optimum design for each 
application .

Magnetics High Flux

 powder cores are distributed air 

gap toroidal cores made from a 50% nickel - 50% iron alloy 
powder for the highest biasing capability of any powder 
core material . High Flux cores have advantages that result 
in superior performance in certain applications involving high 
power, high DC bias, or high AC excitation amplitude .  The 
High Flux alloy has saturation flux density that is twice that 
of MPP alloy, and three times or more than that of ferrite .  As 
a consequence, High Flux cores can support significantly 
more DC bias current or AC flux density . 

High Flux offers much lower core losses and superior DC 
bias compared with powdered iron cores .  High Flux cores 
offer lower core losses and similar DC bias compared with 
XF

lux

 cores . Frequently, High Flux allows the designer to 

reduce the size of an inductive component compared with 
MPP, powdered iron, or ferrite .

  

Magnetics Kool Mµ

®

 powder cores are distributed air 

gap cores made from a ferrous alloy powder for low losses 
at elevated frequencies .  The near zero magnetostriction 
alloy makes Kool Mµ ideal for eliminating audible frequency 
noise in filter inductors .  In high frequency applications, core 
losses of powdered iron, for instance, can be a major factor 
in contributing to undesirable temperature rises .  Kool Mµ 
cores are superior because their losses are significantly 
less, resulting in lower temperature rises .  Kool Mµ cores 
generally offer a reduction in core size, or an improvement in 
efficiency, compared with powdered iron cores .

Kool Mµ is available in a variety of core types, for maximum 
flexibility .  Toroids offer compact size and self-shielding .   E 
cores and U cores afford lower cost of winding, use of foil 
inductors, and ease of fixturing . Very large cores and structures 
are available to support very high current applications .  These 
include toroids up to 102 mm, 133 mm and 165 mm; large E 
cores; U cores; stacked shapes; and blocks .

Magnetics Kool Mµ

®

 MAX

 powder cores are distributed 

air gap cores made from a ferrous alloy powder offering 
50% better DC bias performance than standard Kool Mµ 
material . Use of copper wire is minimized by maintaining 
inductance using less turns, resulting in savings in overall 
component cost . With its super low losses, Kool Mµ MAX 
does not mimic the same temperature rise problems found 
in iron powder cores . Inductors built with Kool Mµ MAX do 
not have several of the disadvantages that are inherent with 
gapped ferrite cores, including low saturation flux density 
and fringing losses at the discrete air gap .

Magnetics XF

lux

®

 distributed air gap cores are made from 

6 .5% silicon iron powder .  XF

lux

 offers lower losses than 

powdered iron cores and superior DC bias performance .  
The soft saturation of XF

lux

 material offers an advantage 

over ferrite cores .  XF

lux

 cores are ideal for low and medium 

frequency chokes where inductance at peak load is critical .

Magnetics Kool Mµ

®

, XF

lux

®

, MPP, High Flux 

and Kool Mµ

®

 MAX are true high temperature 

materials with no thermal aging.

Magnetics is committed to meeting global 
environmental standards and initiatives. Magnetics’ 
REACH and RoHS compliance statements and reports 
are available on our website: www.mag-inc.com

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

9

Applications and Materials

General Information

Magnetics powder cores are most commonly used in power 
inductor applications, specifically in switch-mode power 
supply (SMPS) filter inductors, also known as DC inductors 
or chokes .  Other power applications include differential 
inductors, boost inductors, buck inductors and flyback 
transformers .

While all five materials are used in these applications, each 
has its own advantages .  For the lowest loss inductor, 
MPP material should be used since it has the lowest core 
loss .  For the smallest package size in a DC bias dominated 
design, High Flux material should be used since it has the 
highest flux capacity .  XF

lux

®

 can be a lower cost alternative 

to High Flux, in situations where the higher core losses and 

more limited permeability availability of XF

lux

 is acceptable .

The unique advantages of Magnetics’ powder cores are 
used in a variety of other applications, including:  High Q 
filters, high reliability inductors and filters, high temperature 
inductors and filters, high current CTs, telecom filters, and 
load coils .

Magnetics’ powder cores are available in a variety of shapes 
including toroids, E cores, U cores, blocks, and cylinders, 
which can be used to create customizable structures . 

For 

more information on cylinders or custom shapes, please 
contact Magnetics.

A lower cost family of alternative products to Magnetics’ five premium powder core materials are powdered irons .  Manufacturers 
of powdered iron use a different production process .  For comparison with the above table, powdered irons have permeabilities 
from 10-100; highest core loss; good perm vs . DC bias; fair temperature stability; lower temperature ratings; soft saturation; 0% 
nickel content; lowest relative cost .

Kool Mµ and powdered iron cores have comparable DC bias performance . The advantages of Kool Mµ compared with powdered 
iron include (1) lower core losses; (2) no thermal aging, since Kool Mµ is manufactured without the use of organic binders; (3) near 
zero magnetostriction, which means that Kool Mµ can be useful for addressing audible noise problems; and (4) better stability of 
permeability vs . AC flux density .

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

High Flux

MPP

Alloy Composition

FeSiAl

FeSi

FeSiAl

FeNi

FeNiMo

Available Permeabilities

14-125

26-90

26-60

14-160

14-550

Core Loss - 60µ (mW/cc)

50 kHz, 1000 G

214

590

205

333

174*

100 kHz, 1000 G

550

1,350

550

900

450*

Perm vs. DC Bias - 60µ (AT/cm)

80% of µ

i

34

76*

52

69

48

50% of µ

i

76

131*

103

131

84

60µ Temperature Stability - Typical % shift from -60 to 200°C

7%

5%

-

4%

2.5%

Curie Temperature

500°C

700°C

500°C

500°C

460°C

Saturation Flux Density (Tesla)

1.0

1.6

1.0

1.5

0.8

Frequency Response - 60µ flat to…

900 kHz

500 kHz

900 kHz

1 MHz

2MHz

Relative Cost

1*

1.2x

2x

4x-6x

7x-9x

*

indicates best choice

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

10

Material Data

Material Properties

PERMEABILITY vs. T, B, & f - TYPICAL

Permeability (µ)

µ vs. T dynamic range 

(-50º C TO +100º C)

MATERIALS RATED TO 200º C

µ vs. B dynamic range 

0 to 400 mT

µ vs. f. 

flat to...

MPP

14µ

0.7%

+0.4%

4 MHz

26µ

0.9%

+0.4%

3 MHz

60µ

1.0%

+0.8%

2 MHz

125µ

1.3% 

+1.4%

300 kHz

147µ, 160µ, 173µ

1.5%

+1.9%

200 kHz

200µ

1.6%

+2.8%

100 kHz

300µ

1.6%

+4.5%

90 kHz

550µ

8.7%

+21.0%

20 kHz

High Flux

14µ

1.5%

+5.0%

3 MHz

26µ

2.0%

+9.0%

1.5 MHz

60µ

2.6%

+13.5%

1 MHz

125µ

3.6%

+19.0%

700 kHz

147µ

4.8%

+22.0%

500 kHz

160µ

5.5%

+25.0%

400 kHz

Kool Mµ

®

26µ

1.7%

+1.0%

2 MHz

40µ

2.2%

+1.1%

1 MHz

60µ

3.4%

+1.4%

900 kHz

75µ

4.5%

+2.0%

500 kHz

90µ

5.2%

+2.8%

500 kHz

125µ

8.3%

+3.4%

300 kHz

X

F

lux

®

26µ

2.5%

1 MHz

60µ

3.0%

+14.5%

500 kHz

Curie 

Temperature

Density

Coefficient of  

Thermal Expansion

MPP

460

°

C

8.0 grams/cm

3

12.9 x 10

-6

/

°

C

High Flux

500

°

C

7.6 grams/cm

3

5.8 x 10

-6

/

°

C

 Kool Mµ

500

°

5.5 grams/cm

3

10.8 x 10

-6

/

°

C

X

F

lux

700

°

C

7.5 grams/cm

3

11.6 x 10

-6

/

°

C

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

11

Material Data

Core Weights

Unit Conversions

To obtain number of

Multiply number of

By

A.T/cm

oersteds

0.795

oersteds

A.T/cm

1.26

tesla

gauss

0.0001

gauss

tesla

10,000

gauss

mT(milli Tesla)

10

cm

2

in

2

6.452

cm

2

circular mils

(5.07)(10

-6

)

Permeability

14µ

26µ

40µ

60µ

75µ

90µ

125µ

147µ 

160µ 

173µ

200µ 

300µ

550µ

x Factor

0.80

0.86

0.90

0.94

0.96

0.97

1.00

1.02

1.03

1.04

Core weights listed in this catalog are for 125µ cores .*  
To determine weights for other permeabilities, multiply the 125µ weight by the following factors:

*XF

lux

®

 

and Kool Mµ

®

 MAX are based on 60µ weight .

*MPP, High Flux, and Kool Mµ

®

 in sizes 102, 337, and 165 weight based on 26µ .

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

12

General Information

Core Identification

All Magnetics powder cores have unique part numbers that provide important information about the characteristics of the cores . 
A description of each type of part number is provided below .

Core Finish Code

Voltage Breakdown 

(wire to wire)

Material Availability

OD Size Availability

A2

2,000 V

AC

 min

MPP, High Flux

All

A7

2,000 V

AC

 min

Kool Mµ, XF

lux

, Kool Mµ

 

MAX

All

AY

   600 V

AC

 min

All

3.56 - 16.5 mm

A5

2,000 V

AC

 min

All

6.35 - 23.6 mm

A9

8,000 V

AC

 min

All

>4.65 mm

TOROIDS
C O 5 5 2 0 6 A 2

SHAPES and THINZ
00K5528E060

LARGE E CORES
00K130LE026 

Catalog Number (designates size and permeability)
Material Code  . . . .  55 = MPP

 

58 = High Flux

 

77 = Kool Mµ

 

78 = XF

lux

 

79 = Kool Mµ MAX

Grading Code . . . . .  CO = Graded into 2% inductance bands  – OD <4.65 mm, 5% bands

 

00 = Not graded

  

• No voltage breakdown min for A2 or A7 with OD

 

^

4.65mm

• A2 and A7 voltage breakdown is 1000 V

AC  

with 4.65mm < OD < 26.9mm

• AY finish not available for 550µ MPP

Permeability Code ... Permeability, e.g. 060 for 60µ

Shape Code . . . . . .  E = E Core

 

T = Toroid

 

U = U Core

 

P = I Core/Plate

 

B = Block

Size Code . . . . . . .  First two digits equal approximate length 

 

or OD in mm / Last two digits equal 

 

approximate height or ID in mm

Material Code . . . . . K = Kool Mµ
 

M = MPP*

 

H = High Flux*

 

X = XF

lux

 

*consult factory

Grading Code . . . . .  00 = Not graded
 

• Full part number and shop order  

 

   number are marked on all shapes

Permeability Code . . Permeability, e.g. 026 for 26µ

Shape Code . . . . . .  LE = Large E Core

Size Code

Material Code . . . . . M = MPP*

 

H = High Flux* 

 

K = Kool Mµ

 

X = XF

lux

 

*consult factory 

Grading Code . . . . .  00 = Not graded

 

• Full part number and shop order  

 

   number are marked on all shapes

Size 

(OD mm)

6-digit  

Shop Order Number

2-digit  

Material Code

3-digit 

Catalog Number

2-digit 

Core Finish Code

Inductance  

Code

Marking  

Example

6.35 - 6.86

4

4

4

123456  020 +6

7.87 - 12.7

4

4

4

4

123456  050A2 +6

> 12.7

4

4

4

4

4

123456  55120A2 +6

Powder Core Toroid Marking Summary

•  Inductance Code is only marked on MPP and High Flux toroids with C0 grading code

•  Cores with OD < 6.35 mm are not marked

•  Shop order number identifies the product batch, ensuring traceability of every 

core through the entire manufacturing process, back to raw materials

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

13

Inductance and Grading

General Information

PARTS NOT GRADED

A

L

 (Inductance factor) is given for each core in this catalog . 

Inductance for blocks is tested in standard picture frame 
arrangements . Units for A

L

 are nH/T

2

 . A

L

 is related to nominal 

calculated inductance (L

N

, in µH) by the number of turns, N . 

L

N

 = A

L

 N

2

 10

-3

Magnetics’ inductance standards are measured in a Kelsall 
Permeameter Cup .  Actual wound inductance measured 
outside a Kelsall Cup is greater than the nominal calculated 
value due to leakage flux and flux developed by the current 
in the winding . The difference depends on many variables;  
core size, permeability, core coating thickness, wire size 
and number of turns, in addition to the way in which the 
windings are put on the core .  The difference is negligible 
for permeabilities above 125 and turns greater than 500 .  
However, the lower the permeability and/or number of turns, 
the more pronounced this deviation becomes .

The following formula can be used to approximate the leakage 
flux to add to the expected inductance .  This formula was 
developed from historical data of cores tested at Magnetics .  
Be aware that this will only give an approximation based on 
evenly spaced windings .  You may expect as much as a ±50% 
deviation from this result .

Example: C055930A2 with 25 turns (p . 76)

Example : C055930A2 (26 .9 mm, 125µ, p . 76)

Number  

of Turns

Calculated  

Inductance

Measured  

Inductance

1,000

157 mH

+0.0%

500

39.3 mH

+0.5%

300

14.1 mH

+1%

100

1.57 mH

+3%

50

393 µH

+5%

25

98.1 µH

+9%

Magnetics powder cores are precision manufactured to 
an inductance tolerance of ± 8%*, using standard Kelsall 
Permeameter Cup measurements with a precision series 
inductance bridge .

MPP and High Flux cores with outside diameters > 4 .65 mm 
are graded into 2% inductance bands as a standard practice 
at no additional charge .  Core grading can reduce winding 
costs by minimizing turns adjustments when building high 
turns inductors to very tight inductance specifications .  MPP 
cores 4 .65 mm and smaller are graded into 5% bands .

 • 14µ and 26µ cores • MPP THINZ

®

 • Parylene coated cores 

 
  The following toroid OD sizes: 
 

62 .0 mm OD 

68 .0 mm OD 

74 .1 mm OD 

 

77 .8 mm OD 

101 .6 mm OD 

132 .6 mm OD 

 

165 .1 mm OD

Core Inductance Tolerance and Grading

Measured vs. Calculated Inductance

+8

+8

+7

-4.0

-3.5

+6

+7

+5

-3.5

-2.5

+4

+5

+3

-2.5

-1.5

+2

+3

+1

-1.5

-0.5

+0

+1

-1

-0.5

+0.5

-2

-1

-3

+0.5

+1.5

-4

-3

-5

+1.5

+2.5

-6

-5

-7

+2.5

+3.5

-8

-7

-8

+3.5

+4.0

GRADE 

Stamped 

on Core 

OD

INDUCTANCE 

% Deviation 

from Nominal

From

From

To

To

TURNS 

% Deviation 

from Nominal

9 - old1 - 4?or5

L

LK

=

l

e

0 .292 N

1 .065

A

e

where:

L

LK

= leakage induc tan ce adder (µH)

N = number of turns
A

e

= core cross sec tion (mm

2

)

l

e

= core magnetic path length (mm)

Cata log Data

A

L

= 157 nH/T

2

A

e

= 65 .4 mm

2

I

e

= 63 .5 mm

Calculated Induc tan ce
L

N

= (157) (25)

2

10

-3

= 98 .1µH

Leakage Adder

L

LK

=

63 .5

0 .292 (25)

1 .065

(65 .4)

= 9 .3 µH

Est Measured Induc tan ce
L = L

N

+ L

LK

= 98 .1+ 9 .3
= 107 µH

Catalog Data

Calculated Inductance

 

 

Leakage Adder

Estimated Measured Inductance

9 - old1 - 4?or5

L

LK

=

l

e

0 .292 N

1 .065

A

e

where:

L

LK

= leakage induc tan ce adder (µH)

N = number of turns
A

e

= core cross sec tion (mm

2

)

l

e

= core magnetic path length (mm)

Cata log Data

A

L

= 157 nH/T

2

A

e

= 65 .4 mm

2

I

e

= 63 .5 mm

Calculated Induc tan ce
L

N

= (157) (25)

2

10

-3

= 98 .1µH

Leakage Adder

L

LK

=

63 .5

0 .292 (25)

1 .065

(65 .4)

= 9 .3 µH

Est Measured Induc tan ce
L = L

N

+ L

LK

= 98 .1+ 9 .3
= 107 µH

9 - old1 - 4?or5

L

LK

=

l

e

0 .292 N

1 .065

A

e

where:

L

LK

= leakage induc tan ce adder (µH)

N = number of turns
A

e

= core cross sec tion (mm

2

)

l

e

= core magnetic path length (mm)

Cata log Data

A

L

= 157 nH/T

2

A

e

= 65 .4 mm

2

I

e

= 63 .5 mm

Calculated Induc tan ce
L

N

= (157) (25)

2

10

-3

= 98 .1µH

Leakage Adder

L

LK

=

63 .5

0 .292 (25)

1 .065

(65 .4)

= 9 .3 µH

Est Measured Induc tan ce
L = L

N

+ L

LK

= 98 .1+ 9 .3
= 107 µH

9 - old1 - 4?or5

L

LK

=

l

e

0 .292 N

1 .065

A

e

where:

L

LK

= leakage induc tan ce adder (µH)

N = number of turns
A

e

= core cross sec tion (mm

2

)

l

e

= core magnetic path length (mm)

Cata log Data

A

L

= 157 nH/T

2

A

e

= 65 .4 mm

2

I

e

= 63 .5 mm

Calculated Induc tan ce
L

N

= (157) (25)

2

10

-3

= 98 .1µH

Leakage Adder

L

LK

=

63 .5

0 .292 (25)

1 .065

(65 .4)

= 9 .3 µH

Est Measured Induc tan ce
L = L

N

+ L

LK

= 98 .1+ 9 .3
= 107 µH

9 - old1 - 4?or5

L

LK

=

l

e

0 .292 N

1 .065

A

e

where:

L

LK

= leakage induc tan ce adder (µH)

N = number of turns
A

e

= core cross sec tion (mm

2

)

l

e

= core magnetic path length (mm)

Cata log Data

A

L

= 157 nH/T

2

A

e

= 65 .4 mm

2

I

e

= 63 .5 mm

Calculated Induc tan ce
L

N

= (157) (25)

2

10

-3

= 98 .1µH

Leakage Adder

L

LK

=

63 .5

0 .292 (25)

1 .065

(65 .4)

= 9 .3 µH

Est Measured Induc tan ce
L = L

N

+ L

LK

= 98 .1+ 9 .3
= 107 µH

L

LK

 = leakage inductance adder (µH)

N  = number of turns
A

e

  = core cross section (mm

2

)

I

e

  = core magnetic path length (mm)

Graded Magnetics MPP cores and High Flux cores are also available  
with tolerances tighter than the standard ± 8% .

*THINZ and Kool Mµ cores with OD < 12 .7 mm have wider tolerances .

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

14

Core Coating

General Information

Magnetics toroidal powder cores are coated with a special 
epoxy finish that provides a tough, wax tight, moisture 
and chemical resistant barrier having excellent dielectric 
properties . Toroids up to 16 .5 mm OD can also be parylene 
coated . Contact Magnetics for parylene-coated toroid 
requests .

The finish is tested for voltage breakdown by inserting a core 
between two weighted wire mesh pads . Force is adjusted 
to produce a uniform pressure of 10 psi, simulating winding 
pressure . The test condition for each core in the random 
sample set, to guarantee minimum breakdown voltage in each 
production batch, is 60 Hz rms voltage at 1 .25 the guaranteed 
limit . A2 and A7 samples (26 .9 mm and larger) are tested to 
2500 V min wire-to-wire . AY samples are tested to 750 V min 
wire-to-wire .

Material

Color

Core Finish Codes

MPP

Gray

A2, A5, A9

High Flux

Khaki

A2, A5, A9

Kool Mµ

®

 

Black

A7, A5, A9

XF

lux

®

Brown

A7, A5, A9

Kool Mµ

® 

MAX

Black

A7, A5, A9

Higher minimum breakdown coatings can be applied upon 
request for cores larger than 4 .65 mm .

Toroids as large as 16 .5 mm outside diameter can be 
coated with parylene to minimize the constriction of the 
inside diameter .  All finished dimensions in this catalog are 
for epoxy coating (A2 or A7) .  For a parylene coated toroid 
(AY), the maximum OD and HT are reduced by 0 .18 mm 
(0 .007”), and the minimum ID is increased by 0 .18 mm 
(0 .007”) .

The maximum steady-state operating temperature for epoxy 
coating is 200°C .  The maximum steady-state operating 
temperature for parylene coating is 130°C, but it can be 
used as high as 200°C for short periods, such as during 
board soldering . High temperature operation of Magnetics 
powder cores does not affect magnetic properties . 

MPP, High Flux, Kool Mµ, XF

lux

and Kool Mµ MAX 

materials can be operated continuously at 200°C with no 
aging or damage .

NOTE: Special powder grades and 
processing were historically used with 
MPP for passive filter inductors. For 
information regarding D4, W4, M4 and L6 
codes, or precision inductor processing, 
contact Magnetics.

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

15

Cor
e Selection

Inductor Core Selection Procedure

Only two parameters of the design application must be 
known to select a core for a current-limited inductor;  in-
ductance required with DC bias and the DC current .  Use 
the following procedure to determine the core size and 
number of turns .

1 . 

 Compute the product of LI

2

 where:  

L = inductance required with DC bias (mH)  
I = DC current (A)

2 . 

 Locate the LI

2

 value on the Core Selector Chart 

(pgs . 24 - 27) .  Follow this coordinate to the inter-
section with the first core size that lies above the 
diagonal permeability line . This is the smallest core 
size that can be used .

3 . 

 The permeability line is sectioned into standard 
available core permeabilities .  Selecting the core 
listed on the graph will tend to be the best tradeoff 
between A

L

 and DC bias .

4 . 

 Inductance, core size, and permeability are now 
known .  Calculate the number of turns by using the 
following procedure:

 

(a)       The inductance factor (A

L

 in nH/T

2

) for the 

core is obtained from the core data sheet .  
Determine the minimum A

by using the worst 

case negative tolerance (generally -8%) .  With 
this information, calculate the number of turns 
needed to obtain the required inductance 
from:

11old 2 - 1

N =

A

L

L 10

3

H =

l

e

NI

3

T (˚C) =

Component Surface Area (cm

2

)

Total Losses (mW)

U

Z

0 .833

 

       Where L is required inductance (µH)

 

(b)     Calculate the bias in A·T/cm from:

11old 2 - 1

N =

A

L

L 10

3

H =

l

e

NI

3

T (˚C) =

Component Surface Area (cm

2

)

Total Losses (mW)

U

Z

0 .833

 

(c)      From the Permeability vs . DC Bias curves 

(pgs . 29 - 33), determine the rolloff percentage 
of initial permeability for the previously calculat-
ed bias level .  Curve fit equations shown in the 
catalog can simplify this step . They are also 
available to use on Magnetics website: http://
www .mag-inc .com/design/design-guides/
Curve-Fit-Equation-Tool

 

(d)      Multiply the required inductance by the per-

centage rolloff to find the inductance with bias 
current applied .

 

 

(e)  Increase the number of turns by dividing the 

initial number of turns (from step 4(a)) by the 
percentage rolloff .  This will yield an inductance 
close to the required value after steps 4 (b), (c) 
and (d) are repeated .

 

(f)   Iterate steps 4 (b), (c) and (d) if needed to adjust 

turns up or down until the biased inductance is 
satisfactorily close to the target .

5 .   Choose a suitable wire size using the Wire Table (p . 

28) .  Duty cycles below 100% allow smaller wire 
sizes and lower winding factors, but do not allow 
smaller core sizes .

6 . 

 Design  Checks

 

(a) 

Winding Factor

 . See p .17 for notes on checking 

the coil design .

 (b) 

Copper Losses

 .

 

See p .17 for notes on calculat-

ing conductor resistance and losses .

 (c) 

Core Losses

 . See p .18 for notes on calculating 

AC core losses . If AC losses result in too much 
heating or low efficiency, then the inductor may 
be loss-limited rather than current-limited . Design 
alternatives for this case include using a larger 
core or a lower permeability core to reduce the 
AC flux density; or using a lower loss material 
such as MPP or Kool Mµ MAX in place of Kool 
Mµ, or High Flux in place of XF

lux

 .

 (d) 

Temperature Rise

 . Dissipation of the heat gener-

ated by conductor and core losses is influenced 
by many factors . This means there is no simple 
way to predict temperature rise (

%

T) precisely . 

But the following equation is known to give a 
useful approximation for a component in still air . 
Surface areas for cores wound to 40% fill are 
given with the core data in this catalog .

11old 2 - 1

N =

A

L

L 10

3

H =

l

e

NI

3

T (˚C) =

Component Surface Area (cm

2

)

Total Losses (mW)

U

Z

0 .833

2017-Magnetics-Powder-Core-Catalog-html.html
background image

0.00 mm O.D.

Cor

e Selection

MAGNETICS

16

Core Selection Example

Determine core size and number of turns to meet the 
following requirement:

(a)    Minimum inductance with DC bias of  

0 .6 mH (600 µH)

(b)   DC current of 5 .0 A

 
1 .     LI

2

= (0 .6)(5 .0)

2

=15 .0 mH·A

2

 
2 .      Using the Kool Mµ Toroids LI

2

 chart found on p . 

25, locate 15 mH·A

2

 on the bottom axis . Following 

this coordinate vertically results in the selection of 
0077083A7 as an appropriate core for the above 
requirements .

 
3 .      From the 0077083A7 core data p . 80, the inductance 

factor (A

L

) of this core is 81 nH/T

2

 ± 8% . The minimum 

A

L

 of this core is 74 .6 nH/T

2

 .  

 
4 .      The number of turns needed to obtain 600 µH at no 

load is 90 turns . To calculate the number of turns 
required at full load, determine the DC bias level:   
H= N·I/

l

e

 where 

l

e

 is the path length in cm . The DC bias 

is 45 .7 A·T/cm, yielding 71% of initial permeability from 
the 60µ Kool Mµ DC bias curve on p . 30 .The adjusted 
turns are 90/0 .71 =127 Turns .

5 .      Re-calculate the DC bias level . The permeability versus 

DC bias curve shows 57% of initial permeability at  
64 .5 A·T/cm .

 
6 .      Multiply the minimum A

L

 74 .6 nH/T

2

 by 0 .57 to yield 

effective A

L

 = 42 .5 nH/T

2

 . The inductance of this core 

with 127 turns and with 64 .5 A·T/cm will be 685 µH 
minimum . The inductance requirement has been met .

 
7 .      The wire table indicates that 17 AWG is needed to 

carry 5 .0 A with a current density of 500 A/cm

2

 .  

127 turns of 17 AWG (wire area = 1 .177 mm

2

) equals 

a total wire area of 149 .5 mm

2

 . The window area of a 

0077083A7 is 427 mm

2

 . Calculating window fill,  

149 .5 mm

2

/427 mm

2

 corresponds to an approximate 

35% winding factor . A 0077083A7 with 127 turns of  
17 AWG is a manufacturable design .

Cor

e Selection

2017-Magnetics-Powder-Core-Catalog-html.html
background image

0.00 mm O.D.

www.mag-inc.com

17

Cor
e Selection

4

Toroid Winding

Winding Factor

Winding factor, also called fill factor, is the ratio of total 

conductor cross section (usually copper cross section) to 

the area of the core window .  In other words, in a toroid, 

winding factor is given by: 

  

 

N

A

W

/W

A

  

N = Number of turns

     where: 

A

= Area of the wire 

  

W

= Window Area of the core 

p

 ·

ID

2

Toroid Core Winding factors can vary from 20-60%, a typical 

value in many applications being 35-40% .

In practice, several approaches to toroid winding are used:

Single layer: The number of turns is limited by 

the inside circumference of the core divided by 

the wire diameter .  Advantages are lower winding 

capacitance, more repeatable parasitics, good 

cooling, and low cost .  Disadvantages are reduced 

power handling and higher flux leakage . 

Low fill: For manufacturing ease and reduced 

capacitance, winding factor between single layer 

and 30% may be used . 

Full winding: Factors between 30% and 45% 

are normally a reasonable trade off between fully 

utilizing the space available for a given core size, 

while avoiding excessive manufacturing cost . 

High fill: Winding factors up to about 65% 

are achievable, but generally only with special 

expensive measures, such as completing each coil 

by hand after the residual hole becomes too small 

to fit the winding shuttle .

Estimating Wound Coil Dimensions

For each core size, wound coil dimensions are given for 

40% winding factor, since this is a typical, practical value .

Worst case package dimensions for coils wound completely 

full are also shown . These are max expected OD and max 

expected HT .

To estimate dimensions for other winding factors, use: 

 

Rv 7 - 17

OD

x%

=

40%

X% OD

40%

2

- OD

core

2

Q

V

+ OD

core

2

HT

x%

=ID

core

+ HT

core

-

60%

100%- X% ID

core

+ HT

core

- HT

40%

Q

V

2 - 8
H

ACmax

=

I

e

N I

DC

+ 2

3

I

S

X

#

&

2 - 9

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .44T

2 - 11

B

pk

= 0 .5 µ

0

Q V

i

Q V

µ

i

Q V

3

H

where

3

H

=

I

e

N

%

I

Where: X% is the new winding factor;

OD

40%

 and HT

40%

 are the coil dimensions shown on 

the core data page;

OD

core

 and HT

core

 are the maximum core dimensions 

after finish .

Cor
e Selection

MLT and DCR

MLT (Mean Length of Turn) is given for a range of winding 

factors for each core size . To estimate DCR, first, calculate 

the winding factor for the core, wire gauge, and number of 

turns selected .  On the wire table look up resistance per 

unit of length for the gauge selected . On the data page for 

the core selected, consult the Winding Turn Length chart .  

Unless the winding factor is exactly one of the values listed, 

interpolate to find the MLT . Then,

DCR = (MLT)(N) (

Q

/Length) .

For single layer winding, MLT is the 0% fill value on each 

core data page . Even easier, DCRs for single layer windings 

for a range of wire gauges are given in the winding tables on 

pgs . 103 - 107 .

Wire Loss

DC copper loss is calculated directly as I

2

R . Naturally, for 

aluminum conductors, a suitable wire table must be used . 

Also, the increase of wire resistance with temperature 

should be considered .

AC copper loss can be significant for large ripple and for 

high frequency . Unfortunately, calculation of AC copper loss 

is not a straight-forward matter . Estimates are typically used .

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Selection

MAGNETICS

18

Powder Core Loss Calculation

Magnetizing Force (A·T/cm)

60µ Kool Mµ DC Magnetization  (Example 2)

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10

100

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

550µ

160µ

H

AC min

H

AC max

B

AC max

B

AC min

B

H

 

Core loss is generated by the changing magnetic flux 

field within a material, since no magnetic materials exhibit 

perfectly efficient magnetic response .  Core loss density (PL) 

is a function of half of the AC flux swing (½  B=B

pk

) and 

frequency (

f

) . It can be approximated from core loss charts 

or the curve fit loss equation:

14 - old 2 - 8

PL = aB

pk

b

f

c

B

pk

= 2

%

B =

2

B

AC max

- B

AC min

H

AC max

=

I

e

N I

DC

+ 2

3

I

S

X

#

&

H

AC min

=

I

e

N I

DC

+ 2

3

I

S

X

#

&

where a, b, c are constants determined from curve fitting, 

and B

pk

 is defined as half of the AC flux swing:

14 - old 2 - 8

PL = aB

pk

b

f

c

B

pk

= 2

%

B =

2

B

AC max

- B

AC min

H

AC max

=

I

e

N I

DC

+ 2

3

I

S

X

#

&

H

AC min

=

I

e

N I

DC

+ 2

3

I

S

X

#

&

Units typically used are (mW/cm

3

) for PL; Tesla (T) for B

pk

and (kHz) for 

f

 .

The task of core loss calculation is to determine B

pk

 from 

known design parameters . 

Example 1 - AC current is 10% of DC current:

Approximate the core loss of an inductor with 20 turns wound on Kool Mµ p/n 77894A7 p . 76 (60µ, 

l

e

=6 .35 cm, A

e

=0 .654 cm

2

A

L

=75 nH/T

2

) . Inductor current is 20 Amps DC with ripple of 2 Amps peak-peak at 100kHz .

1 .) Calculate 

H

 and determine 

B

 from BH curve (p . 48) or curve fit equation (p . 50):

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

     

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

2 .) Determine Core Loss density from chart or calculate from loss equation p . 46:

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

3 .) Calculate core loss:

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

Method 1 – Determine B

pk

 from DC 

Magnetization Curve . B

pk

f(

H

)

Flux density (B) is a non-linear function of magnetizing field (H), 

which in turn is a function of winding number of turns (N), current 

(I), and magnetic path length (

l

e

) . The value of B

pk

 can typically be 

determined by first calculating 

H

 at each AC extreme:

14 - old 2 - 8

PL = aB

pk

b

f

c

B

pk

= 2

%

B =

2

B

ACmax

- B

ACmin

H

ACmax

=

I

e

N I

DC

+ 2

3

I

S

X

#

&

H

ACmin

=

I

e

N I

DC

- 2

3

I

S

X

#

&

Units typically used are (A·T/cm) for H . 

From H

AC max

, H

AC min

, and the BH curve or equation (listed as 

DC Magnetization, pgs . 47 - 50) B

AC max

, B

AC min

 and therefore 

B

pk

 can be determined .

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

19

Cor
e Selection

Powder Core Loss Calculation

Example 2 - AC current is 40% of DC current:

Approximate the core loss for the same 20-turn inductor, with same inductor current of 20 Amps DC but ripple of 8 Amps peak-

peak at 100kHz .

1 .) Calculate 

H

 and determine 

B

 from BH curve fit equation p . 50:

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

   

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

2 .) Determine Core Loss density from chart or calculate from loss equation p . 46: 

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

3 .) Calculate core loss: 

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

Note: Core losses result only from AC excitation . DC bias applied to any core does not cause any core losses, regardless of the 

magnitude of the bias .

Example 3 – pure AC, no DC:

Approximate the core loss for the same 20-turn inductor, now with 0 Amps DC and 8 Amps peak-peak at 100kHz .

1 .) Calculate H and determine B from BH curve fit equation p . 50:

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

   

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

Note: Curve fit equations are not valid for negative values of B . Evaluate for the absolute value of B, then reverse the sign of the 

resulting H value .

2 .) Determine Core Loss density from chart or calculate from loss equation p . 46 .   

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

 

3 .) Calculate core loss: 

1415 - old 2 - 9 & 10

H

ACmax

= 6 .35

20

20 + 2

2

S

X

= 66 .14

A

$

T

cm

"

B

ACmax

b

0 .40T

H

ACmin

= 6 .35

20

20 - 2

2

S

X

= 59 .84

A

$

T

cm

"

B

ACmin

b

0 .37T

"

B

pk

= 2

%

B =

2

0 .40 - 0 .37 =0 .015T

PL = (62 .65) (0 .015

1 .781

)(100

1 .36

)

,

18 .5 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) ~ (18 .5)(6 .35)(0 .654)

b

77mW

H

ACmax

= 6 .35

20

20 + 2

8

S

X

= 75 .59

A

$

T

cm

"

B

ACmax

b

0 .44T

H

ACmin

= 6 .35

20

20 - 2

8

S

X

= 50 .39

A

$

T

cm

"

B

ACmin

b

0 .33T

"

B

pk

= 2

%

B =

2

0 .44 - 0 .33 =0 .055T

PL = (62 .65) (0 .055

1 .781

) (100

1 .36

)

,

188 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (188)(6 .35)(0 .654)

,

781mW

H

ACmax

= 6 .35

20

+ 2

8

S

X

= 12 .60

A

$

T

cm

"

B

ACmax

b

0 .092T

H

ACmin

= 6 .35

20

- 2

8

S X

= - 12 .60

A

$

T

cm

"

B

ACmin

b

-0 .092T

"

B

pk

= 2

%

B ~0 .092T

PL = (62 .65) (0 .092

1 .781

) (100

1 .36

)

,

470 cm

3

mW

P

fe

= (PL) (

l

e

) (A

e

) = (470)(6 .35)(0 .654)

,

1 .95W

Plotted below are the operating ranges for each of the three examples .

Note the significant influence of DC bias on core loss, comparing Example 3 with Example 2 . Lower permeability results in less B

pk

even if the current ripple is the same . This effect can be achieved with DC bias, or by selecting a lower permeability material .

Magnetizing Force (A·T/cm)

60µ Kool Mµ DC Magnetization

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10

100

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

550µ

160µ

H

AC min

H

AC max

B

AC max

B

AC min

B

H

 

Example 1
H

AC max

=66.14

B

AC max

=0.4

Example 3
H

AC max

=12.6

B

AC max

=0.092

Example 2
H

AC max

=75.59

B

AC max

=0.44

Example 1
H

AC min

= 59.84

B

AC min

= 0.37

Example 2
H

AC min

= 50.39

B

AC min

= 0.33

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Selection

MAGNETICS

20

Method 2, for small  H, approximate B

pk 

from effective perm with DC bias .  

B

pk 

= f(

µ

e

,  H)

The instantaneous slope of the BH curve is defined as the absolute permeability, which is the product of permeability of free space 

0

=4

p

 x10

-7

) and the material permeability (µ), which varies along the BH curve . For small AC, this slope can be modeled as a 

constant throughout AC excitation, with µ approximated as the effective perm at DC bias (µ

e

):

16 - old 2 - 11
ppp

dH

dB =

µ

0

µ

e

"

%

H

%

B =

µ

0

µ

e

"

%

B =

µ

0

µ

e

%

H B

pk

= 2

%

B = 0 .5

Q V

µ

0

µ

e

%

H

B

pk

= 0 .5

Q V

µ

0

Q V

i

Q V

µ

i

Q V

100

Q V

%

H

Q V

where

%

H =

l

e

N

%

I

H

DC

= 6 .35

20 20

Q V

#

&

= 63

A

$

T

cm

"

from curve or curve fit equation,

i

= 0 .58

µ

i

= 60

%

H =

l

e

N

%

I =

6 .35

20(2)

= 6 .3

A

$

T

cm

B

pk

= 0 .5(4

r

x 10

-7

)(0 .58)(60)(100)(6 .3)

b

0 .014T

(this compares to 0 .015T using Method1)

The effective perm with DC bias is shown in this catalog as % of initial perm and can be obtained from the DC bias curve or curve 

fit equation, pgs 29 - 34

16 - old 2 - 11
ppp

dH

dB =

µ

0

µ

e

"

%

H

%

B =

µ

0

µ

e

"

%

B =

µ

0

µ

e

%

H B

pk

= 2

%

B = 0 .5

Q V

µ

0

µ

e

%

H

B

pk

= 0 .5

Q V

µ

0

Q V

i

Q V

µ

i

Q V

100

Q V

%

H

Q V

where

%

H =

l

e

N

%

I

H

DC

= 6 .35

20 20

Q V

#

&

= 63

A

$

T

cm

"

from curve or curve fit equation,

i

= 0 .58

µ

i

= 60

%

H =

l

e

N

%

I =

6 .35

20(2)

= 6 .3

A

$

T

cm

B

pk

= 0 .5(4

r

x 10

-7

)(0 .58)(60)(100)(6 .3)

b

0 .014T

(this compares to 0 .015T using Method1)

H is multiplied by 100 because 

l

e

 is expressed in cm, while B

pk

 units include m .

Reworking Example 1

 (20 Amps DC, 2 Amps pk-pk)

16 - old 2 - 11
ppp

dH

dB =

µ

0

µ

e

"

%

H

%

B =

µ

0

µ

e

"

%

B =

µ

0

µ

e

%

H B

pk

= 2

%

B = 0 .5

Q V

µ

0

µ

e

%

H

B

pk

= 0 .5

Q V

µ

0

Q V

i

Q V

µ

i

Q V

100

Q V

%

H

Q V

where

%

H =

l

e

N

%

I

H

DC

= 6 .35

20 20

Q V

#

&

= 63

A

$

T

cm

"

from curve or curve fit equation,

i

= 0 .58

µ

i

= 60

%

H =

l

e

N

%

I =

6 .35

20(2)

= 6 .3

A

$

T

cm

B

pk

= 0 .5(4

r

x 10

-7

)(0 .58)(60)(100)(6 .3)

b

0 .014T

(this compares to 0 .015T using Method1)

Reworking Example 2

 (20 Amps DC, 8 Amps pk-pk)

 

From example 1, 

H

DC

= 63

A

$

T

cm

,

i

= 0 .58;

µ

i

= 60

%

H =

l

e

N

%

I =

6 .35

20(8)

= 25 .2

A

$

T

cm

B

pk

= 0 .5(4

r

x 10

-7

) (0 .58) (60) (100) (25 .2) = 0 .055T

(this compares to 0 .055T usingMethod 1)

%

H = 25 .20

A

$

T

cm

H

DC

= 0

A

$

T

cm

i

= 1

B

pk

= 0 .5(4

r

x 10

-7

) (1) (60) (100) (25 .2) = 0 .095T

(this compares to 0 .092T usingMethod 1)

Reworking Example 3 

(0 Amps DC, 8 Amps pk-pk) 

 

From example 2,

H

DC

= 63

A

$

T

cm

,

i

= 0 .58;

µ

i

= 60

%

H =

l

e

N

%

I =

6 .35

20(8)

= 25 .2

A

$

T

cm

B

pk

= 0 .5(4

r

x 10

-7

) (0 .58) (60) (100) (25 .2) = 0 .055T

(this compares to 0 .055T usingMethod 1)

%

H = 25 .20

A

$

T

cm

H

DC

= 0

A

$

T

cm

i

= 1

B

pk

= 0 .5(4

r

x 10

-7

) (1) (60) (100) (25 .2) = 0 .095T

(this compares to 0 .092T usingMethod 1)

Powder Core Loss Calculation

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

21

Cor
e Selection

Powder Core Loss Calculation

Method 3, for small  H, determine B

pk

 from biased inductance . B

pk=

=

f

(L,I)

B can be rewritten in terms of inductance by considering Faraday’s equation and its effect on inductor current:

17 - old 2 - 12

V

L

=NA dt

dB =L

dt

dl

"

dB = NA

L dl

%

B = NA

L

DC

%

I

"

B

pk

= 2NA

e

L

DC

%

I

"

dH

dB =

NA

L

dH

dl

"

dH

dB =

N

2

A

e

L

I

e

%

H

%

B =

N

2

A

e

L

DC

I

e

"

%

B = N

2

A

e

L

DC

l

e

%

H= NA

e

L

DC

%

I

"

%

B

pk

= 2NA

e

L

DC

%

I

L varies non-linearly with I . For small AC, L can be assumed constant throughout AC excitation and is approximated by the biased 

inductance (L

DC

) .

17 - old 2 - 12

V

L

=NA dt

dB =L

dt

dl

"

dB = NA

L dl

%

B = NA

L

DC

%

I

"

B

pk

= 2NA

e

L

DC

%

I

"

dH

dB =

NA

L

dH

dl

"

dH

dB =

N

2

A

e

L

I

e

%

H

%

B =

N

2

A

e

L

DC

I

e

"

%

B = N

2

A

e

L

DC

l

e

%

H= NA

e

L

DC

%

I

"

%

B

pk

= 2NA

e

L

DC

%

I

Another way of looking at this is by rewriting the relationship between B and L as:

17 - old 2 - 12

V

L

=NA dt

dB =L

dt

dl

"

dB = NA

L dl

%

B = NA

L

DC

%

I

"

B

pk

= 2NA

e

L

DC

%

I

"

dH

dB =

NA

L

dH

dl

"

dH

dB =

N

2

A

e

L

I

e

%

H

%

B =

N

2

A

e

L

DC

I

e

"

%

B = N

2

A

e

L

DC

l

e

%

H= NA

e

L

DC

%

I

"

%

B

pk

= 2NA

e

L

DC

%

I

Substituting (dH/dI)  with (N/

l

e

)  and A with A

e

:

17 - old 2 - 12

V

L

=NA dt

dB =L

dt

dl

"

dB = NA

L dl

%

B = NA

L

DC

%

I

"

B

pk

= 2NA

e

L

DC

%

I

"

dH

dB =

NA

L

dH

dl

"

dH

dB =

N

2

A

e

L

I

e

%

H

%

B =

N

2

A

e

L

DC

I

e

"

%

B = N

2

A

e

L

DC

l

e

%

H= NA

e

L

DC

%

I

"

%

B

pk

= 2NA

e

L

DC

%

I

L varies non-linearly with H . For small AC, the slope of the BH curve is assumed constant throughout AC excitation, and L is 

approximated by the biased inductance (L

DC

) .

17 - old 2 - 12

V

L

=NA dt

dB =L

dt

dl

"

dB = NA

L dl

%

B = NA

L

DC

%

I

"

B

pk

= 2NA

e

L

DC

%

I

"

dH

dB =

NA

L

dH

dl

"

dH

dB =

N

2

A

e

L

I

e

%

H

%

B =

N

2

A

e

L

DC

I

e

"

%

B = N

2

A

e

L

DC

l

e

%

H= NA

e

L

DC

%

I

"

%

B

pk

= 2NA

e

L

DC

%

I

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Selection

MAGNETICS

22

Powder Core Loss Calculation

Magnetizing Force (A·T/cm)

60µ Kool Mµ DC Magnetization

45

50

55

60

65

70

75

80

0.47

0.45

0.43

0.41

0.39

0.37

0.35

0.33

0.31

0.29

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

Method 2
H

DC  

   25.2

2

-

550µ

160µ

H

AC min

H

AC max

B

H

 

Method 2
H

DC  

   25.2

2

Method 2
H

DC  

Method 1
H

AC max 

Method 1
H

AC min   

+

Reworking Example 1:

18 - old 2 - 13

L

nl

(no load) = (A

L

) (N

2

) = (75 nH/T

2

) (20

2

) = 30µH

L

DC

(20A) = (%µ

i

) (L

nl

) = (0 .58) (30) =17 .4µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(17 .4) (10

-6

)(2)

= 0 .013T

(this compares to 0 .015T per Method1, 0 .014T per Method 2) .

From example 1, L

DC

=17 .4µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(17 .4) (10

-6

) (8)

= 0 .053T

(this compares to 0 .055T per Method1, 0 .055T per Method 2) .

L

DC

=L

nl

= 30µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(30) (10

-6

) (8)

= 0 .092T

(this compares to 0 .092T per Method1, 0 .095T per Method 2) .

Reworking Example 2:

18 - old 2 - 13

L

nl

(no load) = (A

L

) (N

2

) = (75 nH/T

2

) (20

2

) = 30µH

L

DC

(20A) = (%µ

i

) (L

nl

) = (0 .58) (30) =17 .4µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(17 .4) (10

-6

)(2)

= 0 .013T

(this compares to 0 .015T per Method1, 0 .014T per Method 2) .

From example 1, L

DC

=17 .4µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(17 .4) (10

-6

) (8)

= 0 .053T

(this compares to 0 .055T per Method1, 0 .055T per Method 2) .

L

DC

=L

nl

= 30µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(30) (10

-6

) (8)

= 0 .092T

(this compares to 0 .092T per Method1, 0 .095T per Method 2) .

Reworking Example 3:

18 - old 2 - 13

L

nl

(no load) = (A

L

) (N

2

) = (75 nH/T

2

) (20

2

) = 30µH

L

DC

(20A) = (%µ

i

) (L

nl

) = (0 .58) (30) =17 .4µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(17 .4) (10

-6

)(2)

= 0 .013T

(this compares to 0 .015T per Method1, 0 .014T per Method 2) .

From example 1, L

DC

=17 .4µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(17 .4) (10

-6

) (8)

= 0 .053T

(this compares to 0 .055T per Method1, 0 .055T per Method 2) .

L

DC

=L

nl

= 30µH

"

B

pk

= 2(20)(0 .654)(10

-4

)

(30) (10

-6

) (8)

= 0 .092T

(this compares to 0 .092T per Method1, 0 .095T per Method 2) .

The plot below illustrates the difference between Method 1 and Method 2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

23

Cor
e Selection

Core Selector Charts

The core selector charts are a quick guide to finding the 
optimum permeability and smallest core size for DC bias 
applications .  These charts are based on a permeability 
reduction of not more than 50% with DC bias, typical winding 
factors of 40% for toroids and 60% for shapes, and an AC 
current that is small relative to the DC current .  These charts 
are based on the nominal core inductance and a current 
density 500-600 A/cm

2

 .

If a core is being selected for use with a large AC current 
relative to any DC current, such as a flyback inductor or 
buck/boost inductor, frequently a larger core will be needed 
to limit the core losses due to AC flux . In other words, the 
design becomes loss-limited rather than bias-limited .

For additional power handling capability, stacking of cores 
will yield a proportional increase in power handling . For 
example, double stacking of the 55908 core will result in 
doubled power handling capability to about 400 mH·A

2

 .

Cores with increased heights are easily ordered . Contact 
Magnetics for more information .

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Selection

MAGNETICS

24

Core Selector Charts

0.001

0.01

0.1

1

10

100

1,000

5,000

LI², (mH·A²)

55336 p. 94
55735 p. 89
55908 p. 91
55617 p. 87
55726 p. 83
55716 p. 84
55439 p. 82
55076 p. 79
55071 p. 77
55350 p. 75
55206 p. 73
55117 p. 71
55127 p. 69
55285 p. 67
55405 p. 64
55265 p. 63
55015 p. 61
55145 p. 59

55164  p. 95
55102 p. 93
55777 p. 92
55868 p. 90
55110 p. 85
55192 p. 86
55090 p. 81
55083 p. 80
55586 p. 78
55930 p. 76
55310 p. 74
55377 p. 72
55047 p. 70
55035 p. 68
55275 p. 66
55025 p. 65
55235 p. 62
55175 p. 60
55135 p. 58 

 

300µ

200µ

125µ

26µ

60µ

14µ

125 perm

90

100

75

60

40

50

26

25

160

147

14
173

200

250

300

550

500

0.001

0.01

0.1

1

10

100

1,000

10,000

LI², (mH·A²)

 

125 perm

90

100

75

60

40

50

26

25

160

147

14
173

200

250

300

550

500

160µ

125µ

26µ

60µ

40µ

58337 p. 94

58737 p. 89

58867 p. 90

58110 p. 85

58716 p. 84

58090 p. 81

58324 p. 79

58585 p. 78

58348 p. 75

58204 p. 73

58378 p. 72

58128 p. 69

58288 p. 67

58408 p. 64

58268 p. 63

58018 p. 61

58165 p. 95

58100 p. 93

58907 p. 91

58617 p. 87

58195 p. 86

58438 p. 82

58254 p. 80

58548 p. 77

58928 p. 76

58308 p. 74

58118 p. 71

58048 p. 70

58038 p. 68

58278 p. 66

58028 p. 65

58238 p. 62

MPP Toroids

High Flux Toroids

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

25

Cor
e Selection

Core Selector Charts

0.0001

0.001

0.01

0.1

1

10

100

1,000 3,000

LI², (mH·A²)

 

125 perm

90

100

75

60

40

50

26

25

160

147

14
173

200

250

300

550

500

160µ

14µ

125µ

26µ

60µ

40µ

77336 p. 94
77735 p. 89
77908 p. 91
77616 p. 87
77212 p. 85
77192 p. 86
77439 p. 82
77083 p. 80
77071 p. 77
77934 p. 76
77314 p. 74
77120 p. 71
77050 p. 70
77040 p. 68
77280 p. 66
77030 p. 65
77240 p. 62
77180 p. 60
77140 p. 58

77164 p. 95
77102 p. 93
77776 p. 92
77868 p. 90
77074 p. 88
77726 p. 83
77721 p. 84
77095 p. 81
77076 p. 79
77586 p. 78
77354 p. 75
77210 p. 73
77380 p. 72
77130 p. 69
77290 p. 67
77410 p. 64
77270 p. 63
77020 p. 61
77150 p. 59

Kool Mµ

®

 Toroids

XF

lux

®

 Toroids

0.5

1

10

100

1,000

7,000

LI², (mH·A²)

 

125 perm

90

100

75

60

40

50

26

25

160

147

14
173

200

250

300

550

500

90µ

75µ

26µ

60µ

40µ

78337 p. 94

78737 p. 89

78907 p. 91

78618 p. 87

78110 p. 85

78193 p. 86

78094 p. 81

78259 p. 80

78590 p. 78

78934 p. 76

78314 p. 74

78384 p. 72

  

78100 p. 93

78777 p. 92

78867 p. 90

78072 p. 88

78729 p. 83

78720 p. 84

78443 p. 82

78329 p. 79

78553 p. 77

78354 p. 75

78210 p. 73

78224 p. 71

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Selection

MAGNETICS

26

Core Selector Charts

Kool Mµ

®

 MAX Toroids

XF

lux

®

 E Cores

WAITING FOR 
CHART

0.1

1

10

1,000

2,000

100

LI², (mH·A²)

 

125 perm

90

100

75

60

40

50

26

25

160

147

14
173

200

250

300

550

500

26µ

60µ

79102 p. 93

79908 p. 91

79617 p. 87

79110 p. 85

79716 p. 84

79439 p. 82

79076 p. 79

79071 p. 77

79351 p. 75

79848 p. 73

79381 p. 72

79337 p. 94

79735 p. 89

79868 p. 90

79074 p. 88

79192 p. 86

79090 p. 81

79083 p. 80

79586 p. 78

79894 p. 76

79059 p. 74

79121 p. 71

79051 p. 70

0.1

1

10

100

1,000

3,000

LI², (mH·A²)

 

125 perm

90

100

75

60

40

50

26

25

160

147

14
173

200

250

300

550

500

26µ

60µ

X114LE060 
p. 96

X8020E060 
p. 96

X7228E060 
p. 96

X5528E060 
p. 96

X4022E060 
p. 96

X4317E060 
p. 96

X1808E060 
p. 96

X8044E026

p. 96

X6527E060

p. 96

X5530E060

p. 96

X4017E060 

p. 96

X4020E060

p. 96

X3515E060

p. 96

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

27

Cor
e Selection

LI², (mH·A²)

1

10

100

1,000

26µ

90µ

K8020U026

p. 98

K7236U026

 p. 98

K5529U026

p. 98

K4119U090

p. 98

K4110U090

p. 98

K8038U026

p. 98

K6527U026

p. 98

K6533U026

p. 98

K5527U026

p. 98

K4111U090

p. 98

K3112U090

p. 98

125 perm

90

100

75

60

40

50

26

25

160

147

14
173

200

250

300

550

500

0.1

1

10

100

1,000

3,000

LI², (mH·A²)

 

125 perm

90

100

75

60

40

50

26

25

160

147

14
173

200

250

300

550

500

26µ

60µ

90µ

40µ

K130LE026

p. 96

K8044E026

p. 96

K6527E060

p. 96

K5530E060

p. 96

K4022E090

p. 96

K4020E060

p. 96

K3515E090

p. 96

K2510E090

p. 96

K160LE026 
p. 96

K114LE040 
p. 96

K8020E040 
p. 96

K7228E060 
p. 96

K5528E060 
p. 96

K4017E060 
p. 96

K4317E090 
p. 96

K3007E090 
p. 96

K1808E090 
p. 96

Core Selector Charts

Kool Mµ

®

 E Cores

Kool Mµ

®

 U Cores

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Selection

MAGNETICS

28

Wire Table

AWG

Wire Size

Resistance

Q

/meter

Wire

O.D. (cm)

Heavy Build

Wire Area 

cm

2

Current Capacity, Amps

(listed by columns of Amps/cm

2

)

200

400

500

600

800

6

.00130

.421

0.1392

26.6

53.2

66.5

79.8

106

7

.00163

.376

0.1110

21.1

42.2

52.8

63.3

84.4

 8  

.00206

.336

0.0887

16.7

33.5

41.8

50.2

66.9

 9  

.00260

.299

0.0702

13.3

26.5

33.2

39.8

53.1

 10  

.00328

.267

0.0560

10.5

21.0

26.3

31.6

42.1

 11  

.00414

.238

0.0445

8.34

16.7

20.8

25.0

33.3

 12  

.00521

.213

0.0356

6.62

13.2

16.5

19.8

26.5

 13  

.00656

.1902

0.0284

5.25

10.5

13.1

15.8

21.0

 14  

.00828

.1715

0.0231

4.16

8.33

10.4

12.5

16.7

 15  

.01044

.1529

0.01840

3.30

6.61

8.26

9.91

13.2

 16  

.01319

.1369

0.01472

2.62

5.23

6.54

7.85

10.5

 17  

.01658

.1224

0.01177

2.08

4.16

5.20

6.24

8.32

 18  

.02095

.1095

0.00942

1.65

3.29

4.11

4.94

6.58

 19  

.02640

.0980

0.00754

1.31

2.61

3.27

3.92

5.22

 20  

.03323

.0879

0.00607

1.04

2.08

2.59

3.11

4.15

 21  

.04190

.0785

0.00484

0.823

1.65

2.06

2.47

3.29

 22  

.05315

.0701

0.00386

0.649

1.30

1.62

1.95

2.59

 23  

.06663

.0632

0.00314

0.518

1.04

1.29

1.55

2.07

 24  

.08422

.0566

0.00252

0.409

0.819

1.0236

1.23

1.64

 25  

.10620

.0505

0.00200

0.325

0.649

0.812

0.974

1.30

 26  

.13458

.0452

0.00160

0.256

0.512

0.641

0.769

1.02

 27  

.16873

.0409

0.00131

0.204

0.409

0.511

0.613

0.817

 28  

0.214

.0366

0.00105

0.161

0.322

0.402

0.483

0.644

 29  

0.266

.0330

0.000855

0.129

0.259

0.324

0.388

0.518

 30  

0.340

.0295

0.000683

0.101

0.203

0.253

0.304

0.405

 31  

0.429

.0267

0.000560

0.0803

0.161

0.201

0.241

0.321

 32  

0.532

.0241

0.000456

0.0649

0.130

0.162

0.195

0.259

 33  

0.675

.0216

0.000366

0.0511

0.102

0.128

0.153

0.204

 34  

0.857

.01905

0.000285

0.0402

0.0804

0.101

0.121

0.161

 35  

1.085

.01702

0.000228

0.0318

0.0636

0.0795

0.0953

0.127

 36  

1.361

.01524

0.000182

0.0253

0.0507

0.0633

0.0760

0.101

 37  

1.680

.01397

0.000153

0.0205

0.0410

0.0513

0.0616

0.0821

 38  

2.13

.01245

0.000122

0.0162

0.0324

0.0405

0.0486

0.0649

 39  

2.78

.01092

0.000094

0.0124

0.0248

0.0310

0.0372

0.0497

 40  

3.54

.00965

0.000073

0.00974

0.0195

0.0243

0.0292

0.0390

 41  

4.34

.00864

0.000059

0.00795

0.0159

0.0199

0.0238

0.0318

 42  

5.44

.00762

0.000046

0.00633

0.0127

0.0158

0.0190

0.0253

 43  

7.03

.00686

0.000037

0.00490

0.00981

0.0123

0.0147

0.0196

 44  

8.51

.00635

0.000032

0.00405

0.00811

0.0101

0.0122

0.0162

 45  

10.98

.00546

0.000023

0.00314

0.00628

0.00785

0.00942

0.0126

 46  

13.80

.00498

0.000019

0.00250

0.00500

0.00624

0.00749

0.00999

 47  

17.36

.00452

0.000016

0.00199

0.00397

0.00497

0.00596

0.00795

 48  

22.10

.00394

0.000012

0.00156

0.00312

0.00390

0.00467

0.00623

 49  

27.60

.00353

0.000010

0.00125

0.00250

0.00312

0.00375

0.00499

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

29

AWG

Wire Size

Resistance

Q

/meter

Wire

O.D. (cm)

Heavy Build

Wire Area 

cm

2

Current Capacity, Amps

(listed by columns of Amps/cm

2

)

200

400

500

600

800

6

.00130

.421

0.1392

26.6

53.2

66.5

79.8

106

7

.00163

.376

0.1110

21.1

42.2

52.8

63.3

84.4

 8  

.00206

.336

0.0887

16.7

33.5

41.8

50.2

66.9

 9  

.00260

.299

0.0702

13.3

26.5

33.2

39.8

53.1

 10  

.00328

.267

0.0560

10.5

21.0

26.3

31.6

42.1

 11  

.00414

.238

0.0445

8.34

16.7

20.8

25.0

33.3

 12  

.00521

.213

0.0356

6.62

13.2

16.5

19.8

26.5

 13  

.00656

.1902

0.0284

5.25

10.5

13.1

15.8

21.0

 14  

.00828

.1715

0.0231

4.16

8.33

10.4

12.5

16.7

 15  

.01044

.1529

0.01840

3.30

6.61

8.26

9.91

13.2

 16  

.01319

.1369

0.01472

2.62

5.23

6.54

7.85

10.5

 17  

.01658

.1224

0.01177

2.08

4.16

5.20

6.24

8.32

 18  

.02095

.1095

0.00942

1.65

3.29

4.11

4.94

6.58

 19  

.02640

.0980

0.00754

1.31

2.61

3.27

3.92

5.22

 20  

.03323

.0879

0.00607

1.04

2.08

2.59

3.11

4.15

 21  

.04190

.0785

0.00484

0.823

1.65

2.06

2.47

3.29

 22  

.05315

.0701

0.00386

0.649

1.30

1.62

1.95

2.59

 23  

.06663

.0632

0.00314

0.518

1.04

1.29

1.55

2.07

 24  

.08422

.0566

0.00252

0.409

0.819

1.0236

1.23

1.64

 25  

.10620

.0505

0.00200

0.325

0.649

0.812

0.974

1.30

 26  

.13458

.0452

0.00160

0.256

0.512

0.641

0.769

1.02

 27  

.16873

.0409

0.00131

0.204

0.409

0.511

0.613

0.817

 28  

0.214

.0366

0.00105

0.161

0.322

0.402

0.483

0.644

 29  

0.266

.0330

0.000855

0.129

0.259

0.324

0.388

0.518

 30  

0.340

.0295

0.000683

0.101

0.203

0.253

0.304

0.405

 31  

0.429

.0267

0.000560

0.0803

0.161

0.201

0.241

0.321

 32  

0.532

.0241

0.000456

0.0649

0.130

0.162

0.195

0.259

 33  

0.675

.0216

0.000366

0.0511

0.102

0.128

0.153

0.204

 34  

0.857

.01905

0.000285

0.0402

0.0804

0.101

0.121

0.161

 35  

1.085

.01702

0.000228

0.0318

0.0636

0.0795

0.0953

0.127

 36  

1.361

.01524

0.000182

0.0253

0.0507

0.0633

0.0760

0.101

 37  

1.680

.01397

0.000153

0.0205

0.0410

0.0513

0.0616

0.0821

 38  

2.13

.01245

0.000122

0.0162

0.0324

0.0405

0.0486

0.0649

 39  

2.78

.01092

0.000094

0.0124

0.0248

0.0310

0.0372

0.0497

 40  

3.54

.00965

0.000073

0.00974

0.0195

0.0243

0.0292

0.0390

 41  

4.34

.00864

0.000059

0.00795

0.0159

0.0199

0.0238

0.0318

 42  

5.44

.00762

0.000046

0.00633

0.0127

0.0158

0.0190

0.0253

 43  

7.03

.00686

0.000037

0.00490

0.00981

0.0123

0.0147

0.0196

 44  

8.51

.00635

0.000032

0.00405

0.00811

0.0101

0.0122

0.0162

 45  

10.98

.00546

0.000023

0.00314

0.00628

0.00785

0.00942

0.0126

 46  

13.80

.00498

0.000019

0.00250

0.00500

0.00624

0.00749

0.00999

 47  

17.36

.00452

0.000016

0.00199

0.00397

0.00497

0.00596

0.00795

 48  

22.10

.00394

0.000012

0.00156

0.00312

0.00390

0.00467

0.00623

 49  

27.60

.00353

0.000010

0.00125

0.00250

0.00312

0.00375

0.00499

Permeability versus DC Bias Curves

30%

40%

50%

60%

70%

90%

80%

100%

% Initial Permeability 

µ

i

147µ

125µ

60µ

26µ 

14µ 

1

100

500

10

H (A·T/cm)

160µ

173µ

200µ

30%

40%

50%

60%

70%

90%

80%

100%

% Initial Permeability 

µ

i

550µ

300µ

0.1

10

30

1

H (A·T/cm)

MPP Toroids 14µ - 200µ

MPP Toroids 300µ & 550µ

Material Data

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

30

100

600

1

40%

30%

50%

60%

70%

80%

90%

100%

10

% Initial Permeability 

µ

i

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

90µ

75µ

60µ

40µ

26µ

14µ

125µ

H (A·T/cm)

Permeability versus DC Bias Curves

30%

40%

50%

60%

70%

80%

90%

100

1,000

10

% Initial Permeability 

µ

i

100%

H (A·T/cm)

14µ

26µ

40µ

60µ

125µ

160µ

147µ

Kool Mµ

®

 Toroids

High Flux Toroids

Material Data

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

31

Material Data

Permeability versus DC Bias Curves

125 perm
90
75
60
40
26

100%

90%

80%

70%

60%

50%

40%

30%

% Initial Permeability 

µ

i

H (A·T/cm)

60µ

26µ

10

100

400

Kool Mµ

®

 MAX Toroids

50%

40%

30%

60%

70%

80%

90%

100%

10

100

600

% Initial Permeability 

µ

i

H (A·T/cm)

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

60µ

75µ

90µ

26µ

40µ

XF

lux

®

 Toroids

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

32

Material Data

Permeability versus DC Bias Curves

100%

90%

80%

70%

60%

50%

40%

30%

  H (A·T/cm)

       

% Initial Permeability 

µ

i

5

60

10

160µ

200µ

250µ

125µ

MPP THINZ

®

100%

90%

80%

70%

60%

50%

40%

30%

% Initial Permeability 

µ

i

H (A·T/cm)

10

100

300

60µ

90µ

26µ

40µ

125 perm
90
75
60
40
26

Kool Mµ

®

 Shapes

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

33

Material Data

Permeability versus DC Bias Curves

125 perm
90
75
60
40
26

100%

90%

80%

70%

60%

50%

40%

30%

% Initial Permeability 

µ

i

H (A·T/cm)

10

100

600

60µ

26µ

40µ

XF

lux

®

 Shapes

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

34

Perm

a

b

c

MPP

14µ

0.01

2.435E-09

2.596

26µ

0.01

1.931E-08

2.505

60µ

0.01

2.033E-07

2.436

125µ

0.01

1.963E-06

2.253

147µ

0.01

1.588E-06

2.430

160µ

0.01

1.677E-06

2.477

173µ

0.01

1.451E-06

2.563

200µ

0.01

2.635E-06

2.477

300µ

0.01

1.852E-05

2.216

550µ

0.01

8.271E-04

1.710

Kool Mµ

®

14µ

0.01

8.220E-08

1.990

26µ

0.01

7.979E-07

1.819

40µ

0.01

3.213E-06

1.704

60µ

0.01

5.184E-06

1.749

75µ

0.01

1.272E-05

1.664

90µ

0.01

2.698E-05

1.558

125µ

0.01

6.345E-05

1.462

High Flux

14µ

0.01

4.550E-08

1.948

26µ

0.01

7.178E-08

2.069

40µ

0.01

3.192E-08

2.409

60µ

0.01

2.582E-07

2.166

125µ

0.01

1.458E-06

2.108

147µ

0.01

1.964E-06

2.131

160µ

0.01

2.749E-06

2.094

X

F

lux

®

26µ

0.01

1.014E-07

1.976

40µ

0.01

9.786E-08

2.188

60µ

0.01

4.795E-08

2.511

75µ

0.01

2.073E-07

2.306

90µ

0.01

8.021E-07

2.150

Kool Mµ

® 

MAX

26µ

0.01

5.700E-08

2.205

60µ

0.01

9.344E-07

2.000

Kool Mµ

® 

Shapes

26µ

0.01

6.615E-07

1.874

40µ

0.01

3.627E-06

1.656

60µ

0.01

1.108E-05

1.555

90µ

0.01

1.115E-05

1.744

X

F

lux

®  

Shapes

26µ

0.01

5.560E-08

2.054

40µ

0.01

3.206E-07

1.932

60µ

0.01

3.570E-07

2.047

Permeability versus DC Bias Curves

Fit Formula

Note: all numbers calculated using A

T/cm    Fit valid only for range shown on graph

% initial permeability =          

Units in A

T/cm

1

(a + bH

c

)

Material Data

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

35

Material Data

MPP 14µ

MPP 26µ

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

300 kHz

100 kHz

200 kHz

50 kHz
40 kHz

20 kHz
10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

300 kHz

100 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

Core Loss Density Curves

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Material Data

MAGNETICS

36

Core Loss Density Curves

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

300 kHz

100 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

MPP 60µ

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

300 kHz

100 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

MPP 125µ, 147µ, 160µ, 173µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

37

Material Data

Core Loss Density Curves

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

300 kHz

100 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

MPP 200µ, 300µ

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

300 kHz

100 kHz

200 kHz

50 kHz

40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

MPP 550µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Core Loss Density Curves

Material Data

MAGNETICS

38

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

100 Hz

100 kHz

60 Hz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

High Flux 14µ

High Flux 26µ

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

100 Hz

100 kHz

60 Hz

50 kHz

40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Core Loss Density Curves

www.mag-inc.com

39

Material Data

High Flux 40µ

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz
500 hz

P

= 115.9B

2.5

f

1.87

100 Hz

100 kHz

60 Hz

50 kHz

40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 Hz

100 kHz

60 Hz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

High Flux 60µ, 125µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Core Loss Density Curves

Material Data

MAGNETICS

40

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

500 kHz

300 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

Kool Mµ

®

 14µ

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 Hz

100 kHz

60 Hz

50 kHz

40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

High Flux 147µ, 160µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Core Loss Density Curves

www.mag-inc.com

41

Material Data

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

500 kHz

300 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

500 kHz

300 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

Kool Mµ

®

 60µ

Kool Mµ

® 

26µ, 40µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Core Loss Density Curves

Material Data

MAGNETICS

42

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

500 kHz

300 kHz

200 kHz

50 kHz

40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

Kool Mµ

®

 75µ, 90µ

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

500 kHz

300 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

Kool Mµ

®

 125µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Core Loss Density Curves

www.mag-inc.com

43

Material Data

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

200 kHz

50 kHz

40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

60 Hz

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

60 Hz

XF

lux

®

 40µ

XF

lux

®

 26µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Core Loss Density Curves

Material Data

MAGNETICS

44

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

200 kHz

50 kHz

40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

60 Hz

Flux Density (Tesla)

0.01

0.1

1

1

10

100

1,000

5,000

Core Loss (mW/cm

3

)

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

P

= 115.9B

2.5

f

1.87

100 kHz

200 kHz

50 kHz
40 kHz

20 kHz

10 kHz

5 kHz

2 kHz

1 kHz

500 Hz

60 Hz

XF

lux

®

 75µ, 90µ

XF

lux

®

 60µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

45

Material Data

Core Loss Density Curves

Kool Mµ

® 

MAX 26µ, 60µ

1,000

5,000

100

10

1

0.01

0.1

1

Kool Mµ MAX Core Loss Density

Flux Density (Tesla)

Core Loss (mW/cm

3

)

300 kHz

200 kHz

100 kHz

50 kHz 40 kHz

25 kHz

10 kHz

5 kHz

1  kHz

200 khz

300 khz

500 khz

100 khz
50 khz

20 khz

25 khz

40 khz

10 khz
5 khz 
2 khz

100 hz 

1 khz 

60 hz

500 hz

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

46

Material Data

Core Loss Density Curves

Fit Formula

P = a(B

b

)(f

c

)          (B in Tesla, f in kHz)

Perm

freq:

a

b

c

MPP

14µ

> 10kHz

21.06

1.074

1.38

14µ

< 10kHz

64.02

1.074

1.11

26µ

> 10kHz

109.17

2.000

1.37

26µ

< 10kHz

361.62

2.000

1.08

60µ

> 10kHz

31.32

1.585

1.37

60µ

< 10kHz

80.12

1.585

1.04

125µ-173µ

> 10kHz

87.07

2.222

1.56

125µ-173µ

< 10kHz

254.26

2.222

1.17

200µ, 300µ

> 10kHz

115.52

2.322

1.59

200µ, 300µ

< 10kHz

320.32

2.322

1.19

500µ

> 10kHz

96.89

1.999

1.54

500µ

< 10kHz

303.43

1.999

1.09

High Flux

14µ

all

181.14

1.386

1.21

26µ

> 25kHz

532.55

2.170

1.35

26µ

< 25kHz

1550.54

2.170

1.05

40µ

> 25kHz

1707.09

2.280

1.14

40µ

< 25kHz

2021.58

2.280

1.05

60µ, 125µ

> 25kHz

47.51

1.585

1.43

60µ, 125µ

< 25kHz

151.44

1.585

1.09

147µ-160µ

> 25kHz

203.61

2.163

1.52

147µ-160µ

< 25kHz

883.51

2.163

1.09

Kool Mµ

®

14µ

> 10kHz

21.49

1.000

1.33

14µ

< 10kHz

40.18

1.000

1.22

26µ, 40µ

> 10kHz

45.48

1.774

1.46

26µ, 40µ

< 10kHz

170.17

1.774

1.03

60µ

> 9kHz

62.65

1.781

1.36

60µ

< 9kHz

136.93

1.781

1.12

75µ, 90µ

> 10kHz

146.81

2.022

1.33

75µ, 90µ

< 10kHz

338.51

2.022

1.05

125µ

> 10kHz

71.93

1.928

1.47

125µ

< 10kHz

228.46

1.928

1.05

X

F

lux

®

26µ

> 25kHz

761.36

1.977

1.21

26µ

< 25kHz

1187.96

1.977

1.05

40µ

> 9kHz

804.88

1.934

1.14

40µ

< 9kHz

1274.93

1.934

1.06

60µ 

> 10kHz

454.56

1.909

1.19

60µ 

< 10kHz

670.26

1.909

1.06

75µ, 90µ

> 9kHz

566.54

2.018

1.17

75µ, 90µ

< 9kHz

862.34

2.018

1.02

Kool Mµ

® 

MAX

26µ, 60µ

>10kHz

86.00

1.998

1.40

26µ, 60µ

<10kHz

94.67

1.998

1.40

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

47

Material Data

DC Magnetization Curves

Magnetizing Force (A·T/cm)

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10

100

600

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

550µ

300µ

200µ

60µ

26µ

14µ

173µ

160µ

147µ

125µ

Magnetizing Force (A·T/cm)

1

0.0

0.1

0.2

0.3

2

3

4

5

6

7

8

9

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

550µ

MPP 550µ

MPP 14µ-300µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

48

DC Magnetization Curves

Material Data

Magnetizing Force (A·T/cm)

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10

100

1,000

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

550µ

40µ

60µ

26µ

14µ

160µ

147µ

125µ

Magnetizing Force (A·T/cm)

1

0.0

0.1

0.2

0.3

0.4

0.5

10

100

500

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

550µ

40µ

26µ

14µ

160µ

60µ

75µ

90µ

125µ

Kool Mµ

®

High Flux  

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

49

Material Data

DC Magnetization Curves

Magnetizing Force (A·T/cm)

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10

100

400

1000

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

550µ

40µ

60µ

26µ

90µ

75µ

Magnetizing Force (A·T/cm)

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10

100

500

1000

Flux Density (T

esla)

160

147

125

90

75

60

40

26

14

173

200

250

300

550

500

550µ

60µ

26µ

Kool Mµ

® 

MAX

XF

lux

®

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Material Data

MAGNETICS

50

DC Magnetization Curves

Perm

a

b

c

d

e

x

MPP

14µ

1.106E-01

1.275E-02

6.686E-04

1.308E-01

6.381E-04

1.876

26µ

1.112E-01

1.369E-02

7.979E-04

8.732E-02

7.647E-04

1.907

60µ

7.871E-02

1.893E-02

9.356E-04

5.847E-02

8.919E-04

1.724

125µ

2.429E-02

2.184E-02

1.287E-03

5.362E-02

1.144E-03

1.258

147µ

1.707E-02

2.077E-02

1.310E-03

4.408E-02

1.246E-03

1.152

160µ

1.458E-02

2.140E-02

1.436E-03

4.367E-02

1.389E-03

1.124

173µ

1.221E-02

2.147E-02

1.468E-03

3.965E-02

1.435E-03

1.089

200µ

7.098E-03

2.201E-02

1.516E-03

3.398E-02

1.517E-03

1.022

300µ

0.000E+00

2.808E-02

1.373E-03

1.612E-02

1.905E-03

0.906

550µ

0.000E+00

7.907E-02

0.000E+00

1.016E-01

2.109E-03

1.013

Kool 

®

14µ

1.105E-01

1.301E-02

6.115E-04

1.386E-01

5.735E-04

1.760

26µ

1.008E-01

1.452E-02

7.846E-04

1.035E-01

7.573E-04

1.754

40µ

5.180E-02

2.132E-02

7.941E-04

8.447E-02

7.652E-04

1.756

60µ

5.214E-02

2.299E-02

8.537E-04

7.029E-02

8.183E-04

1.658

75µ

4.489E-02

2.593E-02

7.949E-04

6.463E-02

7.925E-04

1.595

90µ

4.182E-02

2.990E-02

7.826E-04

6.542E-02

7.669E-04

1.569

125µ

1.414E-02

2.851E-02

1.135E-03

7.550E-02

1.088E-03

1.274

High Flux

14µ

1.060E-01

1.305E-02

5.119E-04

1.497E-01

3.616E-04

1.617

26µ

1.098E-01

1.421E-02

7.332E-04

1.123E-01

5.217E-04

1.695

40µ

9.617E-02

1.690E-02

8.908E-04

8.503E-02

6.628E-04

1.784

60µ

8.049E-02

1.887E-02

9.733E-04

7.198E-02

6.927E-04

1.660

125µ

4.235E-02

2.235E-02

1.330E-03

5.798E-02

8.447E-04

1.324

147µ

3.315E-02

2.308E-02

1.454E-03

5.459E-02

9.259E-04

1.242

160µ

2.616E-02

2.332E-02

1.537E-03

5.408E-02

9.642E-04

1.186

X

F

lux

®

26µ

1.093E-01

1.478E-02

6.629E-04

1.085E-01

4.429E-04

1.683

40µ

8.539E-02

1.772E-02

8.617E-04

8.744E-02

6.280E-04

1.753

60µ

1.220E-01

1.471E-02

0.000E+00

9.272E-03

5.418E-06

1.837

75µ

1.081E-01

1.882E-02

1.834E-04

1.999E-02

1.408E-04

1.778

90µ

5.668E-02

2.116E-02

1.088E-03

5.968E-02

7.969E-04

1.497

Kool Mµ

®

 

MAX

26µ

8.741E-02

1.634E-02

7.844E-04

1.044E-01

6.576E-04

1.814

60µ

6.944E-02

2.004E-02

8.924E-04

6.666E-02

7.314E-04

1.666

Fit Formula

41- old 3 - 35

B = 1+ dH+ eH

2

a + bH + cH

2

#

&

x

Units:B in Tesla; H in A

$

Turns/cm

where:

Note: all numbers calculated using A

T/cm

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

51

Material Data

Permeability versus Temperature Curves

Temperature (˚C)

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

-1%

0%

1%

2%

3%

+/- % Initial Permeability 

µ

i

 

300µ

200µ -

147µ - 173µ

125µ

60µ

26µ

14µ

14µ

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

Temperature (˚C)

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

-4%

-2%

-0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

+/- % Initial Permeability 

µ

i

550µ

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

MPP 550µ

MPP 14µ-300µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

52

Material Data

Permeability versus Temperature Curves

Temperature (˚C)

-40

-60

-20

0

20

40

60

80

100

120

140

160

180

200

-4%

-2%

0%

2%

4%

6%

8%

+/- % Initial Permeability 

µ

i

14µ

26µ - 40µ

60µ

125µ

147µ

160µ

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

Kool Mµ

®

High Flux

Temperature (˚C)

-60

-40

-20

0

20

40

80

140

160

200

180

120

100

60

-12%

-10%

-8%

-6%

-4%

-2%

0%

2%

+/- % Initial Permeability 

µ

i

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

26µ

40µ

60µ

75µ

90µ

125µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

53

Material Data

Permeability versus Temperature Curves

XF

lux

®

Temperature (˚C)

-50

0

50

100

150

200

5.0%

4.0%

3.0%

2.0%

1.0%

0.0%

-1.0%

-2.0%

+/- % Initial Permeability 

µ

i

60µ

26µ

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

60µ XF

LUX

 Toroid:

[% change in µ

i

] = -4.010x10

-3

 + (1.553x10

-4

)(T) + (1.875x10

-8

)(T

2

) + (3.907x10

-9

)(T

3

) + (1.213x10

-11

)(T

4

)

26µ XF

LUX

 Toroid: 

[% change in µ

i

] = -3.879x10

-3

 + (1.356x10

-4

)(T) + (1.228x10

-7

)(T

2

) + (1.739x10

-9

)(T

3

) + (4.35x10

-12

)(T

4

)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

54

Material Data

44 - old 3 - 35

Change compared with µ

25˚C

=

µ

25˚C

µ

T

- µ

25˚C

= a + bT + cT

2

where:

Change compared with µ

25˚C

=

µ

25˚C

µ

T

- µ

25˚C

= a + bT + cT

2

+ dT

3

+ eT

4

where:

Perm

a

b

c

MPP

14µ

-1.300E-03

4.750E-05

1.300E-07

26µ

-1.431E-03

5.265E-05

1.837E-07

60µ

-1.604E-03

5.945E-05

1.875E-07

125µ

-1.939E-03

7.013E-05

2.967E-07

147µ

-2.308E-03

8.497E-05

2.943E-07

160µ

-2.308E-03

8.497E-05

2.943E-07

 173µ

-2.308E-03

8.497E-05

2.943E-07

200µ

-2.528E-03

9.211E-05

3.601E-07

300µ

-2.528E-03

9.211E-05

3.601E-07

550µ

-1.309E-02

4.716E-04

2.086E-06

High Flux

14µ

-2.500E-03

9.670E-05

5.560E-08

26µ

-3.300E-03

1.290E-04

3.800E-08

60µ

-4.400E-03

1.740E-04

4.090E-08

125µ

-6.000E-03

2.400E-04

3.220E-08

147µ

-7.900E-03

3.140E-04

7.310E-08

160µ

-9.200E-03

3.670E-04

1.750E-08

Perm

a

b

c

d

e

Kool Mµ

®

26µ

-4.289E-03

2.521E-04

-3.557E-06

1.384E-08

-2.066E-11

40µ

-5.034E-03

3.521E-04

-6.797E-06

3.193E-08

-4.916E-11

6  0µ

-8.841E-03

5.197E-04

-7.064E-06

1.667E-08

8.820E-12

75µ

-1.174E-02

6.653E-04

-8.195E-06

1.411E-08

3.032E-11

90µ

-1.369E-02

7.705E-04

-9.385E-06

1.812E-08

2.524E-11

125µ

-1.647E-02

9.306E-04

-1.132E-05

1.623E-08

5.722E-11

X

F

lux

®

26µ

-3.879E-03

1.356E-04

1.228E-07

-1.739E-09

4.35E-12

60µ

-4.010E-03

1.553E-04

-1.875E-08

3.907E-09

-1.213E-11

 

Permeability versus Temperature Curves

Fit Formula

44 - old 3 - 35

Change compared with µ

25˚C

=

µ

25˚C

µ

T

- µ

25˚C

= a + bT + cT

2

where:

Change compared with µ

25˚C

=

µ

25˚C

µ

T

- µ

25˚C

= a + bT + cT

2

+ dT

3

+ eT

4

where:

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

55

Material Data

Perm

a

b

c

MPP

14µ

-1.300E-03

4.750E-05

1.300E-07

26µ

-1.431E-03

5.265E-05

1.837E-07

60µ

-1.604E-03

5.945E-05

1.875E-07

125µ

-1.939E-03

7.013E-05

2.967E-07

147µ

-2.308E-03

8.497E-05

2.943E-07

160µ

-2.308E-03

8.497E-05

2.943E-07

 173µ

-2.308E-03

8.497E-05

2.943E-07

200µ

-2.528E-03

9.211E-05

3.601E-07

300µ

-2.528E-03

9.211E-05

3.601E-07

550µ

-1.309E-02

4.716E-04

2.086E-06

High Flux

14µ

-2.500E-03

9.670E-05

5.560E-08

26µ

-3.300E-03

1.290E-04

3.800E-08

60µ

-4.400E-03

1.740E-04

4.090E-08

125µ

-6.000E-03

2.400E-04

3.220E-08

147µ

-7.900E-03

3.140E-04

7.310E-08

160µ

-9.200E-03

3.670E-04

1.750E-08

Frequency (MHz)

0.01

0.1

1

10

-30%

-25%

-20%

-15%

-10%

-5%

0

+/- % Initial Permeability 

µ

i

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

14µ

26µ

60µ

125µ

147µ

160µ - 

173µ

200µ

300µ

550µ

Frequency (MHz)

0.01

0.1

1

10

-50%

-40%

-30%

-20%

-10%

0%

+/- % Initial Permeability 

µ

i

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

14µ

26µ

60µ

125µ

147µ - 

160µ

High Flux

MPP

Permeability versus Frequency Curves

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Material Data

MAGNETICS

56

Frequency (MHz)

0.1

1

10

0%

-5%

-10%

-15%

-20%

-25%

-30%

+/- % Initial Permeability 

µ

i

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

26µ

40µ

60µ

75µ - 90µ

125µ

Frequency (MHz)

0.1

1

10

0%

-5%

-10%

-15%

-20%

-25%

-30%

-35%

-40%

-45%

-50%

+/- % Initial Permeability 

µ

i

60µ

26µ

125 perm

90

75

60

40

26

160

147

14
173

200

250

300

550

500

60µ XF

LUX

 Toroid:

[% change in µ

i

] = -1.584x10

-3

 + (7.074x10

-1

)(B) + (-2.782)(B

2

) + (4.403)(B

3

) + (-2.621)(B

4

)

26µ XF

LUX

 Toroid: 

[% change in µ

i

] = -3.846x10

-4

 + (4.288x10

-1

)(B) + (-1.853)(B

2

) + (3.132)(B

3

) + (-2.138)(B

4

)

XF

lux

®

Kool Mµ

®

Permeability versus Frequency Curves

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

57

Material Data

Perm

a

b

c

d

e

MPP

14µ

0

-2.320E-03

7.630E-04

-5.070E-04

3.170E-05

26µ

0

-1.560E-02

5.190E-03

-1.160E-03

6.230E-05

60µ

0

-1.820E-02

4.320E-03

-9.780E-04

5.360E-05

125µ

0

-8.430E-02

1.590E-02

-2.270E-03

1.080E-04

147µ

0

-1.110E-01

2.040E-02

-2.810E-03

1.300E-04

160µ

0

-1.290E-01

2.390E-02

-3.080E-03

1.410E-04

173µ

0

-1.290E-01

2.390E-02

-3.080E-03

1.410E-04

200µ

0

-1.610E-01

3.820E-02

-5.170E-03

2.160E-04

300µ

0

-2.590E-01

5.570E-02

-6.530E-03

2.780E-04

550µ

0

--4.590E-01

-3.3E+00

8.14E+00

-5.73E+00

High  

Flux

14µ

0

-1.070E-02

5.960E-04

-4.920E-04

3.070E-05

26µ

0

-2.560E-02

3.430E-03

-7.340E-04

3.990E-05

60µ

0

-3.870E-02

3.050E-03

-5.490E-04

2.690E-05

125µ

0

-8.600E-02

1.140E-02

-1.370E-03

6.050E-05

147µ

0

-8.170E-02

7.330E-03

-6.400E-04

2.390E-05

160µ

0

-8.590E-02

7.220E-03

-5.530E-04

1.880E-05

Kool 

®

26µ

0

-5.500E-03

1.400E-03

-6.200E-04

3.700E-05

40µ

0

-7.300E-03

8.400E-04

-5.900E-04

3.700E-05

60µ

0

-1.100E-02

1.600E-03

-7.100E-04

4.400E-05

75µ

0

-2.000E-02

3.500E-03

-9.500E-04

5.500E-05

90µ

0

-1.500E-02

6.900E-04

-4.800E-04

3.100E-05

125µ

0

-3.000E-02

-5.500E-03

2.400E-04

4.500E-06

X

F

lux

®

26µ

3.000E-04

-3.132E-02

4.902E-03

-1.015E-03

5.543E-05

60µ

6.805E-03

-7.575E-02

1.206E-02

-1.607E-03

7.524E-05

Fit Formula

Permeability versus Frequency Curves

52 - old 3 - 24

!

µ

i

= a + bf + cf

2

+ df

3

+ ef

4

Units: f in MHz

where:

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

58

0.060"

0.070”

0.140”

3.56 mm OD

Before Finish (nominal)

3.56 mm/0.140 in

1.78 mm/0.070 in

 1.52 mm/0.060 in

After Finish (limits)

4.20 mm/0.165 in

1.27 mm/0.050 in

 2.16 mm/0.085 in

Core Dimensions      

OD(max) ID(min) HT(max)

FOR PLACEMENT ONLY

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 15%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

60

13

-

-

77141

-

-

75

16

-

-

77445

-

-

90

19

-

-

77444

-

-

125

26

55140

-

77140

-

-

147

31

55139

-

-

-

-

160

33

55138

-

-

-

-

173

36

55134

-

-

-

-

200

42

55137

-

-

-

-

300

62

55135

-

-

-

-

Physical Characteristics

Window Area

1.27 mm

2

Cross Section

1.30 mm

2

Path Length

8.06 mm

Volume

10.5 mm

3

Weight - MPP

0.094 g

Weight - High Flux

-

Weight - Kool Mµ

0.065 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

1.65 mm

4

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

7.24

20%

7.56

25%

7.65

30%

7.70

35%

7.81

40%

7.89

45%

7.98

50%

8.08

60%

8.27

70%

8.48

Wound Coil Dimensions

40% Winding Factor

OD

4.30 mm

HT

2.56 mm

Completely Full Window

Max OD

4.95 mm

Max HT

2.74 mm

Surface Area

Unwound Core

60 mm

2

40% Winding Factor

70 mm

2

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

28

24

20

16

12

8

4

0

0

10

20

30

40

50

60

55140A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

59

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

10

20

35

30

25

20

15

10

5

0

30

40

50

60

70

0.100”

0.088”

0.155”

3.94 mm OD

Before Finish (nominal)

3.94 mm/0.155 in

2.24 mm/0.088 in

 2.54 mm/0.100 in

After Finish (limits)

4.58 mm/0.180 in

1.72 mm/0.068 in

 3.18 mm/0.125 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 15%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

60

17

-

-

77151

-

-

75

21

-

-

77155

-

-

90

25

-

-

77154

-

-

125

35

55150

-

77150

-

-

147

41

55149

-

-

-

-

160

45

55148

-

-

-

-

173

48

55144

-

-

-

-

200

56

55147

-

-

-

-

300

84

55145

-

-

-

-

Physical Characteristics

Window Area

2.32 mm

2

Cross Section

2.11 mm

2

Path Length

9.42 mm

Volume

19.9 mm

3

Weight - MPP

0.17 g

Weight - High Flux

-

Weight - Kool Mµ

0.12 g

Weight - 

xF

lux

 

-

Weight - Kool Mµ MAX

-

Area Product

4.90 mm

4

Surface Area

Unwound Core

90 mm

2

40% Winding Factor

110 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

9.20

20%

9.64

25%

9.76

30%

9.84

35%

9.98

40%

10.1

45%

10.2

50%

10.3

60%

10.6

70%

10.9

Wound Coil Dimensions

40% Winding Factor

OD

4.85 mm

HT

3.73 mm

Completely Full Window

Max OD

5.77 mm

Max HT

4.75 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55150A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

60

0.100”

0.183”
0.093”

4.65 mm OD

Before Finish (nominal)

4.65 mm/0.183 in

2.36 mm/0.093 in

2.54 mm/0.100 in

After Finish (limits)

5.29 mm/0.208 in

1.85 mm/0.073 in

 3.18 mm/0.125 in

FOR PLACEMENT ONLY

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 15%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

60

20

55181

-

77181

-

-

75

25

-

-

77185

-

-

90

30

-

-

77184

-

-

125

42

55180

-

77180

-

-

147

49

55179

-

-

-

-

160

53

55178

-

-

-

-

173

57

55174

-

-

-

-

200

67

55177

-

-

-

-

300

99

55175

-

-

-

-

Physical Characteristics

Window Area

2.69 mm

2

Cross Section

2.85 mm

2

Path Length

10.6 mm

Volume

30.3 mm

3

Weight - MPP

0.25 g

Weight - High Flux

-

Weight - Kool Mµ

0.18 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

7.66 mm

4

Surface Area

Unwound Core

110 mm

2

40% Winding Factor

130 mm

2

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

10

20

45

40

35

30

25

20

15

10

 5

0

30

40

50

60

70

80

90

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

9.79

20%

10.3

25%

10.4

30%

10.5

35%

10.6

40%

10.7

45%

10.9

50%

11.0

60%

11.3

70%

11.6

Wound Coil Dimensions

40% Winding Factor

OD

5.56 mm

HT

3.73 mm

Completely Full Window

Max OD

6.65 mm

Max HT

4.94 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55180A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

61

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

10

20

50

45

40

35

30

25

20

15

10

 5

0

30

40

50

60

70

80

100

90

0.110”

0.110”

0.250”

6.35 mm OD

Before Finish (nominal)

6.35 mm/0.250 in

2.79 mm/0.110 in

 2.79 mm/0.110 in

After Finish (limits)

6.99 mm/0.275 in

2.28 mm/0.090 in

 3.43 mm/0.135 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

6

55023

58023

-

-

-

26

10

55022

58022

-

-

-

60

24

55021

58021

77021

-

-

75

30

-

-

77825

-

-

90

36

-

-

77824

-

-

125

50

55020

58020

77020

-

-

147

59

55019

58019

-

-

-

160

64

55018

58018

-

-

-

173

69

55014

-

-

-

-

200

80

55017

-

-

-

-

300

120

55015

-

-

-

-

550

220

55016

-

-

-

-

Physical Characteristics

Window Area

4.08 mm

2

Cross Section

4.70 mm

2

Path Length

13.6 mm

Volume

64.0 mm

3

Weight - MPP

0.59 g

Weight - High Flux

0.55 g

Weight - Kool Mµ

0.39 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

19.2 mm

4

Surface Area

Unwound Core

170 mm

2

40% Winding Factor

200 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

11.6

20%

12.2

25%

12.3

30%

12.4

35%

12.6

40%

12.8

45%

12.9

50%

13.1

60%

13.4

70%

13.9

Wound Coil Dimensions

40% Winding Factor

OD

7.34 mm

HT

4.12 mm

Completely Full Window

Max OD

8.81 mm

Max HT

5.38 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55020A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

62

0.100”

0.105”

0.260”

6.60 mm OD 

Before Finish (nominal)

6.60 mm/0.260 in

2.67 mm/0.105 in

 2.54 mm/0.100 in

After Finish (limits)

7.24 mm/0.285 in

2.15 mm/0.085 in

 3.18 mm/0.125 in

FOR PLACEMENT ONLY

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

6

55243

58243

-

-

-

26

11

55242

58242

-

-

-

60

26

55241

58241

77241

-

-

75

32

-

-

77245

-

-

90

39

-

-

77244

-

-

125

54

55240

58240

77240

-

-

147

64

55239

58239

-

-

-

160

69

55238

58238

-

-

-

173

75

55234

-

-

-

-

200

86

55237

-

-

-

-

300

130

55235

-

-

-

-

550

242

55236

-

-

-

-

Physical Characteristics

Window Area

3.63 mm²

Cross Section

4.76 mm²

Path Length

13.6 mm

Volume

64.9 mm³

Weight - MPP

0.58 g

Weight - High Flux

0.55 g

Weight - Kool Mµ

0.40 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

17.3 mm

4

Surface Area

Unwound Core

170 mm²

40% Winding Factor

190 mm²

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

10

20

55

50

45

40

35

30

25

20

15

10

 5

0

30

40

50

60

70

80

110

100

90

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

11.4

20%

12.0

25%

12.2

30%

12.3

35%

12.4

40%

12.6

45%

12.7

50%

12.9

60%

13.2

70%

13.6

Wound Coil Dimensions

40% Winding Factor

OD

7.41 mm

HT

3.87 mm

Completely Full Window

Max OD

9.12 mm

Max HT

5.13 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55240A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

63

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

10

20

110

100

90

80

70

60

50

40

30

20

10

0

30

40

50

60

70

80

110

100

90

0.188”

0.105”

0.260”

6.60 mm OD

Before Finish (nominal)

6.60 mm/0.260 in

2.67 mm/0.105 in

 4.78 mm/0.188 in

After Finish (limits)

7.24 mm/0.285 in

2.15 mm/0.085 in

 5.42 mm/0.213 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

12

55273

58273

-

-

-

26

21

55272

58272

-

-

-

60

50

55271

58271

77271

-

-

75

62

-

-

77875

-

-

90

74

-

-

77874

-

-

125

103

55270

58270

77270 

-

-

147

122

55269

58269

-

-

-

160

132

55268

58268

-

-

-

173

144

55264

-

-

-

-

200

165

55267

-

-

-

-

300

247

55265

-

-

-

-

550

466

55266

-

-

-

-

Physical Characteristics

Window Area

3.63 mm

2

Cross Section

9.20 mm

2

Path Length

13.6 mm

Volume

125 mm

3

Weight - MPP

1.1 g

Weight - High Flux

1.0 g

Weight - Kool Mµ

0.77 g

Weight - 

 xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

33.4 mm

4

Surface Area

Unwound Core

230 mm

2

40% Winding Factor

260 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

16.2

20%

16.7

25%

16.9

30%

17.0

35%

17.1

40%

17.3

45%

17.4

50%

17.6

60%

17.9

70%

18.3

Wound Coil Dimensions

40% Winding Factor

OD

7.41 mm

HT

6.11 mm

Completely Full Window

Max OD

9.17 mm

Max HT

7.42 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55270A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

64

0.270”
0.156”

0.200”

6.86 mm OD

Before Finish (nominal)

6.86 mm/0.270 in

3.96 mm/0.156 in

 5.08 mm/0.200 in

After Finish (limits)

7.50 mm/0.295 in

3.45 mm/0.136 in

 5.72 mm/0.225 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

8

55413

58413

-

-

-

26

14

55412

58412

-

-

-

60

33

55411

58411

77411

-

-

75

42

-

-

77415

-

-

90

50

-

-

77414

-

-

125

70

55410

58410

77410

-

-

147

81

55409

58409

-

-

-

160

89

55408

58408

-

-

-

173

95

55404

-

-

-

-

200

112

55407

-

-

-

-

300

166

55405

-

-

-

-

Physical Characteristics

Window Area

9.35 mm²

Cross Section

7.25 mm²

Path Length

16.5 mm

Volume

120 mm³

Weight - MPP

1.0 g

Weight - High Flux

0.94 g

Weight - Kool Mµ

0.74 g

Weight - 

xF

lux

 

-

Weight - Kool Mµ MAX

-

Area Product

67.8 mm

4

Surface Area

Unwound Core

260 mm

2

40% Winding Factor

330 mm

2

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

20

40

75
70
65
60
55
50
45
40
35
30
25
20
15
10

5
0

60

80

100

120

140

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

10

20

75
70
65
60
55
50
45
40
35
30
25
20
15
10

5
0

30

40

50

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

15.5

20%

16.4

25%

16.6

30%

16.8

35%

17.0

40%

17.3

45%

17.5

50%

17.8

60%

18.3

70%

18.9

Wound Coil Dimensions

40% Winding Factor

OD

8.06 mm

HT

6.84 mm

Completely Full Window

Max OD

9.60 mm

Max HT

10.0 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55410A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

65

0.125”

0.156”

0.310”

7.87 mm OD

Before Finish (nominal)

7.87 mm/0.310 in

3.96 mm/0.156 in

 3.18 mm/0.125 in

After Finish (limits)

8.51 mm/0.335 in

3.45 mm/0.136 in

 3.81 mm/0.150 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

6

55033

58033

-

-

-

26

11

55032

58032

-

-

-

60

25

55031

58031

77031

-

-

75

31

-

-

77835

-

-

90

37

-

-

77834

-

-

125

52

55030

58030

77030

-

-

147

62

55029

58029

-

-

-

160

66

55028

58028

-

-

-

173

73

55024

-

-

-

-

200

83

55027

-

-

-

-

300

124

55025

-

-

-

-

550

229

55026

-

-

-

-

Physical Characteristics

Window Area

9.35 mm²

Cross Section

5.99 mm²

Path Length

17.9 mm

Volume

107 mm³

Weight - MPP

0.92 g

Weight - High Flux

0.87 g

Weight - Kool Mµ

0.68 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

56.0 mm

4

Surface Area

Unwound Core

240 mm

2

40% Winding Factor

310 mm

2

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

20

55

50

45

40

35

30

25

20

15

10

 5

0

40

100

60

120

140

80

160

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

12.7

20%

13.6

25%

13.8

30%

14.0

35%

14.3

40%

14.5

45%

14.7

50%

15.0

60%

15.5

70%

16.1

Wound Coil Dimensions

40% Winding Factor

OD

9.07 mm

HT

4.93 mm

Completely Full Window

Max OD

11.0 mm

Max HT

6.73 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55030A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

66

0.125”

0.188”

0.380”

9.65 mm OD

Before Finish (nominal)

9.65 mm/0.380 in

4.78 mm/0.188 in

 3.18 mm/0.125 in

After Finish (limits)

10.3 mm/0.405 in

4.26 mm/0.168 in

 3.81 mm/0.150 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

6

55283

58283

-

-

-

26

11

55282

58282

-

-

-

60

25

55281

58281

77281

-

-

75

32

-

-

77885

-

-

90

38

-

-

77884

-

-

125

53

55280

58280

77280

-

-

147

63

55279

58279

-

-

-

160

68

55278

58278

-

-

-

173

74

55274

-

-

-

-

200

84

55277

-

-

-

-

300

128

55275

-

-

-

-

550

232

55276

-

-

-

-

Physical Characteristics

Window Area

14.3 mm²

Cross Section

7.52 mm²

Path Length

21.8 mm 

Volume

164 mm³

Weight - MPP

1.4 g 

Weight - High Flux

1.3 g

Weight - Kool Mµ

1.0 g

Weight - 

xF

lux

Weight - Kool Mµ MAX

-

Area Product

107 mm

4

Surface Area

Unwound Core

310 mm

2

40% Winding Factor

410 mm

2

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

20

55

50

45

40

35

30

25

20

15

10

 5

0

40

100

60

120

140

80

160

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

13.6

20%

14.7

25%

15.0

30%

15.3

35%

15.6

40%

15.9

45%

16.2

50%

16.5

60%

17.2

70%

17.9

Wound Coil Dimensions

40% Winding Factor

OD

11.0 mm

HT

5.17 mm

Completely Full Window

Max OD

13.4 mm

Max HT

7.44 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55280A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

67

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

20

70
65
60
55
50
45
40
35
30
25
20
15
10

 5

0

40

100

60

120

140

80

180

160

0.156”

0.188”

0.380”

9.65 mm OD

Before Finish (nominal)

9.65 mm/0.380 in

4.78 mm/0.188 in

 3.96 mm/0.156 in

After Finish (limits)

10.3 mm/0.405 in

4.26 mm/0.168 in

 4.60 mm/0.181 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

7

55293

58293

-

-

-

26

14

55292

58292

-

-

-

60

32

55291

58291

77291

-

-

75

40

-

-

77295

-

-

90

48

-

-

77294

-

-

125

66

55290

58290

77290

-

-

147

78

55289

58289

-

-

-

160

84

55288

58288

-

-

-

173

92

55284

-

-

-

-

200

105

55287

-

-

-

-

300

159

55285

-

-

-

-

550

290

55286

-

-

-

-

Physical Characteristics

Window Area

14.3 mm

2

Cross Section

9.45 mm

2

Path Length

21.8 mm

Volume

206 mm

3

Weight - MPP

1.8 g

Weight - High Flux

1.7 g

Weight - Kool Mµ

1.4 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

135 mm

4

Surface Area

Unwound Core

350 mm²

40% Winding Factor

450 mm²

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

15.2

20%

16.4

25%

16.6

30%

16.9

35%

17.2

40%

17.4

45%

17.8

50%

18.1

60%

18.7

70%

19.5

Wound Coil Dimensions

40% Winding Factor

OD

11.0 mm

HT

5.96 mm

Completely Full Window

Max OD

13.4 mm

Max HT

8.20 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55290A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

68

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

20

70
65
60
55
50
45
40
35
30
25
20
15
10

 5

0

40

100

60

120

140

80

180

160

0.156”

0.200”

0.400”

10.2 mm OD

Before Finish (nominal)

10.2 mm/0.400 in

5.08 mm/0.200 in

 3.96 mm/0.156 in

After Finish (limits)

10.8 mm/0.425 in

4.57 mm/0.180 in

 4.60 mm/0.181 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

7

55043

58043

-

-

-

26

14

55042

58042

-

-

-

60

32

55041

58041

77041

-

-

75

40

-

-

77845

-

-

90

48

-

-

77844

-

-

125

66

55040

58040

77040

-

-

147

78

55039

58039

-

-

-

160

84

55038

58038

-

-

-

173

92

55034

-

-

-

-

200

105

55037

-

-

-

-

300

159

55035

-

-

-

-

550

290

55036

-

-

-

-

Physical Characteristics

Window Area

16.4 mm²

Cross Section

9.57 mm²

Path Length

23.0 mm

Volume

220 mm³

Weight - MPP

1.9 g

Weight - High Flux

1.8 g

Weight - Kool Mµ

1.5 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

156 mm

4

Surface Area

Unwound Core

370 mm

2

40% Winding Factor

480 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

15.4

20%

16.6

25%

16.9

30%

17.1

35%

17.5

40%

17.8

45%

18.1

50%

18.4

60%

19.2

70%

20.0

Wound Coil Dimensions

40% Winding Factor

OD

11.5 mm

HT

5.96 mm

Completely Full Window

Max OD

14.1 mm

Max HT

8.46 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55040A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

69

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

20

40

60
55
50
45
40
35
30
25
20
15
10

5
0

60

80

100

120

140

160

220

200

180

0.156”

0.250”

0.440”

11.2 mm OD

Before Finish (nominal)

11.2 mm/0.440 in

6.35 mm/0.250 in

 3.96 mm/0.156 in

After Finish (limits)

11.9 mm/0.465 in

5.84 mm/0.230 in

 4.60 mm/0.181 in

Permeability (µ) 

A

L

 ± 8%

Kool Mµ A

L

 

± 12%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

6

55133

58133

-

-

-

26

11

55132

58132

-

-

-

60

26

55131

58131

77131

-

-

75

32

-

-

77335

-

-

90

38

-

-

77334

-

-

125

53

55130

58130

77130

-

-

147

63

55129

58129

-

-

-

160

68

55128

58128

-

-

-

173

74

55124

-

-

-

-

200

85

55127

-

-

-

-

300

127

55125

-

-

-

-

Physical Characteristics

Window Area

26.8 mm²

Cross Section

9.06 mm²

Path Length

26.9 mm

Volume

244 mm²

Weight - MPP

2.1 g

Weight - High Flux

2.0 g

Weight - Kool Mµ

1.5 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

243 mm

4

Surface Area

Unwound Core

420 mm

2

40% Winding Factor

600 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

15.2

20%

16.7

25%

17.0

30%

17.4

35%

17.8

40%

18.1

45%

18.6

50%

19.0

60%

19.9

70%

20.9

Wound Coil Dimensions

40% Winding Factor

OD

12.9 mm

HT

6.53 mm

Completely Full Window

Max OD

15.7 mm

Max HT

8.97 mm

Core Dimensions      

OD(max) ID(min) HT(max)

55130A2

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

70

55050A2

0.187”

0.300”

0.500”

12.7 mm OD

Before Finish (nominal)

12.7 mm/0.500 in

7.62 mm/0.300 in

 4.75 mm/0.187 in

After Finish (limits)

13.5 mm/0.530 in

6.98 mm/0.275 in

 5.52 mm/0.217 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

6.4

55053

58053

-

-

-

26

12

55052

58052

77052

78052

79052

40

18

-

-

-

78056

-

60

27

55051

58051

77051

78051

79051

75

34

-

-

77055

78055

-

90

40

-

-

77054

78054

-

125

56

55050

58050

77050

-

-

147

67

55049

58049

-

-

-

160

72

55048

58048

-

-

-

173

79

55044

-

-

-

-

200

90

55047

-

-

-

-

300

134

55045

-

-

-

-

550

255

55046

-

-

-

-

Physical Characteristics

Window Area

38.3 mm

2

Cross Section

10.9 mm

2

Path Length

31.2 mm

Volume

340 mm

3

Weight - MPP

3.1 g

Weight - High Flux

2.9 g

Weight - Kool Mµ

2.2 g

Weight - 

xF

lux

2.5 g

Weight - Kool Mµ MAX

2.2 g

Area Product

417 mm

4

Surface Area

Unwound Core

560 mm

2

40% Winding Factor

800 mm

2

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

20

40

60
55
50
45
40
35
30
25
20
15
10

5
0

60

80

100

120

140

160

300

220

240

260

280

200

180

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

17.5

20%

19.3

25%

19.8

30%

20.1

35%

20.7

40%

21.1

45%

21.7

50%

22.1

60%

23.2

70%

24.5

Wound Coil Dimensions

40% Winding Factor

OD

14.6 mm

HT

7.66 mm

Completely Full Window

Max OD

18.2 mm

Max HT

11.5 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

71

125 perm
90
75
60
40
26

A

L

 (nH/

T  )

2

A·T

0

75
70
65
60
55
50
45
40
35
30
25
20
15
10

5
0

330

30

60

90

120

150

180

210

240

270

300

Kool Mµ A

L

 vs. DC Bias

55120A2

0.250”

0.400”

0.653”

16.6 mm OD

Before Finish (nominal)

16.6 mm/0.653 in

10.2 mm/0.400 in

 6.35 mm/0.250 in

After Finish (limits)

17.3 mm/0.680 in

9.52 mm/0.375 in

 7.12 mm/0.280 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

8

55123

58123

-

-

-

26

15

55122

58122

-

78122

79122

40

24

-

-

-

78113

-

60

35

55121

58121

77121

78121

79121

75

43

-

-

77225

78225

-

90

52

-

-

77224

78224

-

125

72

55120

58120

77120

-

-

147

88

55119

58119

-

-

-

160

92

55118

58118

-

-

-

173

104

55114

-

-

-

-

200

115

55117

-

-

-

-

300

173

55115

-

-

-

-

550

317

55116

-

-

-

-

Physical Characteristics

Window Area

71.2 mm

2

Cross Section

19.2 mm

2

Path Length

41.2 mm

Volume

791 mm

3

Weight - MPP

6.8 g

Weight - High Flux

6.3 g

Weight - Kool Mµ

5.0 g

Weight - 

xF

lux

5.6 g

Weight - Kool Mµ MAX

4.9 g

Area Product

1,370 mm

4

Surface Area

Unwound Core

920 mm

2

40% Winding Factor

1,300 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

22.1

20%

24.6

25%

25.2

30%

25.6

35%

26.4

40%

27.0

45%

27.7

50%

28.4

60%

29.8

70%

31.5

Wound Coil Dimensions

40% Winding Factor

OD

18.8 mm

HT

10.1 mm

Completely Full Window

Max OD

23.7 mm

Max HT

15.2 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

72

55380A2

0.250”

0.380”

0.680”

17.3 mm OD

Before Finish (nominal)

17.3 mm/0.680 in

9.65 mm/0.380 in

 6.35 mm/0.250 in

After Finish (limits)

18.1 mm/0.710 in

9.01 mm/0.355 in

 7.12 mm/0.280 in

  

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

10

55383

58383

-

-

-

26

19

55382

58382

-

78382

79382

40

28

-

-

-

78386

-

60

43

55381

58381

77381

78381

79381

75

53

-

-

77385

78385

-

90

64

-

-

77384

78384

-

125

89

55380

58380

77380

-

-

147

105

55379

58379

-

-

-

160

114

55378

58378

-

-

-

173

123

55374

-

-

-

-

200

142

55377

-

-

-

-

300

214

55375

-

-

-

-

Physical Characteristics

Window Area

63.8 mm

2

Cross Section

23.2 mm

2

Path Length

41.4 mm

Volume

960 mm

3

Weight - MPP

8.2 g

Weight - High Flux

7.7 g

Weight - Kool Mµ

5.9 g

Weight - 

xF

lux

7.2 g

Weight - Kool Mµ MAX

5.9 g

Area Product

1,480 mm

4

Surface Area

Unwound Core

990 mm

2

40% Winding Factor

1,400 mm

2

125 perm
90
75
60
40
26

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

40

90

80

70

60

50

40

30

20

10

0

80

200

120

240

280

160

360

320

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

23.2

20%

25.6

25%

26.2

30%

26.6

35%

27.4

40%

28.0

45%

28.6

50%

29.3

60%

30.8

70%

32.4

Wound Coil Dimensions

40% Winding Factor

OD

19.6 mm

HT

10.1 mm

Completely Full Window

Max OD

24.9 mm

Max HT

16.3 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

73

55206A2

0.250”

0.500”

0.800”

20.3 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

50

70

60

50

40

30

20

10

0

350

100

150

200

400

450

500

300

250

600

650

550

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Before Finish (nominal)

20.3 mm/0.800 in

12.7 mm/0.500 in

 6.35mm/0.250 in

After Finish (limits)

21.1 mm/0.830 in

12.0 mm/0.475 in

 7.12 mm/0.280 in

Physical Characteristics

Window Area

114 mm

2

Cross Section

22.1 mm

2

Path Length

50.9 mm

Volume

1,120 mm

3

Weight - MPP

9.4 g

Weight - High Flux

8.9 g

Weight - Kool Mµ

7.1 g

Weight - 

xF

lux

7.9 g

Weight - Kool Mµ MAX 

7.2 g

Area Product

2,520 mm

4

Surface Area

Unwound Core

1,200 mm²

40% Winding Factor

1,900 mm²

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

7.8

55209

58209

-

-

-

26

14

55208

58208

-

78208

79208

40

21

-

-

77847

78847

-

60

32

55848

58848

77848

78848

79848

75

41

-

-

77211

78211

-

90

49

-

-

77210

78210

-

125

68

55206

58206

77206

-

-

147

81

55205

58205

-

-

-

160

87

55204

58204

-

-

-

173

96

55200

-

-

-

-

200

109

55203

-

-

-

-

300

163

55201

-

-

-

-

550

320

55202

-

-

-

-

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

23.3

20%

26.4

25%

27.2

30%

27.8

35%

28.8

40%

29.5

45%

30.5

50%

31.3

60%

33.2

70%

35.4

Wound Coil Dimensions

40% Winding Factor

OD

22.9 mm

HT

10.7 mm

Completely Full Window

Max OD

29.2 mm

Max HT

17.4 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

74

0.300”

55310A2

0.550”

0.900”

22.9 mm OD

Before Finish (nominal)

22.9 mm/0.900 in

14.0 mm/0.550 in

 7.62 mm/0.300 in

After Finish (limits)

23.7 mm/0.930 in

13.3 mm/0.525 in

 8.39 mm/0.330 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

9.9

55313

58313

-

-

-

26

19

55312

58312

77312

78312

79312

40

29

-

-

77316

78316

-

60

43

55059

58059

77059

78059

79059

75

54

-

-

77315

78315

-

90

65

-

-

77314

78314

-

125

90

55310

58310

77310

-

-

147

106

55309

58309

-

-

-

160

115

55308

58308

-

-

-

173

124

55304

-

-

-

-

200

144

55307

-

-

-

-

300

216

55305

-

-

-

-

550

396

55306

-

-

-

-

Physical Characteristics

Window Area

139 mm

2

Cross Section

31.7 mm

2

Path Length

56.7 mm

Volume

1,800 mm

3

Weight - MPP

16 g

Weight - High Flux

15 g

Weight - Kool Mµ

12 g

Weight - 

xF

lux

13 g

Weight - Kool Mµ MAX

12 g

Area Product

4,430 mm

4

Surface Area

Unwound Core

1,600 mm

2

40% Winding Factor

2,400 mm

2

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

100

90

80

70

60

50

40

30

20

10

0

200

500

300

600

700

400

1000

900

800

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

27.0

20%

30.5

25%

31.3

30%

32.0

35%

33.1

40%

33.9

45%

34.9

50%

35.9

60%

38.0

70%

40.4

Wound Coil Dimensions

40% Winding Factor

OD

25.7 mm

HT

12.4 mm

Completely Full Window

Max OD

32.6 mm

Max HT

19.8 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

75

55350A2

0.350”

0.567”

0.928”

23.6 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

100

110

100

90

80

70

60

50

40

30

20

10

0

600

200

300

700

800

900

500

400

1000

1100

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Before Finish (nominal)

23.6 mm/0.928 in

14.4 mm/0.567 in

 8.89 mm/0.350 in

After Finish (limits)

24.4 mm/0.958 in

13.7 mm/0.542 in

 9.66 mm/0.380 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

12

55353

58353

-

-

-

26

22

55352

58352

77352

78352

79352

40

34

-

-

77356

78356

-

60

51

55351

58351

77351

78351

79351

75

62

-

-

77355

78355

-

90

76

-

-

77354

78354

-

125

105

55350

58350

77350

-

-

147

124

55349

58349

-

-

-

160

135

55348

58348

-

-

-

173

146

55344

-

-

-

-

200

169

55347

-

-

-

-

300

253

55345

-

-

-

-

Physical Characteristics

Window Area

149 mm

2

Cross Section

38.8 mm

2

Path Length

58.8 mm

Volume

2,280 mm

3

Weight - MPP

20 g

Weight - High Flux

19 g

Weight - Kool Mµ

14 g

Weight - 

xF

lux

16 g

Weight - Kool Mµ MAX

14 g

Area Product

5,770 mm

4

Surface Area

Unwound Core

1,800 mm

2

40% Winding Factor

2,700 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

29.8

20%

33.4

25%

34.2

30%

35.0

35%

36.1

40%

36.9

45%

38.0

50%

38.9

60%

41.1

70%

43.6

Wound Coil Dimensions

40% Winding Factor

OD

26.7 mm

HT

14.2 mm

Completely Full Window

Max OD

33.5 mm

Max HT

21.4 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

76

55930A2

0.440”

0.580”

1.060”

26.9 mm OD

Before Finish (nominal)

26.90 mm/1.060 in

14.7 mm/0.580 in

 11.2 mm/0.440 in

After Finish (limits)

27.69 mm/1.090 in

14.1 mm/0.555 in

 12.0 mm/0.470 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

18

55933

58933

-

-

-

26

32

55932

58932

77932

78932

79932

40

50

-

-

77936

78936

-

60

75

55894

58894

77894

78894

79894

75

94

-

-

77935

78935

-

90

113

-

-

77934

78934

-

125

157

55930

58930

77930

-

-

147

185

55929

58929

-

-

-

160

201

55928

58928

-

-

-

173

217

55924

-

-

-

-

200

251

55927

-

-

-

-

300

377

55925

-

-

-

-

550

740

55926

-

-

-

-

Physical Characteristics

Window Area

156 mm

2

Cross Section

65.4 mm

2

Path Length

63.5 mm

Volume

4,150 mm

3

Weight - MPP

36 g

Weight - High Flux

34 g

Weight - Kool Mµ

26 g

Weight - 

xF

lux

29 g

Weight - Kool Mµ MAX

26 g

Area Product

10,200 mm

4

Surface Area

Unwound Core

2,400 mm

2

40% Winding Factor

3,500 mm

2

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

100

160
150
140
130
120
110
100

90
80
70
60
50
40
30
20
10

0

600

200

300

700

800

900

500

400

1000

1100

1200

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

37.5

20%

41.1

25%

41.9

30%

42.8

35%

43.8

40%

44.6

45%

45.7

50%

46.6

60%

48.8

70%

51.3

Wound Coil Dimensions

40% Winding Factor

OD

30.0 mm

HT

16.5 mm

Completely Full Window

Max OD

37.3 mm

Max HT

24.0 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

77

55548A2

0.420”

0.791”

1.291”

32.8 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

150

140
130
120
110
100

90
80
70
60
50
40
30
20
10

0

300

750

450

900

1050

600

1500

1350

1200

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Before Finish (nominal)

32.8 mm/1.291 in

20.1 mm/0.791 in

 10.7 mm/0.420 in

After Finish (limits)

33.66 mm/1.325 in

19.4 mm/0.766 in

 11.5 mm/0.450 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

14

55551

58551

-

-

-

26

28

55550

58550

77550

78550

79550

40

41

-

-

77555

78555

-

60

61

55071

58071

77071

78071

79071

75

76

-

-

77553

78553

-

90

91

-

-

77552

78552

-

125

127

55548

58548

77548

-

-

147

150

55547

58547

-

-

-

160

163

55546

58546

-

-

-

173

176

55542

-

-

-

-

200

203

55545

-

-

-

-

300

305

55543

-

-

-

-

550

559

55544

-

-

-

-

Physical Characteristics

Window Area

297 mm

2

Cross Section

65.6 mm

2

Path Length

81.4 mm

Volume

5,340 mm

3

Weight - MPP

47 g

Weight - High Flux

44 g

Weight - Kool Mµ

34 g

Weight - 

xF

lux

38 g

Weight - Kool Mµ MAX

34 g

Area Product

19,500 mm

4

Surface Area

Unwound Core

3,100 mm

2

40% Winding Factor

4,900 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

37.4

20%

42.4

25%

43.5

30%

44.7

35%

46.1

40%

47.2

45%

48.8

50%

50.1

60%

53.2

70%

56.7

Wound Coil Dimensions

40% Winding Factor

OD

36.8 mm

HT

17.8 mm

Completely Full Window

Max OD

46.7 mm

Max HT

28.0 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

78

55585A2

0.350”

0.920”

1.350”

34.3 mm OD

Before Finish (nominal)

34.30 mm/1.350 in

23.4 mm/0.920 in

 8.89 mm/0.350 in

After Finish (limits)

35.18 mm/1.385 in

22.5 mm/0.888 in

 9.78 mm/0.385 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

9

55588

58588

-

-

-

26

16

55587

58587

77587

78587

79587

40

25

-

-

77591

78591

-

60

38

55586

58586

77586

78586

79586

75

47

-

-

77590

78590

-

90

57

-

-

77589

78589

-

125

79

55585

58585

77585

-

-

147

93

55584

58584

-

-

-

160

101

55583

58583

-

-

-

173

109

55579

-

-

-

-

200

126

55582

-

-

-

-

300

190

55580

-

-

-

-

550

348

55581

-

-

-

-

Physical Characteristics

Window Area

399 mm

2

Cross Section

46.4 mm

2

Path Length

89.5 mm

Volume

4,150 mm

3

Weight - MPP

35 g

Weight - High Flux

33 g

Weight - Kool Mµ

25 g

Weight - 

xF

lux

29 g

Weight - Kool Mµ MAX

26 g

Area Product

18,500 mm

4

Surface Area

Unwound Core

2,900 mm

2

40% Winding Factor

5,500 mm

2

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

200

80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

5
0

400

1000

600

1200

1400

800

1800

1600

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

32.2

20%

38.1

25%

39.6

30%

40.6

35%

42.5

40%

44.0

45%

45.6

50%

47.3

60%

50.8

70%

54.9

Wound Coil Dimensions

40% Winding Factor

OD

40.5 mm

HT

16.8 mm

Completely Full Window

Max OD

50.1 mm

Max HT

29.0 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

79

55324A2

0.412”

0.880”

1.410”

35.8 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

200

120
110
100

90
80
70
60
50
40
30
20
10

0

400

1000

600

1200

1400

800

1800

1600

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Before Finish (nominal)

35.80 mm/1.410 in

22.4 mm/0.880 in

 10.5 mm/0.412 in

After Finish (limits)

36.71 mm/1.445 in

21.5 mm/0.848 in

 11.4 mm/0.447 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

13

55327

58327

-

-

-

26

24

55326

58326

77326

78326

79326

40

37

-

-

77330

78330

-

60

56

55076

58076

77076

78076

79076

75

70

-

-

77329

78329

-

90

84

-

-

77328

78328

-

125

117

55324

58324

77324

-

-

147

138

55323

58323

-

-

-

160

150

55322

58322

-

-

-

173

162

55318

-

-

-

-

200

187

55321

-

-

-

-

300

281

55319

-

-

-

-

550

515

55320

-

-

-

-

Physical Characteristics

Window Area

364 mm

2

Cross Section

67.8 mm

2

Path Length

89.8 mm

Volume

6,090 mm

3

Weight - MPP

52 g

Weight - High Flux

49 g

Weight - Kool Mµ

37 g

Weight - 

xF

lux

43 g

Weight - Kool Mµ MAX

38 g

Area Product

24,700 mm

4

Surface Area

Unwound Core

3,400 mm

2

40% Winding Factor

5,700 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

37.9

20%

43.5

25%

44.8

30%

46.0

35%

47.6

40%

48.9

45%

50.6

50%

52.0

60%

55.5

70%

59.3

Wound Coil Dimensions

40% Winding Factor

OD

40.2 mm

HT

18.4 mm

Completely Full Window

Max OD

51.1 mm

Max HT

29.6 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

80

55254A2

0.570”

0.950”

1.570”

39.9 mm OD

Before Finish (nominal)

39.90 mm/1.570 in

24.1 mm/0.950 in

 14.5 mm/0.570 in

After Finish (limits)

40.77 mm/1.605 in

23.3 mm/0.918 in

 15.4 mm/0.605 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

19

55257

58257

-

-

-

26

35

55256

58256

77256

78256

79256

40

54

-

-

77260

78260

-

60

81

55083

58083

77083

78083

79083

75

101

-

-

77259

78259

-

90

121

-

-

77258

78258

-

125

168

55254

58254

77254

-

-

147

198

55253

58253

-

-

-

160

215

55252

58252

-

-

-

173

233

55248

-

-

-

-

200

269

55251

-

-

-

-

300

403

55249

-

-

-

-

550

740

55250

-

-

-

-

Physical Characteristics

Window Area

427 mm

2

Cross Section

107 mm

2

Path Length

98.4 mm

Volume

10,600 mm

3

Weight - MPP

92 g

Weight - High Flux

87 g

Weight - Kool Mµ

65 g

Weight - 

xF

lux

78 g

Weight - Kool Mµ MAX

65 g

Area Product

45,800 mm

4

Surface Area

Unwound Core

4,800 mm

2

40% Winding Factor

7,300 mm

2

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

200

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

400

1000

600

1200

1400

800

1800

2000

1600

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

48.2

20%

54.3

25%

55.8

30%

57.0

35%

58.8

40%

60.2

45%

62.1

50%

63.7

60%

67.3

70%

71.5

Wound Coil Dimensions

40% Winding Factor

OD

44.3 mm

HT

22.4 mm

Completely Full Window

Max OD

56.4 mm

Max HT

35.2 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

81

55089A2

0.600”

1.130”

1.840”

46.7 mm OD

Before Finish (nominal)

46.70 mm/1.840 in

28.70 mm/1.130 in

 15.2 mm/0.600 in

After Finish (limits)

47.63 mm/1.875 in

27.88 mm/1.098 in

 16.2 mm/0.635 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

20

55092

58092

-

-

-

26

37

55091

58091 

77091

78091

79091

40

57

-

-

77095

78095

-

60

86

55090

58090

77090

78090

79090

75

107

-

-

77094

78094

-

90

128

-

-

77093

78093

-

125

178

55089

58089

77089

-

-

147

210

55088

-

-

-

-

160

228

55087

-

-

-

-

173

246

55082

-

-

-

-

200

285

55086

-

-

-

-

300

427

55084

-

-

-

-

Physical Characteristics

Window Area

610 mm

2

Cross Section

134 mm

2

Path Length

116 mm

Volume

15,600 mm

3

Weight - MPP

130 g

Weight - High Flux

120 g

Weight - Kool Mµ

96 g

Weight - 

xF

lux

110 g

Weight - Kool Mµ MAX

100 g

Area Product

81,800 mm

4

Surface Area

Unwound Core

6,100 mm

2

40% Winding Factor

9,800 mm

2

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

200

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

400

1000

600

1200

1400

800

1800

1600

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

52.0

20%

59.1

25%

61.0

30%

62.2

35%

64.5

40%

66.4

45%

68.2

50%

70.4

60%

74.7

70%

79.5

Wound Coil Dimensions

40% Winding Factor

OD

52.0 mm

HT

24.9 mm

Completely Full Window

Max OD

66.3 mm

Max HT

39.8 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

82

55438A2

0.710”

0.950”

1.840”

46.7 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

200

280
260
240
220
200
180
160
140
120
100

80
60
40
20

0

1200

400

600

1400

1600

1800

1000

800

2000

2200

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Before Finish (nominal)

46.70 mm/1.840 in

24.1 mm/0.950 in

 18.0 mm/0.710 in

After Finish (limits)

47.63 mm/1.875 in

23.3 mm/0.918 in

 19.0 mm/0.745 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

32

55441

58441

-

-

-

26

59

55440

58440

77440

78440

79440

40

90

-

-

77431

78431

-

60

135

55439

58439

77439

78439

79439

75

169

-

-

77443

78443

-

90

202

-

-

77442

78442

-

125

281

55438

58438

77438

-

-

147

330

55437

58437

-

-

-

160

360

55436

-

-

-

-

173

390

55432

-

-

-

-

200

450

55435

-

-

-

-

300

674

55433

-

-

-

-

Physical Characteristics

Window Area

427 mm

2

Cross Section

199 mm

2

Path Length

107 mm

Volume

21,300 mm

3

Weight - MPP

180 g

Weight - High Flux

170 g

Weight - Kool Mµ

130 g

Weight - 

xF

lux

150 g

Weight - Kool Mµ MAX

130 g

Area Product

85,900 mm

4

Surface Area

Unwound Core

6,900 mm

2

40% Winding Factor

9,600 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

62.1

20%

68.2

25%

69.7

30%

70.9

35%

72.7

40%

74.1

45%

76.0

50%

77.6

60%

81.2

70%

85.4

Wound Coil Dimensions

40% Winding Factor

OD

51.2 mm

HT

26.0 mm

Completely Full Window

Max OD

63.8 mm

Max HT

38.7 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

83

55725A2

0.830”

0.980”

1.990”

50.5 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

500

1000

1500

2000

2500

3000

400

350

300

250

200

150

100

50

0

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Before Finish (nominal)

50.55 mm/1.990 in

24.89 mm/0.980 in

 21.08 mm/0.830 in

After Finish (limits)

51.31 mm/2.020 in

23.88 mm/0.940 in

 21.59 mm/0.850 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

41

55728

58728

-

-

-

26

76

55727

58727

77727

78727

79727

40

117

-

-

77733

78733

-

60

175

55726

58726

77726

78726

79726

75

219

-

-

77729

78729

-

90

263

-

-

77730

78730

-

125

366

55725

58725

77725

-

-

Physical Characteristics

Window Area

452 mm

2

Cross Section

262 mm

2

Path Length

1,135 mm

Volume

29,700 mm

3

Weight - MPP

250 g

Weight - High Flux

230 g

Weight - Kool Mµ

185 g

Weight - 

xF

lux

210 g

Weight - Kool Mµ MAX

200 g

Area Product

118,000 mm

4

Surface Area

Unwound Core

23,310 mm

2

40% Winding Factor

33,600 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

131

20%

137

25%

138

30%

140

35%

142

40%

143

45%

145

50%

147

60%

150

70%

155

Wound Coil Dimensions

40% Winding Factor

OD

64.0 mm

HT

39.6 mm

Completely Full Window

Max OD

72.0 mm

Max HT

42.0 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

84

55715A2

50.8 mm OD

0.530”

1.250”

2.000”

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

200

160
150
140
130
120
110
100

90
80
70
60
50
40
30
20
10

0

1200

400

600

1400

1600

1800

1000

800

2000

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Before Finish (nominal)

50.80 mm/2.000 in

31.80 mm/1.250 in

 13.5 mm/0.530 in

After Finish (limits)

51.69 mm/2.035 in

30.93 mm/1.218 in

 14.4 mm/0.565 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

17

55718

58718

-

-

-

26

32

55717

58717

77717

78717

79717

40

49

-

-

77721

78721

-

60

73

55716

58716

77716

78716

79716

75

91

-

-

77720

78720

-

90

109

-

-

77719

78719

-

125

152

55715

58715

77715

-

-

147

179

55714

58714

-

-

-

160

195

55713

-

-

-

-

173

210

55709

-

-

-

-

200

243

55712

-

-

-

-

300

365

55710

-

-

-

-

Physical Characteristics

Window Area

751 mm

2

Cross Section

125 mm

2

Path Length

127 mm

Volume

15,900 mm

3

Weight - MPP

140 g

Weight - High Flux

130 g

Weight - Kool Mµ

98 g

Weight - 

xF

lux

110 g

Weight - Kool Mµ MAX

98 g

Area Product

94,000 mm

4

Surface Area

Unwound Core

6,400 mm

2

40% Winding Factor

11,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

49.5

20%

57.4

25%

59.6

30%

61.0

35%

63.5

40%

65.5

45%

67.7

50%

70.1

60%

74.9

70%

80.3

Wound Coil Dimensions

40% Winding Factor

OD

56.6 mm

HT

24.2 mm

Completely Full Window

Max OD

72.4 mm

Max HT

40.6 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

85

55109A2

57.2 mm OD

0.550”

1.400”

2.250”

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

200

160
150
140
130
120
110
100

90
80
70
60
50
40
30
20
10

0

1200

400

600

1400

1600

1800

2000

2200

2400

2600

1000

800

2800

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Before Finish (nominal)

57.20 mm/2.250 in

35.60 mm/1.400 in

 14.0 mm/0.550 in

After Finish (limits)

58.04 mm/2.285 in

34.74 mm/1.368 in

 14.9 mm/0.585 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

18

55112

58112

-

-

-

26

33

55111

58111

77111

78111

79111

40

50

-

-

77212

78212

-

60

75

55110

58110

77110

78110

79110

75

94

-

-

77214

78214

-

90

112

-

-

77213

78213

-

125

156

55109

58109

77109

-

-

147

185

55108

-

-

-

-

160

200

55107

-

-

-

-

173

218

55103

-

-

-

-

200

250

55106

-

-

-

-

300

374

55104

-

-

-

-

Physical Characteristics

Window Area

948 mm

2

Cross Section

144 mm

2

Path Length

143 mm

Volume

20,700 mm

3

Weight - MPP

180 g

Weight - High Flux

170 g

Weight - Kool Mµ

130 g

Weight - 

xF

lux

150 g

Weight - Kool Mµ MAX

130 g

Area Product

137,000 mm

4

Surface Area

Unwound Core

7,700 mm

2

40% Winding Factor

13,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

53.0

20%

61.9

25%

64.3

30%

65.8

35%

68.7

40%

71.0

45%

73.2

50%

76.0

60%

81.3

70%

87.1

Wound Coil Dimensions

40% Winding Factor

OD

63.5 mm

HT

25.9 mm

Completely Full Window

Max OD

81.3 mm

Max HT

44.4 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

86

57.2 mm OD

55195A2

0.600”

1.039”

2.250”

Before Finish (nominal)

57.20 mm/2.250 in

26.40 mm/1.039 in

 15.2 mm/0.600 in

After Finish (limits)

58.04 mm/2.285 in

25.57 mm/1.007 in

 16.2 mm/0.635 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

32

55190

58190

-

-

-

26

60

55191

58191

77191

78191

79191

40

92

-

-

77189

78189

-

60

138

55192

58192

77192

78192

79192

75

172

-

-

77193

78193

-

90

207

-

-

77194

78194

-

125

287

55195

58195

77195

-

-

147

306

55196

-

-

-

-

160

333

55197

-

-

-

-

173

360

55198

-

-

-

-

200

417

55199

-

-

-

-

Physical Characteristics

Window Area

514 mm

2

Cross Section

229 mm

2

Path Length

125 mm

Volume

28,600 mm

3

Weight - MPP

240 g

Weight - High Flux

230 g

Weight - Kool Mµ

180 g

Weight - 

xF

lux

200 g

Weight - Kool Mµ MAX

175 g

Area Product

118,000 mm

4

Surface Area

Unwound Core

8,500 mm

2

40% Winding Factor

12,000 mm

2

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

200

320
300
280
260
240
220
200
180
160
140
120
100

80
60
40
20

0

1200

400

600

1400

1600

1800

2000

2200

1000

800

2400

 

125 perm
90
75
60
40
26

125µ
90µ
75µ
60µ
40µ
26µ

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

64.6

20%

71.2

25%

72.9

30%

74.1

35%

76.3

40%

77.8

45%

79.8

50%

81.6

60%

85.6

70%

90.1

Wound Coil Dimensions

40% Winding Factor

OD

62.0 mm

HT

24.0 mm

Completely Full Window

Max OD

75.7 mm

Max HT

34.0 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

87

55620A2

0.984”

1.283”

2.440”

62.0 mm OD

Before Finish (nominal)

62.00 mm/2.440 in

32.60 mm/1.283 in

 25.0 mm/0.984 in

After Finish (limits)

62.91 mm/2.477 in

31.69 mm/1.248 in

 25.91 mm/1.020 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

44

55614

58614

77614

-

-

26

82

55615

58615

77615

78615

79615

40

126

-

58616

77616

78616

-

60

189

55617

58617

77617

78617

79617

75

237

-

-

77618

78618

-

90

284

-

-

77619

78619

-

125

394

55620

58620

77620

-

-

Physical Characteristics

Window Area

789 mm

2

Cross Section

360 mm

2

Path Length

144 mm

Volume

51,800 mm

3

Weight - MPP

460 g

Weight - High Flux

440 g

Weight - Kool Mµ

340 g

Weight - 

xF

lux

380 g

Weight - Kool Mµ MAX

350 g

Area Product

284,000 mm

4

Surface Area

Unwound Core

12,000 mm

2

40% Winding Factor

21,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

83.0

20%

91.3

25%

93.4

30%

94.9

35%

97.5

40%

99.5

45%

102

50%

104

60%

109

70%

115

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

500

 

400

 

360

 

320

 

280

 

240

 

200

 

160

 

120

 

80

 

40

 

0

1000

1500

2000

2500

3000

3500

4000

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

Wound Coil Dimensions

40% Winding Factor

OD

75.3 mm

HT

39.7 mm

Completely Full Window

Max OD

81.4 mm

Max HT

47.4 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

88

55070A2

0.787”

1.417”

2.677”

68.0 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

500

1000

1500

2000

2500

3000

4500

4000

3500

350

300

250

200

150

100

50

0

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

Before Finish (nominal)

68.00 mm/2.677 in

35.99 mm/1.417 in

 19.99 mm/0.787 in

After Finish (limits)

69.42 mm/2.733 in

34.67 mm/1.365 in

 21.41 mm/0.843 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

35

55075

58075

77075

-

-

26

65

55074

58074

77074

78074

79074

40

100

-

58073

77073

78073

-

60

143

55072

58072

77072

78072

79072

75

187

-

-

77069

78069

-

90

225

-

-

77068

78068

-

125

312

55070

58070

77070

-

-

Physical Characteristics

Window Area

945 mm

2

Cross Section

314 mm

2

Path Length

158 mm

Volume

49,700 mm

3

Weight - MPP

440 g

Weight - High Flux

420 g

Weight - Kool Mµ

320 g

Weight - 

xF

lux

360 g

Weight - Kool Mµ MAX

360 g

Area Product

297,000 mm

4

Surface Area

Unwound Core

12,700 mm

2

40% Winding Factor

18,400 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

77.7

20%

86.6

25%

89.0

30%

90.5

35%

93.4

40%

95.7

45%

97.9

50%

100.1

60%

106.0

70%

112.0

Wound Coil Dimensions

40% Winding Factor

OD

79.3 mm

HT

37.2 mm

Completely Full Window

Max OD

89.2 mm

Max HT

45.4 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

89

55740A2

1.378”

1.783”

2.917”

74.1 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

450

400

350

300

250

200

150

100

50

0

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

Before Finish (nominal)

74.10 mm/2.917 in

45.30 mm/1.783 in

 35.00 mm/1.378 in

After Finish (limits)

75.01 mm/2.953 in

44.39 mm/1.748 in

 35.92 mm/1.414 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

48

55734

58734

77734

-

-

26

88

55735

58735

77735

78735

79735

40

136

-

58736

77736

78736

-

60

204

55737

58737

77737

78737

79737

75

255

-

-

77738

78738

-

90

306

-

-

77739

78739

-

125

425

55740

-

77740

-

-

Physical Characteristics

Window Area

1,550 mm

2

Cross Section

497 mm

2

Path Length

184 mm

Volume

91,400 mm

3

Weight - MPP

790 g

Weight - High Flux

750 g

Weight - Kool Mµ

570 g

Weight - 

xF

lux

660 g

Weight - Kool Mµ MAX

580 g

Area Product

769,000 mm

4

Surface Area

Unwound Core

19,000 mm

2

40% Winding Factor

33,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

102

20%

114

25%

117

30%

119

35%

122

40%

125

45%

129

50%

132

60%

139

70%

147

Wound Coil Dimensions

40% Winding Factor

OD

91.0 mm

HT

55.2 mm

Completely Full Window

Max OD

102 mm

Max HT

65.7 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

90

0.500”

1.938”

3.063”

77.8 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

250

500

750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500

140

120

100

80

60

40

20

0

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

Before Finish (nominal)

77.80 mm/3.063 in

49.20 mm/1.938 in

 12.7 mm/0.500 in

After Finish (limits)

78.95 mm/3.108 in

48.20 mm/1.898 in

 13.9 mm/0.545 in

55866A2

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

16

55869

58869

77869

-

-

26

30

55868

58868

77868

78868

79868

40

45

-

-

77872

78872

-

60

68

55867

58867

77867

78867

79867

75

85

-

-

-

78871

-

90

102

-

-

-

78870

-

125

142

55866

58866

77866

-

-

Physical Characteristics

Window Area

1,820 mm

2

Cross Section

176 mm

2

Path Length

196 mm

Volume

34,500 mm

3

Weight - MPP

290 g

Weight - High Flux

270 g

Weight - Kool Mµ

210 g

Weight - 

xF

lux

240 g

Weight - Kool Mµ MAX

210 g

Area Product

321,000 mm

4

Surface Area

Unwound Core

11,000 mm

2

40% Winding Factor

23,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

58.4

20%

70.9

25%

74.1

30%

76.3

35%

80.4

40%

83.5

45%

86.7

50%

90.4

60%

98.1

70%

107

Wound Coil Dimensions

40% Winding Factor

OD

86.6 mm

HT

29.1 mm

Completely Full Window

Max OD

112 mm

Max HT

54.3 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

91

0.625”

55906A2

1.938”

3.063”

77.8 mm OD

Before Finish (nominal)

77.80 mm/3.063 in

49.20 mm/1.938 in

 15.9 mm/0.625 in

After Finish (limits)

78.95 mm/3.108 in

48.20 mm/1.898 in

 17.1 mm/0.670 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

20

55909

58909

77909

-

-

26

37

55908

58908

77908

78908

79908

40

57

-

-

77912

78912

-

60

85

55907

58907

77907

78907

79907

75

106

-

-

-

78911

-

90

128

-

-

-

78910

-

125

177

55906

58906

77906

-

-

Physical Characteristics

Window Area

1,820 mm

2

Cross Section

221 mm

2

Path Length

196 mm

Volume

43,400 mm

3

Weight - MPP

380 g

Weight - High Flux

360 g

Weight - Kool Mµ

280 g

Weight - 

xF

lux

320 g

Weight - Kool Mµ MAX

280 g

Area Product

403,000 mm

4

Surface Area

Unwound Core

13,000 mm

2

40% Winding Factor

24,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

64.7

20%

77.2

25%

80.5

30%

82.7

35%

86.8

40%

89.9

45%

93.1

50%

96.8

60%

104

70%

113

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

250

500

750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

Wound Coil Dimensions

40% Winding Factor

OD

86.6 mm

HT

32.3 mm

Completely Full Window

Max OD

113 mm

Max HT

57.7 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

92

55778A2 

1.018”

1.549”

3.063”

77.8 mm OD

Before Finish (nominal)

77.80 mm/3.063 in

39.34 mm/1.549 in

 25.85 mm/1.018 in

After Finish (limits)

78.95 mm/3.108 in

38.34 mm/1.509 in

 26.85 mm/1.057 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

47

55774

58774

77774

-

-

26

88

55775

58775

77775

78775

-

40

135

-

58776

77776

78776

-

60

205

55777

58777

77777

78777

-

125

425

55778

58778

77778

-

-

Physical Characteristics

Window Area

1,150 mm

2

Cross Section

478 mm

2

Path Length

170 mm

Volume

81,500 mm

3

Weight - MPP

700 g

Weight - High Flux

640 g

Weight - Kool Mµ

550 g

Weight - 

xF

lux

550 g

Weight - Kool Mµ MAX

-

Area Product

550,000 mm

4

Surface Area

Unwound Core

19,000 mm

2

40% Winding Factor

32,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

94.3

20%

104

25%

107

30%

109

35%

112

40%

114

45%

117

50%

120

60%

126

70%

132

Wound Coil Dimensions

40% Winding Factor

OD

91.0 mm

HT

45.4 mm

Completely Full Window

Max OD

117 mm

Max HT

69.3 mm

Core Dimensions      

OD(max) ID(min) HT(max)

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

4000

500

1000

1500

2000

2500

3000

3500

4000

4500

450

400

350

300

250

200

150

100

50

0

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

93

55102A2

0.650”

2.252”

4.000”

101.6 mm OD

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

7000

1000

2000

4000

3000

5000

6000

250

200

150

100

50

0

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

Before Finish (nominal)

101.6 mm/4.000 in

57.20 mm/2.252 in

 16.5 mm/0.650 in

After Finish (limits)

103.0 mm/4.055 in

55.75 mm/2.195 in

 17.9 mm/0.705 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

26

55101

58101

77101

-

-

26

48

55102

58102

77102

78102

79102

40

74

-

58100

77100

78100

-

60

111

55099

58099

77099

78099

79099

75

138

-

-

-

78159

-

90

167

-

-

-

78096

-

125

232

55098

-

77098

-

-

Physical Characteristics

Window Area

2,470 mm

2

Cross Section

358 mm

2

Path Length

243 mm

Volume

86,900 mm

3

Weight - MPP*

650 g

Weight - High Flux*

610 g

Weight - Kool Mµ*

470 g

Weight - 

xF

lux

620 g

Weight - Kool Mµ MAX

490 g

Area Product

885,000 mm

4

Surface Area

Unwound Core

20,000 mm

2

40% Winding Factor

36,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

82.2

20%

96.8

25%

100

30%

103

35%

108

40%

111

45%

116

50%

120

60%

128

70%

139

*26µ, see p.11

Wound Coil Dimensions

40% Winding Factor

OD

112 mm

HT

34.9 mm

Completely Full Window

Max OD

136 mm

Max HT

55.1 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor

e Data

MAGNETICS

94

55337A2

1.000”

3.094”

5.219”

132.6 mm OD

Before Finish (nominal)

132.6 mm/5.219 in

78.60 mm/3.094 in

 25.4 mm/1.000 in

After Finish (limits)

134.0 mm/5.274 in

77.19 mm/3.039 in

 26.8 mm/1.055 in

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

37

55336

58336

77336

-

-

19

50

-

-

-

78342

-

26

68

55337

58337

77337

78337

79337

40

105

-

58338

77338

78338

-

60

158

55339

58339

77339

-

-

125

329

55340

-

-

-

-

147

380

55341

-

-

-

-

Physical Characteristics

Window Area

4,710 mm

2

Cross Section

678 mm

2

Path Length

324 mm

Volume

220,000 mm

3

Weight - MPP*

1,700 g

Weight - High Flux*

1,500 g

Weight - Kool Mµ*

1,200 g

Weight - 

xF

lux

1,400 g

Weight - Kool Mµ MAX

-

Area Product

3,190,000 mm

4

Surface Area

Unwound Core

36,000 mm

2

40% Winding Factor

65,000 mm

2

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

110

20%

130

25%

135

30%

139

35%

145

40%

150

45%

156

50%

162

60%

173

70%

187

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

7000

8000

9000

1000

2000

4000

3000

5000

6000

160

140

120

100

80

60

40

20

0

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

*26µ, see p. 11

Wound Coil Dimensions

40% Winding Factor

OD

146 mm

HT

50.7 mm

Completely Full Window

Max OD

179 mm

Max HT

78.8 mm

Core Dimensions      

OD(max) ID(min) HT(max)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Cor
e Data

www.mag-inc.com

95

Surface Area

Unwound Core

55,000 mm

2

40% Winding Factor

102,000 mm

2

55165A2

1.250”

4.032”

6.500”

165.1 mm OD

Before Finish (nominal)

165.1 mm/6.500 in

102.4 mm/4.032 in

 31.75 mm/1.250 in

After Finish (limits)

166.5 mm/6.555 in

101.0 mm/3.977 in

 33.15 mm/1.305 in

Core Dimensions      

OD(max) ID(min) HT(max)

Permeability (µ) 

A

L

 ± 8%

Part Number

MPP

High Flux

Kool Mµ

®

XF

lux

®

Kool Mµ

® 

MAX

14

42

55164

58164

77164

-

-

26

78

55165

58165

77165

-

-

40

120

-

-

-

-

-

60

180

55167

-

-

-

-

Physical Characteristics

Window Area

8,030 mm

2

Cross Section

987 mm

2

Path Length

412 mm

Volume

407,000 mm

3

Weight - MPP*

3,000 g

Weight - High Flux*

2,800 g

Weight - Kool Mµ*

2,200 g

Weight - 

xF

lux

-

Weight - Kool Mµ MAX

-

Area Product

7,920,000 mm

4

Winding Turn Length 

* Reference General Winding Data pgs. 103 - 107

Winding Factor

Length/Turn (mm)

0%

132

20%

158

25%

164

30%

170

35%

178

40%

184

45%

192

50%

199

60%

215

70%

233

Kool Mµ A

L

 vs. DC Bias

A

L

 (nH/

T  )

2

A·T

0

7000

8000

10000

9000

1000

2000

4000

3000

5000

6000

80

70

60

50

40

30

20

10

0

125 perm
90
75
60
40
26
14

125µ
90µ
75µ
60µ
40µ
26µ
14µ

*26µ, see p.11

Wound Coil Dimensions

40% Winding Factor

OD

182 mm

HT

63.2 mm

Completely Full Window

Max OD

228 mm

Max HT

103 mm

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Material Data

MAGNETICS

96

For material code see p. 12.
Add permeability code*** to part number, e.g. for 26µ Kool Mµ the complete part number is 00K4022E026. 

E

F

M

L

A

B

C

D

PART NO

A

B

C

D(min)

E(min)

F

L(nom)

M(min)

00_1808E***

(EI-187)

mm

in

19.3±0.305

0.760±0.012

8.10±0.178

0.319±0.007

4.78±0.152

0.188±0.006

5.53

0.218

13.9

0.548

4.78±0.127

0.188±0.005

2.39

0.094

4.64

0.183

00_2510E***

(E-2425)

mm

in

25.4±0.381

1.000±0.015

9.53±0.178

0.375±0.007

6.35±0.102

0.250±0.004

6.22

0.245

18.7

0.740

6.35±0.127

0.250±0.005

3.18

0.125

6.24

0.246

00_3007E***

(DIN 30/7)

mm

in

30.10±0.457
1.185±0.018

15.0±0.229

0.591±0.009

7.06±0.152

0.278±0.006

9.55

0.376

19.8

0.782

6.96±0.203

0.274±0.008

5.11

0.201

6.32

0.249

00_3515E***

(EI-375)

mm

in

34.54±0.508
1.360±0.020

14.2±0.229

0.557±0.009

9.35±0.178

0.368±0.007

9.60

0.378

25.2

0.995

9.32±0.203

0.367±0.008

4.45

0.175

7.87

0.310

00_4017E***

(EE 42/11)

mm

in

42.85±0.635
1.687±0.025

21.1±0.305

0.830±0.012

10.8±0.254

0.424±0.010

14.9

0.587

30.30
1.195

11.9±0.254

0.468±0.010

5.94

0.234

9.27

0.365

00_4020E***

(DIN 42/15)

mm

in

42.85±0.635
1.687±0.025

21.1±0.330

0.830±0.013

15.4±0.254

0.608±0.010

14.9

0.587

30.35
1.195

11.9±0.254

0.468±0.010

5.94

0.234

9.27

0.365

00_4022E***

(DIN 42/20)

mm

in

42.85±0.635
1.687±0.025

21.1±0.330

0.830±0.013

20.0±0.254

0.788±0.010

14.9

0.587

30.35
1.195

11.9±0.254

0.468±0.010

5.94

0.234

9.27

0.365

00_4317E***

(EI-21)

mm

in

40.87±0.610
1.609±0.024

16.5±0.279

0.650±0.011

12.5±0.178

0.493±0.007

10.3

0.409

28.32
1.115

12.5±0.300

0.493±0.008

6.05

0.238

7.87

0.310

00_5528E***

(DIN 55/21)

mm

in

54.86±0.813
2.160±0.032

27.56±0.406
1.085±0.016

20.6±0.381

0.812±0.015

18.5

0.729

37.49
1.476

16.8±0.381

0.660±0.015

8.38

0.330

10.2

0.405

00_5530E***

(DIN 55/25)

mm

in

54.86±0.813
2.160±0.032

27.56±0.406
1.085±0.016

24.6±0.381

0.969±0.015

18.5

0.729

37.49
1.476

16.8±0.381

0.660±0.015

8.38

0.330

10.2

0.405

00_6527E***

(Metric E65)

mm

in

65.15±1.27

2.565±0.050

32.51±0.381
1.280±0.015

27.00±0.406
1.063±0.016

22.1

0.874

44.19
1.740

19.7±0.356

0.774±0.014

10.0

0.394

12.0

0.476

00_7228E***

(F11)

mm

in

72.39±1.09
2.85±0.043

27.94±0.508
1.100±0.020

19.1±0.381

0.750±0.015

17.7

0.699

52.62
2.072

19.1±0.381

0.750±0.015

9.53

0.375

16.8

0.665

00_8020E***

(Metric E80)

mm

in

80.01±1.19

3.150±0.047

38.10±0.635
1.500±0.025

19.8±0.381

0.780±0.015

28.01
1.103

59.28
2.334

19.8±0.381

0.780±0.015

9.91

0.390

19.8

0.780

00_8024E***

mm

in

80.01±1.19

3.150±0.047

24.05±0.635
0.950±0.025

29.72±0.381
1.170±0.015

14.02
0.552

59.28
2.334

19.8±0.381

0.780±0.015

9.91

0.390

19.8

0.780

00_8044E***

mm

in

80.01±1.19

3.150±0.047

44.58±0.635
1.755±0.025

19.8±0.381

0.780±0.015

34.36
1.353

59.28
2.334

19.8±0.381

0.780±0.015

9.91

0.390

19.8

0.780

00_114LE***

mm

in

114.3±0.762
4.500±0.030

46.18±0.381
1.818±0.015

34.93±0.381
1.375±0.015

28.60
1.126

79.50

3.13

35.10±0.381
1.382±0.015

17.2

0.676

22.1

0.874

00_130LE***

mm

in

130.3±3.81

5.130±0.150

32.51±0.305
1.280±0.012

53.85±1.27

2.120±0.050

22.1

0.874

108.4
4.270

20.0±0.762

0.788±0.030

10.0

0.394

44.22
1.741

00_160LE***

mm

in

160.0±2.54

6.300±0.100

38.10±0.635
1.500±0.025

39.62±1.27

1.560±0.050

28.14
1.108

138.2
5.440

19.8±0.762

0.780±0.030

9.91

0.390

59.28
2.334

E Core Data

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

97

Material Data

Cor
e Data

E Core Data

  

26µ  40µ 60µ 90µ

PART NO

A

L

 nH/T

²

± 8%

Path Length 

Ie (mm)

Cross Section 

Ae (mm

2

)

Volume 

Ve (mm

³

)

00_1808E***

26

35

48

69

40.1

22.8

914

00_2510E***

39

52

70

100

48.5

38.5

1,870

00_3007E***

33

46

71

92

65.6

60.1

3,940

00_3515E***

56

75

102

146

69.4

84.0

5,830

00_4017E***

56

76

105

151

98.4

128

12,600

00_4020E***

80

108

150

217

98.4

183

18,000

00_4022E***

104

140

194

281

98.4

237

23,300

00_4317E***

88

119

163

234

77.5

152

11,800

00_5528E***

116

157

219

322

123

350

43,100

00_5530E***

138

187

261

338

123

417

51,300

00_6527E***

162

230

300

-

147

540

79,400

00_7228E***

130

173

235

-

137

368

50,400

00_8020E***

103

145

190

-

185

389

72,000

00_8024E***

200

275

370

-

131.4

600

78,840

00_8044E***

91

113

170

-

208

389

80,900

00_114LE***

235

335

445

-

215

1,220

262,000

00_130LE***

254

-

-

-

219

1,080

237,000

00_160LE***

180

-

-

-

273

778

212,000

PART NO

A

B

C

Volume   V

e

(mm

3

)

00_4741B***

mm

in

47.50±0.61

1.870±0.024

41.00±0.51

1.614±0.020

27.51±0.41

1.083±0.016

53,600

00_5030B***

mm

in

50.50±0.51
1.988±0.02

30.30±0.30
1.193±0.12

15.0±0.26

0.591±0.01

23,000

00_5528B***

mm

in

54.86±0.64

2.160±0.025

27.56±0.41

1.085±0.016

20.6±0.39

0.812±0.015

31,200

00_6030B***

mm

in

60.00±0.51
2.362±0.02

30.00±0.25
1.181±0.01

15.0±0.25

0.591±0.01

27,000

00_7020B***

mm

in

70.5±0.51

 2.776±0.020

20.3±0.25

 0.799±0.010

20.0±0.25

0.787±0.010

28,600

00_7030B***

mm

in

70.5±0.5

3.169±0.02

30.3±0.25

1.193±0.02

20.0±0.2

0.787±0.008

42,800

00_8030B***

mm

in

80.49±0.51

3.169±0.020

30.30±0.51

1.193±0.020

20.00±0.21

0.787±0.008

48,800

00_9541B***

mm

in

95.00±0.61

3.740±0.024

41.00±0.51

1.614±0.020

27.51±0.41

1.083±0.016

107,200

For material code see p. 12.    Add permeability code*** to part number, e.g. for 26µ Kool Mµ the complete part number is 00K4022E026.

For material code see p. 12.    Add permeability code*** to part number, e.g. for 26µ Kool Mµ the complete part number is 00K6030B026. 
Standard blocks are available in 26µ. For other permeabilities, contact Magnetics.   Note: Inductance is tested in standard picture frame arrangements.

Blocks

E

F

M

L

A

B

C

D

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

98

Cor

e Data

U Core Data

For material code see p. 12. 
Add permeability code*** to part number, e.g., for 26µ Kool Mµ, the complete part number is 00K6527U026.

  

PART NO

26µ

40µ

60µ

A

L

 nH/T

2

± 8%

90µ

Path Length 

Ie (mm)

Cross Section 

Ae (mm

2

)

Volume 

Ve (mm

3

)

00_3112U***

-

92

111

179

65.6

101

6,630

00_4110U***

-

56

78

109

85.2

80

6,820

00_4111U***

-

72

95

138

85.2

101

8,600

00_4119U***

-

110

151

218

85.2

159

13,600

00_5527U***

67

-

-

-

168

172

28,900

00_5529U***

85

-

-

-

168

244

41,000

00_6527U***

89

-

-

-

219

270

59,100

00_6533U***

82

-

-

-

199

250

49,800

00_7236U***

87

-

-

-

219

290

63,500

00_8020U***

64

-

-

-

273

195

53,200

00_8038U***

97

-

-

-

237

354

83,900

PART NO

A

B

C

D(min)

E(min)

L(nom)

00_3112U***

mm

in

31.24±0.51

1.230±0.020

11.2±0.26

0.440±0.010

12.1±0.39

0.475±0.015

2.54

0.100

14.2

0.560

8.26

0.325

00_4110U***

mm

in

40.64±0.51

1.600±0.020

11.2±0.51

0.440±0.020

9.53±0.39

0.375±0.015

2.54

0.100

23.6

0.930

8.38

0.330

00_4111U***

mm

in

40.64±0.51

1.600±0.020

11.2±0.26

0.440±0.010

12.1±0.39

0.475±0.015

2.54

0.100

23.6

0.930

8.38

0.330

00_4119U***

mm

in

40.64±0.51

1.600±0.020

11.2±0.26

0.440±0.010

19.1±0.39

0.750±0.015

2.54

0.100

23.6

0.930

8.38

0.330

00_5527U***

mm

in

54.86±0.64

2.160±0.025

27.56±0.51

1.085±0.020

16.3±0.39

0.643±0.015

16.7

0.660

33.78
1.330

10.5

0.415

00_5529U***

mm

in

54.86±0.64

2.160±0.025

27.56±0.51

1.085±0.020

23.2±0.39

0.912±0.015

16.5

0.650

33.02
1.300

10.5

0.415

00_6527U***

mm

in

65.15±1.4

2.565±0.053

32.51±0.31

1.280±0.012

27.00±0.41

1.063±0.016

22.1

0.874

44.22
1.741

10.0

0.394

00_6533U***

mm

in

65.15±1.4

2.565±0.053

32.51±0.31

1.280±0.012

20.0±0.41

0.788±0.016

19.6

0.772

39.24
1.545

12.5

0.493

00_7236U***

mm

in

72.39±0.89

2.850±0.035

35.56±0.64

1.400±0.025

20.9±0.39

0.821±0.015

21.3

0.841

43.68
1.720

13.9

0.547

00_8020U***

mm

in

80.01±0.89

3.150±0.035

38.10±0.64

1.500±0.025

19.8±0.39

0.780±0.015

28.14
1.108

59.28
2.334

9.91

0.390

00_8038U***

mm

in

80.01±0.89

3.150±0.035

38.10±0.64

1.500±0.025

23.0±0.39

0.907±0.015

22.4

0.883

49.27
1.940

15.4

0.605

  

E

L

A

B

C

D

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

99

Cor
e Data

MPP THINZ

®

 Core Data

MPP THINZ DC Bias

THINZ are available in four permeabilities, 125µ, 160µ, 200µ, 
and 250µ, but the product is designed to be easily customized 
to any permeability up to 250 . The most critical parameter of 
a power inductor material is its ability to provide inductance, 
or permeability, under DC bias . The distributed air gap of MPP 
results in a soft inductance versus DC bias curve . 

This swinging inductance is often desirable since it maximizes 
power handling for a given package size; improves efficiency; 
accommodates a wide operating range; and provides 
automatic fault or overload protection . 

A

B

C

  

PART NO

A nom

B nom

C nom

A max

B min

C max

00M0301T***

mm 

in

3.05 

0.120

1.78 

0.070

0.81 

0.032

3.18 

0.125

1.70 

0.067

0.89 

0.035

00M0302T***

mm 

in

3.55 

0.140

1.78 

0.070

0.81 

0.032

3.69 

0.145

1.70 

0.067

0.89 

0.035

00M0402T***

mm 

in

3.94 

0.155

2.23 

0.088

0.81 

0.032

4.07 

0.160

2.13 

0.084

0.89 

0.035

00M0502T***

mm 

in

4.60 

0.181

2.36 

0.093

0.81 

0.032

4.73 

0.186

2.26 

0.089

0.89 

0.035

00M0603T***

mm 

in

6.35 

0.250

2.79 

0.110

0.81 

0.032

6.48 

0.255

2.67 

0.105

0.89 

0.035

00M0804T***

mm 

in

7.87 

0.310

3.96 

0.156

0.81 

0.032

8.03 

0.316

3.83 

0.151

0.89 

0.035

Special core heights are available, consult Magnetics.

  

PART NO

125µ

160µ

200µ

A

L

 nH/T

2

± 15%

250µ

Path Length 

Ie (mm)

Cross Section 

Ae (mm

²

)

Volume 

Ve (mm

³

)

00M0301T***

8.4

10.8

13.5

16.9

7.04

0.40

2.8

00M0302T***

11.6

14.8

18.7

23.4

8.06

0.60

4.8

00M0402T***

9.6

12.3

15.4

19.3

9.44

0.58

5.5

00M0502T***

11.7

15.0

18.7

23.4

10.6

0.79

8.3

00M0603T***

14.9

19.1

24.0

30.0

13.6

1.30

17.7

00M0804T***

12.6

16.2

20.2

25.3

17.9

1.45

25.9

Add permeability code*** to part number, e.g., for 125µ the complete part number is 00M0502T125

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

100

E Core Hardware

Magnetics has bobbins available for use with Kool Mµ 
cores . Refer to Magnetics Ferrite Cores catalog for a 
complete listing of available bobbins . The cores are 
standard industry sizes that will fit standard bobbins 
available from many sources . Core pieces can be 

Core Number

Bobbin Number

Number of Pins

Winding Area

Length Per Turn

(mm

2

)

(mm)

1808E

(EI-187)

PCB1808B1

00B180801

8

-

31.6
34.2

40.5
39.4

2510E

(E-2425)

PCB2510V1
PCB2510V2

00B251001

10
10

-

40.6
20.3

51

54.2
54.2
45.4

3007E

(DIN 30/7)

PCB3007T1

10

83.3

55

3515E

(EI-375)

PCB3515M1
PCB3515M2
00B351501

12
12

-

94.8
47.4

113

73.4
73.4

72

4020E

(DIN 42/15)

PCB4020N1

00B402021

12

-

194
207

91.4
97.5

4022E

(DIN 42/20)

PCB4022N1

12

194

102.1

4317E

(EI-21)

PCB4317M1
00B4317B1

12

-

101
122

85.6

86

5528E

(DIN55/25)

PCB5528WC
00B5528B1

14

-

302
302

107.3
107.3

5530E

PCB5530FA

14

289

133.8

6527E

(Metric E65)

00B6527B1
00B652701

-
-

490
440

166
168

7228E

(F11)

00B722801

-

408

149

8020E

(Metric E80)

00B8020B1

-

806

165

114LE

OOB114LB1

-

945

230

assembled by bonding the mating surfaces or taping 
around the perimeter of the core set . Caution is advised if 
metal clamps are considered, since eddy current heating 
can occur in conductive material that is very close to the 
surface of low permeability powder core material .

Har

dwar

e

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

101

Har
dwar

e

Toroid Hardware

TVH22064A

TVB3610FA

TVB2908TA

TVB22066A

For use with toroids from  
12 .7 mm through 25 .4 mm

For use with toroids from  
28 .6 mm through 38 .1 mm

For use with toroids from  
20 .5 mm through 31 .8 mm

For use with toroids from 
12 .7 mm through 22 .2 mm

Material

4 Pins

A

Nom.

B

Nom.

C

Nom.

E

Ref.

F

Typ.

G

Typ.

H

Ref.

J

Ref.

Nylon 6/6

rated UL94V0

CP wire 

1.02 mm

19.1 mm

3.94 mm

10.8 mm

9.78 mm

6.35 mm

15.2 mm

3.30 mm

3.81 mm

Material 14 Pins

A

Nom.

B

Nom.

C

Nom.

D

Nom.

E

Ref.

F

Typ.

G

1

Typ.

G

2

Typ.

H

Ref.

J

Ref.

Phenolic

rated UL94V0

CP wire 

0.99 mm

35.8 mm

7.59 mm

20.8 mm

5.00 mm

12.3 mm

16.0 mm

5.00 mm

6.30 mm

4.5 mm

9.75 mm

Material 10 Pins

A

Nom.

B

Nom.

C

Nom.

D

Nom.

E

Ref.

F

Typ.

G

Typ.

H

Ref.

J

Ref.

Phenolic

rated UL94V0

CP wire 

0.99 mm

27.0 mm

7.49 mm

19.0 mm

5.00 mm

11.0 mm

15.0 mm

5.00 mm

3.51 mm

8.13 mm

Material

6 Pins

A

Nom.

B

Nom.

C

Nom.

D

Nom.

E

Ref.

F

Typ.

G

Typ.

H

Ref.

J

Ref.

Phenolic

rated UL94V0

CP wire 

0.99 mm

19.0 mm

5.44 mm

10.8 mm

3.51 mm

4.80 mm

6.00 mm

7.49 mm

2.01 mm

5.49 mm

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

102

Toroid Hardware

Har

dwar

e

For use with toroids  
from  44 .4 mm  
through 71 .1 mm 

For use with toroids  
from 38 .1 mm  
through 63 .5 mm  

For use with toroids 
from 25 .4 mm (1 .000”) 
through 40 .6 mm

For use with toroids 
from 20 .5 mm (0 .810”) 
through 30 .5 mm

Material

4 Pins

A

Nom.

B

Nom.

C

Nom.

E

Ref.

F

Typ.

G

Typ.

H

Ref.

J

Ref.

Nylon 6/6

rated UL94V0

CP wire

1.27 mm

43.2 mm

5.08 mm

27.9 mm

25.7 mm

22.9 mm

38.1 mm

2.29 mm

5.08 mm

Material

4 Pins

A

Nom.

B

Nom.

C

Nom.

E

Ref.

F

Typ.

G

Typ.

H

Ref.

J

Ref.

Nylon 6/6

rated UL94V0

CP wire

1.27 mm

35.6 mm

5.08 mm

22.9 mm

20.6 mm

17.8 mm

30.5 mm

2.29 mm

5.08 mm

Material

4 Pins

A

Nom.

B

Nom.

C

Nom.

E

Ref.

F

Typ.

G

Typ.

H

Ref.

J

Ref.

Nylon 6/6

rated UL94V0

CP wire

1.27 mm

27.9 mm

5.08 mm

20.3 mm

18.0 mm

15.2 mm

22.9 mm

2.29 mm

5.08 mm

Material

4 Pins

A

Nom.

B

Nom.

C

Nom.

E

Ref.

F

Typ.

G

Typ.

H

Ref.

J

Ref.

Nylon 6/6

rated UL94V0

CP wire

1.21 mm

25.4 mm

5.08 mm

15.2 mm

13.0 mm

10.2 mm

20.3 mm

2.29 mm

5.08 mm

TVH61134A

TVH49164A

TVH38134A

TVH25074A

 

TV-H4916-4A

    

Usable with toroids from 1.500" (38.1m m) through 2.500" (63.5mm). 

 

 

Top View

Material

Nylon,

rated UL94V0

4 Pins

0.050"

CP wire

A

Nom.

1.400"

35.6mm

B

Nom.

0.200"

5.1mm

C

Nom.

0.900"

22.9mm

E

Ref.

0.810"

20.6mm

F

Typ.

0.700"

17.8mm

G

Typ.

1.200"

30.5mm

H

Typ.

0.090"

2.3mm

J

Typ.

0.200"

5.1mm

B

J

C

E

F

A

G

H

 

 

TV-H4916-4A

    

Usable with toroids from 1.500" (38.1m m) through 2.500" (63.5mm). 

 

 

Top View

Material

Nylon,

rated UL94V0

4 Pins

0.050"

CP wire

A

Nom.

1.400"

35.6mm

B

Nom.

0.200"

5.1mm

C

Nom.

0.900"

22.9mm

E

Ref.

0.810"

20.6mm

F

Typ.

0.700"

17.8mm

G

Typ.

1.200"

30.5mm

H

Typ.

0.090"

2.3mm

J

Typ.

0.200"

5.1mm

B

J

C

E

F

A

G

H

 

 

TV-H4916-4A

    

Usable with toroids from 1.500" (38.1m m) through 2.500" (63.5mm). 

 

 

Top View

Material

Nylon,

rated UL94V0

4 Pins

0.050"

CP wire

A

Nom.

1.400"

35.6mm

B

Nom.

0.200"

5.1mm

C

Nom.

0.900"

22.9mm

E

Ref.

0.810"

20.6mm

F

Typ.

0.700"

17.8mm

G

Typ.

1.200"

30.5mm

H

Typ.

0.090"

2.3mm

J

Typ.

0.200"

5.1mm

B

J

C

E

F

A

G

H

 

 

TV-H4916-4A

    

Usable with toroids from 1.500" (38.1m m) through 2.500" (63.5mm). 

 

 

Top View

Material

Nylon,

rated UL94V0

4 Pins

0.050"

CP wire

A

Nom.

1.400"

35.6mm

B

Nom.

0.200"

5.1mm

C

Nom.

0.900"

22.9mm

E

Ref.

0.810"

20.6mm

F

Typ.

0.700"

17.8mm

G

Typ.

1.200"

30.5mm

H

Typ.

0.090"

2.3mm

J

Typ.

0.200"

5.1mm

B

J

C

E

F

A

G

H

 

 

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

103

Winding T

ables

Winding Tables

6 .60 mm OD (270 size)

4 .65 mm OD (180 size)

6 .60 mm OD (240 size)

3 .94 mm OD (150 size)

6 .35 mm OD (020 size)

3 .56 mm OD (140 size)

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

26

11

0.0266

27

13

0.0390

28

15

0.0566

29

17

0.0790

30

19

0.112

31

22

0.163

32

25

0.228

33

28

0.322

34

32

0.474

35

36

0.658

36

41

0.936

37

45

1.26

38

51

1.81

39

58

2.68

40

67

3.92

41

75

5.37

42

85

7.61

43

95

11.0

44

103

14.4

45

121

21.8

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

27

11

0.0212

28

12

0.0289

29

14

0.0414

30

16

0.0597

31

18

0.0838

32

20

0.114

33

23

0.165

34

27

0.249

35

31

0.352

36

34

0.481

37

38

0.661

38

43

0.942

39

50

1.42

40

57

2.05

41

64

2.82

42

73

4.01

43

81

5.73

44

88

7.52

45

103

11.3

46

113

15.6

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

26

11

0.0196

27

13

0.0287

28

15

0.0414

29

17

0.0577

30

19

0.0815

31

22

0.118

32

25

0.165

33

28

0.233

34

32

0.342

35

36

0.473

36

41

0.672

37

45

0.907

38

51

1.30

39

58

1.92

40

67

2.80

41

75

3.84

42

85

5.43

43

95

7.82

44

103

10.3

45

121

15.5

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

28

11

0.0251

29

13

0.0364

30

15

0.0529

31

17

0.0749

32

19

0.103

33

22

0.149

34

25

0.218

35

28

0.300

36

32

0.427

37

35

0.574

38

40

0.826

39

46

1.23

40

53

1.80

41

59

2.44

42

68

3.52

43

76

5.06

44

82

6.60

45

96

9.93

46

105

13.6

47

117

19.1

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

26

12

0.0216

27

14

0.0312

28

16

0.0446

29

18

0.0617

30

21

0.0910

31

23

0.125

32

26

0.173

33

30

0.252

34

34

0.367

35

39

0.518

36

44

0.729

37

48

0.977

38

54

1.39

39

62

2.07

40

71

3.00

41

80

4.13

42

91

5.87

43

101

8.40

44

110

11.1

45

128

16.6

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

30

10

0.0286

31

11

0.0392

32

13

0.0567

33

15

0.0821

34

17

0.119

35

20

0.172

36

23

0.246

37

25

0.328

38

28

0.461

39

33

0.704

40

38

1.03

41

43

1.42

42

49

2.01

43

55

2.91

44

59

3.76

45

69

5.65

46

76

7.80

47

85

11.0

48

98

16.0

49

109

22.2

9 .65 mm OD (280 size)

7 .87 mm OD (030 size)

6 .86 mm OD (410 size)

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

20

12

0.00684

21

13

0.00914

22

15

0.0131

23

18

0.0194

24

20

0.0268

25

23

0.0383

26

26

0.0541

27

29

0.0747

28

33

0.107

29

37

0.147

30

42

0.212

31

47

0.297

32

52

0.404

33

58

0.568

34

67

0.844

35

75

1.17

36

84

1.63

37

92

2.19

38

104

3.13

39

119

4.66

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

22

12

0.00988

23

14

0.0142

24

16

0.0201

25

18

0.0281

26

20

0.0390

27

23

0.0556

28

26

0.0787

29

29

0.108

30

33

0.156

31

37

0.218

32

41

0.298

33

47

0.430

34

53

0.623

35

60

0.870

36

67

1.21

37

74

1.65

38

83

2.33

39

96

3.50

40

109

5.04

41

122

6.90

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

22

12

0.0116

23

14

0.0168

24

16

0.0239

25

18

0.0334

26

20

0.0465

27

23

0.0663

28

26

0.0942

29

29

0.129

30

33

0.187

31

37

0.262

32

41

0.358

33

47

0.518

34

53

0.752

35

60

1.05

36

67

1.47

37

74

1.99

38

83

2.82

39

96

4.24

40

109

6.11

41

122

8.37

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

104

Winding T

ables

Winding Tables

23 .6 mm OD (350 size)

17 .3 mm OD (380 size)

22 .9 mm OD (310 size)

16 .5 mm OD (120 size)

20 .3 mm OD (206 size)

12 .7 mm OD (050 size)

9 .65 mm OD (290 size)

11 .2 mm OD (130 size)

10 .2 mm OD (040 size)

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

9

11

0.00120

10

13

0.00173

11

15

0.00244

12

17

0.00340

13

19

0.00467

14

22

0.00668

15

25

0.00938

16

28

0.0130

17

32

0.0184

18

36

0.0258

19

41

0.0365

20

46

0.0510

21

51

0.0705

22

58

0.101

23

65

0.140

24

73

0.197

25

82

0.277

26

92

0.392

27

102

0.542

28

115

0.770

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

13

11

0.00223

14

13

0.00324

15

15

0.00460

16

17

0.00644

17

20

0.00933

18

22

0.0127

19

25

0.0179

20

29

0.0258

21

32

0.0354

22

37

0.0512

23

41

0.0704

24

46

0.099

25

52

0.139

26

59

0.199

27

66

0.277

28

74

0.391

29

82

0.535

30

92

0.764

31

102

1.06

32

114

1.47

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

10

12

0.00148

11

14

0.00212

12

16

0.00296

13

18

0.00409

14

21

0.00589

15

24

0.00830

16

27

0.0116

17

31

0.0164

18

35

0.0230

19

39

0.0319

20

44

0.0446

21

50

0.0632

22

56

0.0888

23

63

0.124

24

70

0.173

25

79

0.244

26

89

0.345

27

99

0.479

28

111

0.677

29

123

0.927

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

13

12

0.00234

14

14

0.00336

15

16

0.00471

16

18

0.00654

17

21

0.00940

18

24

0.0133

19

27

0.0185

20

30

0.0255

21

34

0.0359

22

39

0.0516

23

44

0.0722

24

49

0.101

25

56

0.143

26

63

0.203

27

70

0.280

28

78

0.393

29

87

0.542

30

98

0.775

31

108

1.07

32

121

1.48

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

11

12

0.00163

12

14

0.00232

13

16

0.00324

14

18

0.00449

15

21

0.00644

16

24

0.00909

17

27

0.0126

18

31

0.0179

19

35

0.0251

20

39

0.0347

21

45

0.0498

22

50

0.0692

23

56

0.0962

24

63

0.135

25

71

0.191

26

80

0.270

27

89

0.374

28

100

0.529

29

111

0.725

30

125

1.04

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

16

12

0.00364

17

14

0.00520

18

16

0.00733

19

19

0.0107

20

21

0.0147

21

24

0.0207

22

28

0.0302

23

31

0.0413

24

35

0.0582

25

40

0.0829

26

45

0.117

27

50

0.161

28

56

0.227

29

63

0.315

30

71

0.451

31

79

0.629

32

87

0.854

33

98

1.21

34

112

1.79

35

125

2.46

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

16

10

0.00272

17

11

0.00366

18

13

0.00532

19

15

0.00756

20

17

0.0106

21

20

0.0153

22

23

0.0220

23

25

0.0295

24

29

0.0426

25

33

0.0602

26

37

0.0845

27

41

0.116

28

46

0.164

29

52

0.228

30

59

0.328

31

65

0.453

32

72

0.618

33

81

0.877

34

93

1.30

35

104

1.79

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

20

13

0.00818

21

15

0.0117

22

17

0.0165

23

19

0.0227

24

22

0.0328

25

25

0.0463

26

28

0.0650

27

31

0.0893

28

36

0.130

29

40

0.178

30

45

0.254

31

50

0.354

32

56

0.488

33

63

0.693

34

72

1.02

35

81

1.42

36

91

1.99

37

99

2.66

38

112

3.80

39

128

5.65

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

20

12

0.00747

21

13

0.0100

22

15

0.0144

23

18

0.0213

24

20

0.0295

25

23

0.0421

26

26

0.0596

27

29

0.0825

28

33

0.118

29

37

0.163

30

42

0.234

31

47

0.328

32

52

0.448

33

58

0.630

34

67

0.937

35

75

1.29

36

84

1.81

37

92

2.44

38

104

3.48

39

119

5.18

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

105

Winding T

ables

Winding Tables

35 .8 mm OD (324 size)

39 .9 mm OD (254 size)

46 .7 mm OD (438 size)

34 .3 mm OD (585 size)

33 .0 mm OD (548 size)

26 .9 mm OD (930 size)

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

18

0.00280

9

21

0.00405

10

24

0.00573

11

27

0.00801

12

31

0.0114

13

35

0.0160

14

39

0.0223

15

44

0.0314

16

50

0.0446

17

56

0.0622

18

63

0.0878

19

71

0.124

20

80

0.175

21

90

0.246

22

101

0.349

23

112

0.483

24

126

0.683

25

141

0.961

26

158

1.36

27

175

1.88

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

17

0.00160

9

20

0.00229

10

23

0.00323

11

26

0.00449

12

30

0.00636

13

34

0.00887

14

38

0.0123

15

43

0.0172

16

48

0.0238

17

54

0.0332

18

61

0.0467

19

69

0.0657

20

77

0.0913

21

87

0.1287

22

98

0.1821

23

109

0.2519

24

122

0.354

25

137

0.497

26

153

0.699

27

170

0.969

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

18

0.00229

9

21

0.00329

10

24

0.00464

11

27

0.00646

12

31

0.00917

13

35

0.0128

14

39

0.0178

15

44

0.0250

16

50

0.0354

17

56

0.0493

18

63

0.0695

19

71

0.0978

20

80

0.138

21

90

0.194

22

101

0.274

23

112

0.379

24

126

0.536

25

141

0.753

26

158

1.06

27

175

1.47

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

16

0.00169

9

19

0.00246

10

22

0.00351

11

25

0.00491

12

28

0.00677

13

32

0.00955

14

36

0.0133

15

41

0.0188

16

46

0.0263

17

52

0.0369

18

58

0.0514

19

65

0.0718

20

73

0.1

21

82

0.141

22

93

0.201

23

103

0.277

24

116

0.392

25

130

0.551

26

146

0.78

27

162

1.08

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

14

0.00147

9

17

0.00218

10

19

0.00299

11

22

0.00427

12

25

0.00598

13

28

0.00826

14

32

0.0117

15

36

0.0163

16

41

0.0232

17

46

0.0322

18

52

0.0455

19

58

0.0632

20

65

0.0883

21

74

0.126

22

83

0.177

23

92

0.245

24

103

0.344

25

116

0.485

26

131

0.691

27

145

0.954

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

9

11

0.00141

10

13

0.00205

11

15

0.00292

12

17

0.00407

13

20

0.00592

14

22

0.00808

15

25

0.0114

16

29

0.0164

17

33

0.0232

18

37

0.0324

19

42

0.0459

20

47

0.0640

21

53

0.0902

22

60

0.128

23

66

0.176

24

75

0.251

25

84

0.352

26

94

0.497

27

105

0.693

28

117

0.975

50 .8 mm OD (715 size)

46 .7 mm OD (089 size)

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

25

0.00324

9

29

0.00463

10

33

0.00651

11

37

0.00904

12

42

0.0127

13

47

0.0176

14

53

0.0247

15

60

0.0348

16

67

0.0486

17

76

0.0685

18

85

0.0959

19

95

0.134

20

107

0.189

21

120

0.265

22

135

0.375

23

150

0.520

24

168

0.732

25

189

1.03

26

211

1.46

27

234

2.02

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

22

0.00296

9

26

0.00432

10

29

0.00596

11

33

0.00840

12

38

0.0120

13

42

0.0164

14

47

0.0229

15

54

0.0327

16

60

0.0455

17

68

0.0641

18

76

0.0897

19

86

0.127

20

96

0.177

21

108

0.249

22

121

0.352

23

135

0.490

24

151

0.690

25

170

0.975

26

190

1.37

27

211

1.91

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

19

0.0033

9

22

0.0047

10

25

0.0067

11

28

0.0093

12

32

0.0132

13

36

0.0185

14

40

0.026

15

46

0.037

16

51

0.051

17

58

0.073

18

65

0.102

19

73

0.144

20

82

0.202

21

92

0.28

22

104

0.41

23

116

0.57

24

130

0.80

25

146

1.13

26

163

1.59

27

181

2.21

50 .5 mm OD (725 size)

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

106

Winding T

ables

57 .2 mm OD (195 size)

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

20

0.00322

9

23

0.00458

10

26

0.00642

11

30

0.00921

12

34

0.0130

13

39

0.0185

14

43

0.0254

15

49

0.0362

16

55

0.0508

17

62

0.0714

18

70

0.101

19

78

0.141

20

88

0.199

21

99

0.281

22

111

0.398

23

124

0.555

24

138

0.777

25

156

1.10

26

174

1.56

27

193

2.16

57 .2 mm OD (109 size)

77 .8 mm OD (778 size)

68 .0 mm OD (070 size)

62 .0 mm OD (620 size)

77 .8 mm OD (866 size)

74 .1 mm OD (740 size)

77 .8 mm OD (906 size)

101 .6 mm OD (102 size)

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

41

0.00660

9

47

0.00937

10

53

0.0131

11

60

0.0184

12

67

0.0256

13

76

0.0361

14

85

0.0504

15

95

0.0703

16

107

0.0991

17

120

0.139

18

135

0.195

19

151

0.274

20

169

0.383

21

189

0.538

22

212

0.761

23

236

1.06

24

264

1.49

25

296

2.10

26

331

2.96

27

367

4.11

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

6

38

0.00489

7

43

0.00682

8

49

0.00965

9

55

0.0135

10

62

0.0189

11

70

0.0266

12

79

0.0373

13

89

0.0524

14

99

0.0730

15

112

0.103

16

125

0.145

17

140

0.202

18

157

0.285

19

176

0.400

20

197

0.561

21

221

0.790

22

248

1.12

23

275

1.55

24

308

2.19

25

345

3.09

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

41

0.00607

9

47

0.00860

10

53

0.0120

11

60

0.0169

12

67

0.0234

13

76

0.0329

14

85

0.0459

15

95

0.0640

16

107

0.0901

17

120

0.126

18

135

0.178

19

151

0.248

20

169

0.348

21

189

0.487

22

212

0.689

23

236

0.958

24

264

1.35

25

296

1.90

26

331

2.68

27

367

3.72

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

6

29

0.00450

7

33

0.00632

8

38

0.00907

9

43

0.0128

10

49

0.0182

11

55

0.0255

12

62

0.0358

13

70

0.0505

14

78

0.0706

15

88

0.0997

16

98

0.139

17

110

0.196

18

124

0.277

19

139

0.390

20

155

0.546

21

174

0.769

22

195

1.09

23

217

1.52

24

243

2.14

25

273

3.03

 

Ω

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

29

0.00397

9

33

0.00558

10

37

0.00773

11

42

0.0109

12

48

0.0154

13

54

0.0215

14

60

0.0297

15

68

0.0420

16

76

0.0586

17

85

0.0816

18

96

0.115

19

108

0.162

20

120

0.225

21

135

0.318

22

152

0.451

23

169

0.625

24

189

0.880

25

212

1.24

26

238

1.76

27

263

2.43

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

8

32

0.0071

9

37

0.0102

10

41

0.0141

11

47

0.0202

12

53

0.0284

13

60

0.0401

14

67

0.056

15

75

0.079

16

84

0.111

17

95

0.156

18

106

0.219

19

119

0.309

20

133

0.432

21

150

0.61

22

168

0.87

23

187

1.21

24

209

1.70

25

235

2.40

26

263

3.40

27

291

4.71

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

6

22

0.0027

7

25

0.0038

8

29

0.0054

9

33

0.0077

10

37

0.0107

11

42

0.0151

12

48

0.022

13

54

0.030

14

60

0.042

15

68

0.059

16

76

0.083

17

85

0.116

18

96

0.165

19

108

0.23

20

120

0.32

21

135

0.46

22

152

0.65

23

169

0.90

24

189

1.27

25

212

1.79

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

6

20

0.00260

7

23

0.00368

8

26

0.00517

9

30

0.00741

10

34

0.0104

11

38

0.0146

12

43

0.0205

13

49

0.0291

14

54

0.0402

15

61

0.0568

16

69

0.0805

17

78

0.114

18

87

0.159

19

98

0.225

20

110

0.316

21

123

0.444

22

138

0.629

23

154

0.878

24

172

1.24

25

194

1.75

Winding Tables

2017-Magnetics-Powder-Core-Catalog-html.html
background image

www.mag-inc.com

107

Winding T

ables

Winding Tables

132 .6 mm OD (337 size)

165 .1 mm OD (165 size)

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

6

72

0.0139

7

81

0.0193

8

91

0.0272

9

103

0.0384

10

115

0.0536

11

130

0.0759

12

145

0.106

13

163

0.149

14

182

0.209

15

204

0.293

16

228

0.412

17

256

0.579

18

286

0.814

19

320

1.14

20

358

1.61

21

401

2.26

22

449

3.21

23

499

4.46

24

558

6.29

25

625

8.86

AWG 

Wire Size

Single Layer Turns

Single Layer R

DC 

(Ohms, 

Ω

)

6

54

0.00890

7

61

0.0124

8

69

0.0175

9

78

0.0247

10

87

0.0344

11

99

0.0489

12

111

0.0685

13

124

0.0956

14

138

0.133

15

155

0.188

16

174

0.265

17

195

0.371

18

218

0.522

19

244

0.733

20

273

1.03

21

306

1.45

22

343

2.05

23

381

2.85

24

426

4.02

25

478

5.68

2017-Magnetics-Powder-Core-Catalog-html.html
background image

MAGNETICS

108

Other Products from Magnetics

Ferrites

Magnetics’ ferrite cores are manufactured for a wide 
variety of applications .  Magnetics produces the leading 
MnZn ferrite materials for power transformers, power 
inductors, wideband transformers, common mode chokes, 
and many other applications .  In addition to offering 
the leading materials, other advantages of ferrites from 
Magnetics include the full range of standard planar E, ER, 
and I cores; the widest range of toroid sizes in power and 
high permeability materials; standard gapping to precise 
inductance or mechanical dimension; a wide range of 
available coil formers and assembly hardware; and superior 
toroid coatings available in several options .

Power Materials

Five low loss materials are engineered for optimum 
frequency and temperature performance in power 
applications .  Magnetics’ R, P, F, L, and T materials provide 
superior saturation, high temperature performance, low 
losses and product consistency .

Shapes: E cores, Planar E cores, ER cores, ETD, EC, U 
cores, I cores, PQ, Planar PQ, RM, Toroids, Pot cores, RS 
(round-slab), DS (double slab), EP, Special Shapes .

Applications: Telecom power supplies, computer power 
supplies, commercial power supplies, consumer power 
supplies, automotive, DC-DC converters, telecom data 
interfaces, impedance matching transformers, handheld 
devices, high power control (gate drive), computer servers, 
distributed power (DC-DC), EMI filters, aerospace, and 
medical .

High Permeability Materials

Three high permeability materials (5,000µ J material, 
10,000µ W material, and 15,000µ M material) are 
engineered for optimum frequency and impedance 
performance in signal, choke and filter applications .  These 
Magnetics materials provide superior loss factor, frequency 
response, temperature performance, and product 
consistency .

Shapes: Toroids, E cores, U cores, RM, Pot cores, RS 
(round-slab), DS (double slab), EP, Special Shapes .

Applications: common mode chokes, EMI filters, other 
filters, pulse transformers, current transformers, broadband 
transformers, current sensors, telecom data interfaces, 
impedance matching interfaces, handheld devices, spike 
suppression, and gate drive transformers .

Tape Wound Cores 

Magnetics strip wound cores are made from high 
permeability magnetic strip alloys of nickel-iron (80% 
or 50% nickel), and silicon-iron . The alloys are know 
as Orthonol

®

, Permalloy 80, 48 Alloy and Magnesil

®

 . 

Tape Wound Cores are produced as small as 0 .438” 
OD in hundreds of sizes . For a wide range of frequency 
applications, materials are produced in thicknesses 
from 1/2 mil (0 .013 mm) through 4 mils (0 .102 mm) . 
Cases are robust nylon and aluminum boxes, rated for 
200°C continuous operation and 2,000 minimum voltage 
breakdown .

Applications: aerospace applications, radar installations, jet 
engine controls, power supplies, current transformers and 
other high reliability applications .

Bobbin Cores

 

Magnetics bobbin cores are miniature tape cores made 
from ultra-thin (0 .000125” to 0 .001” thick) strip material 
wound on nonmagnetic stainless steel bobbins . Bobbin 
Cores are generally manufactured from Permalloy 80 and 
Orthonol

®

 . Covered with protective caps and then epoxy 

coated, Bobbin Cores can be made as small as 0 .05” 
ID and with strip widths down to 0 .032” . Bobbin Cores 
can switch from positive to negative saturation in a few 
microseconds or less, making them ideal for analog logic 
elements, magnetometers, and pulse transformers .

Applications:  high frequency magnetic amplifiers, flux gate 
magnetometers, harmonic generators, oscillators, pulse 
transformers, current transformers, analog counters and 
timers and inverters .

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Visit

 

www.mag-inc.com

Design

 with Magnetics Cores

From novice to experienced designers, our informative website has 
all the tools you need get your design started.

Design Software for Inductors, Common Mode Filters, 
Current Transformers and MagAmps
Competitor Part Number Cross Reference
Technical Documents
Core Selection Guide

Find

 Magnetics Cores

 

Whether you need a specific part number or are looking for ways to 
narrow your core search, our multiple search functions can guide 
you in the right direction.

Part Number Search
Parametric Search (by material, size, shape, inductance)
Competitor Part Number Cross Reference
Distributor Stock Check

Buy 

Magnetics Cores

The easiest way to get Magnetics cores is to request a MyMagnetics 
account.  MyMagnetics is your secure gateway to managing your 
customer account online.

Pricing and Availability
Place New Orders
Review Existing Orders
Track Orders
View Invoices
Sample Request  

2017-Magnetics-Powder-Core-Catalog-html.html
background image

Headquarters

110 Delta Drive

P.O. Box 11422 

Pittsburgh, PA 15238 • USA

Phone: 

1.800.245.3984

+1.412.696.1333

e-mail: 

magnetics@spang.com

Magnetics International

13/F 1-3 Chatham Road South

Tsim Sha Tsui

Kowloon, Hong Kong

Phone: 

+852.3102.9337

+86.139.1147.1417

e-mail: 

asiasales@spang.com

www.mag-inc.com

©2017 Magnetics