background image

Reed Technology

standexelectronics.com

3

LEADING BRANDS

Datenbuch-Reed-Technology-EN-2022-html.html
background image
Datenbuch-Reed-Technology-EN-2022-html.html
background image

1

standexelectronics.com

Content

Reed Switch Characteristics

 

Reed Switch Operational Characteristics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7

 

The Basic Reed Switch .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  8

 

Basic Electrical Parameters of Reed Switch Products   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  10

 

How Reed Switches are used with a Permanent Magnet .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18

 

Reed Sensors vs . Hall Effect Sensors   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  25

 

Reed Switches vs . Mechanical Switches   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  28

About Magnets

 

Magnets and their Specifications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29

 

Handling Information for Magnets .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  34

 Magnetization   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  35

Precautions

 

Handling and Load Precautions when using Reed Switches in various Sensor and Relay Applications  .  .  37

 

Contact Protection – Load Switching and Contact Protection .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  41

 

Contact Protection – Protection Circuitry   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  43

Ampere-Turns (AT) versus Millitesla (mT)

 

A Comparison of Ampere-Turns (AT) and Millitesla (mT)   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  45

Application Examples

 

Applications for Reed Switches and Reed Sensors   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  51

 

Automotive and Transportation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  53

 

Marine and Boat   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  56

 

Smart Home   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  57

 

Security and Safety .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  60

 Medical   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  61

 

Test and Measurement   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  62

 Telecommunication  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  63

 

Additional Solutions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  64

Reed Relays

 

The Reed Switch used as a Reed Relay   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  65

 

Reed Relay Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  66

 

Reducing Magnetic Interaction in Reed Relay Applications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  67

 

Reed Relay in Comparison with Solid-State and Mechanical Relay .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  73

 

7 GHz RF Reed Relay – Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  74

 

Applications Notes for RF-Relay Measurement in both the Frequency and Time Domain .  .  .  .  .  .  .  .  .  .  .  .  76

Life Test Data 

 

Life Requirements .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  85

Activate Distance

  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  86

Glossary

   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  90

Datenbuch-Reed-Technology-EN-2022-html.html
background image

2

standexelectronics.com

PRODUCT SOLUTIONS .

AS DIVERSE AS 

THE MARKETS 

WE SERVE .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

3

standexelectronics.com

•  Industrial / Power

•  Lighting

•  Medical

•  Measuring & Control 

Technology

•  Metering

•  Military

•  Off Highway

•  Pool / Spa

•  Recreational

•  Security / Safety

•  Space

•  Test & Measurement

•  Utilities /  Smart  Grid

•  Aerospace

•  Alternative Energy

•  Automatization

•  Automotive /   

Transportation

•  Communication 

Technology

•  Fluid Flow

•  Food Service

•  General Industrial

•  Heavy Duty Truck

•  Household / Appliances

•  HVAC/R

•  Hydraulics and  

pneumatic atuators

MARKETS WE SERVE

We offer engineered product solutions for a broad spec-

trum of product applications in all major markets, inclu-

ding but not limited to:

OUR COMPANY

Standex Electronics is a worldwide market leader in the 

design, development and manufacture of standard and 

custom electro-magnetic components, including mag-

netics products and reed switch-based solutions .

Our magnetic offerings include planar, Rogowski, 

 

current, and low- and high-frequency transformers and 

inductors . Our reed switch-based solutions include 

 

KENT, MEDER and KOFU brand reed switches, as 

well as a complete portfolio of reed relays, and a com-

prehensive array of fluid level, proximity, motion, water 

flow, HVAC condensate, hydraulic pressure differential, 

capacitive, conductive and inductive sensors .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

4

standexelectronics.com

COMMITMENT & EXPERTISE

Standex Electronics has a commitment to absolute cus-

tomer satisfaction and customer-driven innovation, with 

a global organization that offers premier sales support, 

engineering capabilities, and technical resources world-

wide .  

Headquartered in Cincinnati, Ohio, USA, Standex Elec-

tronics has eight manufacturing facilities in six countries, 

located in the United States, Germany, China, Mexico, 

the United Kingdom, and Japan

MANUFACTURING

•  Auto AT Switch Sorting
•  Bobbin and Toroidal Winding
•  Auto Termination

•  Coil Molding & Packaging
•  Insert and Thermoset Molding
•  Low Pressure Molding (Hot Melt)
•  Pick & Place – Vision & Camera System
•  Plasma Surface Treatment 
•  Plastic Injection Molding
•  Potting - 2 Component
•  Progressive Stamping
•  Reflow Oven – Multiple Zone Convection
•  Reed Switch Manufacturing 
•  Reed Relay Design and Manufacturing - SMD,  

Low Thermal, High Insulation, High Voltage, High 

Frequency, Latching and Atex

•  Selective Soldering
•  Sensor Packaging 

CUSTOMER DRIVEN INNOVATION .  
PREMIER WORLDWIDE 
CAPABILITIES .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

5

standexelectronics.com

•  Stainless Steel Fabrication and Precise Laser Welding
•  Transformer Design And Manufacturing
•  Wave Soldering

ENGINEERING

•  Electronic sensor engineering
•  Circuit Design and  PCB Layout
•  Patented Conductivity Sensors
•  Patented Inductive Sensors
•  3-D CAD Modeling
•  3-D Magnetic Sensor Mapping
•  EMS Software
•  PCB Prototyper
•  Quick Turn Samples 
•  3-D Printing

TESTING & TOOLING

•  Automated Assembly and Test Systems
•  Environmental and Durability Testing
•  Life Testing
•  Network Analyzers

•  Fluxmeters
•  Nanovoltmeters
•  Picoammeters
•  Destructive Pull Testers
•  Gauss / Teslameters

QUALITY/ LAB CAPABILITIES

•  Certifications: AS9100, ITAR, ISO9000, TS16949
•  SPC Data Collection
•  Fully Equipped Certified Test Labs
•  Burn-in and Life Testing 
•  Complete, In-House Machine Shop
•  Corona Discharge Testing Capabilities
•  Microscopic  Investigation / DPA
•  Moisture Resistance and Seal Testing
•  Radiographic 
•  Salt Fog and Solderability 
•  Scott T Angular Accuracy
•  Terminal Strength
•  Thermal Cycling
•  Mechanical and Thermal Shock, Temperature  

Rise and Vibration

Datenbuch-Reed-Technology-EN-2022-html.html
background image

6

standexelectronics.com

Notes

Datenbuch-Reed-Technology-EN-2022-html.html
background image

7

standexelectronics.com

Reed Switch Characteristics

Reed Switch Operational Characteristics

The Reed Switch was first invented by Bell Labs in the 

late 1930s . However, it was not until the 1940s when it 

began to find application widely as a sensor and a Reed 

Relay . Here it was used in an assortment of stepping/

switching applications, early electronic equipment and 

test equipment . In the late 1940s Western Electric be-

gan using Reed Relays in their central office telephone 

switching stations, where they are still used in some 

areas today . The Reed Switch greatly contributed to the 

development of telecommunications technology . Over the 

years several manufacturers have come and gone, some 

staying longer than they should have, tainting the market-

place with poor quality, and poor reliability . However, most 

of the manufacturers of Reed Switches today produce 

very high quality and very reliable switches . This has 

given rise to unprecedented growth . Today Reed Switch 

technology is used in all market segments including: test 

and measurement equipment, medical electronics, Tele-

com, automotive, security, appliances, general purpose, 

etc . Its growth rate is stronger than ever, where the world 

output cannot stay abreast with demand . As a technology, 

the Reed Switch is unique . Being hermetically sealed, 

it can exist or be used in almost any environment . Very 

simple in its structure, it crosses many technologies in 

its manufacture . Critical to its quality and reliability is its 

glass to metal hermetic seal, where the glass and metal 

used must have exact linear thermal coefficients of ex-

pansion . Otherwise, cracking and poor seals will result . 

Whether sputtered or plated, the process of applying the 

contact material, usually Rhodium or Ruthenium, must be 

carried out precisely in ultra clean environments similar 

to semiconductor technology . Like semiconductors, any 

foreign particles present in the manufacture will give rise 

to losses, quality and reliability problems . 

To meet our customer’s needs, Standex Electronics de-

cided to build up their own assembly line . Reed Switches 

are produced since 1968 in England and since 2001 in 

Germany .

Over the years, the Reed Switch has shrunk in size 

from approximately 50 mm (2 inches) to 3 .9 mm (0 .15 

inches) . These smaller sizes have opened up many 

more applications particularly in RF and fast time domain 

requirements .

Reed Switch Features:

1 . 

Ability to switch up to 10,000 Volts

2 . 

Ability to switch currents up to 5 Amps

3 . 

Ability to switch or carry as low as 10 nano-Volts 

without signal loss

4 . 

Ability to switch or carry as low as 1 femtoAmp 

without signal loss

5 . 

Ability to switch or carry up to 7 GigaHz with mini-

mal signal loss

6 . 

Isolation across the contacts up to 1015 W

7 . 

Contact resistance (on resistance) typical 50 mil-

liOhms (mW)

8 . 

In its off state it requires no power or circuitry 

9 . 

Ability to offer a latching feature

10 . 

Operate time in the 100 ms to 300 ms range

11 . 

Ability to operate over extreme temperature ranges 

from –55 °C to +200 °C

12 . 

Ability to operate in all types of environments in-

cluding air, water, vacuum, oil, fuels, and dust lad-

en atmospheres

13 . 

Ability to withstand shocks up to 200 Gs

14 . 

Ability to withstand vibration environments of 50 Hz 

to 2000 Hz at up to 30 g

15 . 

Long life . With no wearing parts, load switching 

under 5 Volts at 10 mA, will operate well into the 

billions of operations

16 . 

No power consumption, ideal for portable and  

battery-powered devices 

17 . 

No switching noise

Datenbuch-Reed-Technology-EN-2022-html.html
background image

8

standexelectronics.com

Reed Switch Characteristics

Fig. #1 The basic hermetically sealed Form 1A (normally open) 

Reed Switch and its component makeup.

A Reed Switch consists of two ferromagnetic blades 

(generally composed of iron and nickel) hermetically 

sealpowered in a glass capsule . The blades overlap 

internally in the glass capsule with a gap between them, 

and make contact with each other when in the presence 

of a suitable magnetic field. The contact area on both 

blades is plated or sputtered with a very hard metal, usu-

ally Rhodium or Ruthenium . These very hard metals give 

rise to the potential of very long life times if the contacts 

are not switched with heavy loads . The gas in the capsule 

usually consists of Nitrogen or some equivalent inert gas . 

Some Reed Switches, to increase their ability to switch 

(up to 10 kV) and standoff high voltages, have an internal 

vacuum. The reed blades act as magnetic flux conductors 

when exposed to an external magnetic field from either 

a permanent magnet or an electromagnetic coil . Poles 

of opposite polarity are created and the contacts close 

when the magnetic force exceeds the spring force of the 

reed blades. As the external magnetic field is reduced so 

that the force between the reeds is less than the restoring 

force of the reed blades, the contacts open .

 

Fig. #2 The 1 Form C (single pole double throw) three leaded 

Reed Switch and its component makeup.

The Reed Switch described above is a 1 Form A (normally 

open (N .O .) or Single Pole Single Throw (SPST)) Reed 

Switch. Multiple switch usage in a given configuration 

is described as 2 Form A (two normally open switches 

or Double Pole Single Throw (DPST)), 3 Form A (three 

normally open switches), etc . A normally closed (N .C .) 

switch is described as a 1 Form B . A switch with a com-

mon blade, a normally open blade and a normally closed 

blade (Figure #2) is described as a 1 Form C (single pole 

double throw (SPDT)) .

The common blade (or armature blade), the only moving 

reed blade, is connected to the normally closed blade in 

the absence of a magnetic field. When a magnetic field of 

sufficient strength is present, the common blade swings 

over to the normally open blade . The normally open and 

normally closed blades always remain stationary . All three 

reed blades are ferromagnetic; however, the contact area 

of the normally closed contact is a non-magnetic metal 

which has been welded to the ferromagnetic blade . When 

exposed to a magnetic field, both of the fixed reeds as-

sume the same polarity which is opposite to that of the 

armature . The paddle then moves over to the normally 

open blade .

 

The Basic Reed Switch

Datenbuch-Reed-Technology-EN-2022-html.html
background image

9

standexelectronics.com

Reed Switch Characteristics

Figure 3 shows the general function of a Reed Switch 

with the us of a permanent magnet . 

Fig. #3 The basic operation of a Reed Switch under the influence 

of the magnetic field of a permanent magnet. The polarization of 

the reed blades occurs in such a manner to offer an attractive 

force at the reed contacts.

The use of a coil wound with copper insulated wire . See 

Figure 4 . 

Fig. #4 A Reed Switch sitting in a solenoid where the magnetic 

field is strongest in its center. Here the reed blades become 

polarized and an attractive force exists across the contacts.

When a permanent magnet, as shown, is brought into 

the proximity of a Reed Switch the individual reeds be-

come magnetized with the attractive magnetic polarity 

as shown. When the external magnetic field becomes 

strong enough the magnetic force of attraction closes 

the blades . The reed blades are annealed and processed 

to remove any magnetic retentively . When the magnetic 

field is withdrawn the magnetic field on the reed blades 

also dissipates . If any residual magnetism existed on the 

reed blades, it would affect the behavior of opening and 

closing . Proper processing and proper annealing clearly 

are important steps in their manufacturing .  

Datenbuch-Reed-Technology-EN-2022-html.html
background image

10

standexelectronics.com

Reed Switch Characteristics

Pull-in/Drop-out Temperature Effects

-40

-30

-20

-10

0

10

20

30

40

50

-60

-10

40

90

140

Temperature (°C)

Rate of 

change (%)

Pull-In (PI) is described as that point where the con-

tacts close . Using a magnet, it is usually measured as 

a distance from the Reed Switch to the magnet in mm 

(inches) or in field strength AT, mTesla, or Gauss. In a 

coil, the Pull-In is measured in volts across the coil, mA 

flowing in the coil, or ampere-turns (AT). Generally, this 

parameter is specified as a maximum. No matter how 

well the reed blades are annealed, they will still have a 

slight amount of retentivity (a slight amount of magnetism 

left in the blades after the magnetic field is removed or 

eliminated from the Reed Switch) . To obtain consistent 

Pull-In and Drop-out results, saturating the Reed Switch 

with a strong magnetic field first, before taking the Pull-

In measurement will produce more consistent results . 

See Figure #5 .

When measured in a coil, or specifically, a Reed Relay, 

the Pull-in is subject to changes at different temperatures, 

and is usually specified at 20° C. See Figure #6.

 

Fig. #6 The Pull-In and Drop-Out points will change with tem-

perature at the rate of 0.4% /°C.

Here, because the copper coil wire expands and con-

tracts with temperature, the Pull-In or operate point will 

vary with temperature by 0 .4% oC . Well designed relays 

usually take this parametric change into consideration in 

the design and specification.

Basic Electrical Parameters of  

Reed Switch Products

Fig. #5 For most accurate results, saturate the contrast with a magnetic field, before testing for Pull-In and Drop-Out.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

11

standexelectronics.com

Reed Switch Characteristics

Drop-out vs. Pull-in

0

10

20

30

40

0

10

20

30

40

50

Pull-in (AT)

Drop-out (AT)

Drop-Out 

(DO) is described as that point where the 

contacts open and has similar characteristics as the 

Pull-In above . It is also described as release or reset 

voltage current or AT .

Hysteresis

 exists between the Pull-In and Drop-Out and is 

usually described in the ratio DO/PI expressed in % . The 

hysteresis can vary depending upon the Reed Switch 

design, (Figure #7), where variations in plating or sput-

tering thickness, blade stiffness, blade overlap, blade 

length, gap size, seal length, etc. will all influence this 

parameter . See Figure 7 for example of hysteresis when 

using a magnet to handle a Reed Switch .

Fig. #7 The Pull-in and Drop-out ranges are shown. Note that 

variation in hysteresis is for low ampere turns (AT) is very small 

and increases with higher AT.

Contact Resistance 

is the DC resistance generated 

by the reed blades (bulk resistance) and the resistance 

across the contact gap . Most of the contact resistance 

resides in the nickle/iron reed blades . Their resistivity is 

7 .8 x 10-8 Ohm/m and 10 .0 x 10-8 Ohm/m respectively . 

These are relatively high when compared to the resistivity 

of copper, which is 1 .7 x 10-8 Ohm/m . Typical contact re-

sistance for a Reed Switch is approximately 70 mOhm, 10 

to 25 mOhm of which is the actual resistance across the 

contacts . In a Reed Relay, many times the relay pins will 

be nickel/iron improving the overall mag-netic efficiency 

but adding bulk resistance to the contact resistance . This 

increase can be in the order of 25 mOhm to 50 mOhm . 

See Figure #8 .

Fig. #8 A representation of the bulk resistance and resistance 

across the contacts making up the contact resistance value in 

Ohms for a Reed Switch

Dynamic Contact Resistance

 (DCR) is a true measure 

of the disposition of the contacts . As already described, 

the contact resistance is mostly made up of bulk re-

sistance or lead resistance . Measuring the resistance 

across the Reed Switch only gives gross indication that 

the contacts are functional . To give a better indication of 

the contacts functionality, one must look at the contacts 

under dynamic conditions . 

Opening and closing the contacts at frequencies in the 

range of 50 Hz to 200 Hz can reveal much more infor-

mation . Switching 0 .5 Volts or less with approximately 

50 mA will allow enough voltage and current to detect 

potential problems . This testing can be carried out using 

an oscilloscope or may be easily digitized for more auto-

matic testing . One should avoid test voltages greater than 

0 .5 Volts to avoid ‘break-over’ (potential non-conductive 

films). This extremely thin film will look like an open circuit 

if one is switching very low signals or in current less clos-

ing of the Reed Switch (closing the contacts before any 

voltage or current is applied across the contacts) . Using 

a voltage above 0 .5 V might hide this potential quality 

problem . See Figure 9 .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

12

standexelectronics.com

Reed Switch Characteristics

Fig. #9 A schematic diagram of a typical circuit used for mea-

suring the dynamic contact resistance across the contacts of 

a Reed Switch.

Applying the frequency described above to a coil, the 

contacts will operate and close in approximately ½ mA . 

The contacts may then bounce for about 100ms and 

undergo a period of dynamic noise for as much as ½ ms . 

This dynamic noise is generated by the contacts con-

tinuing to bounce but not opening, whereby the contact 

resistance varies widely where the force or pressure on 

the contacts varies harmonically, critically dampening in 

about ½ ms or less . See Figure 10 . Once this dynamic 

noise dissipates, the contacts will then undergo a ‘‘wa-

vering period’ . Here the contacts have closed, but will 

waver while closed for up to 1 ms or more . This wavering 

of the contacts in the coil’s magnetic field generates a 

current through the contacts . Once this effect dissipates 

the contacts enter their static condition .

 

 

 

 

 

 

Fig. #10 A typical dynamic contact resistance portrayal show-

ing the first closure, bouncing, dynamic noise and pattern gen-

erated by waver-ing contacts

Observing the electrical pattern produced by this dy-

namic test can reveal much about the quality of the Reed 

Switch . Generally speaking, once the coil voltage has 

been applied, the dynamic contact activity should settle 

down by 1 ½ ms . If the contacts continue to bounce more 

than 250 ms, the closing force may be weak, which may 

result in a shortened life, particularly if one is switching 

a load of any size . See Figure #11 .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

13

standexelectronics.com

Reed Switch Characteristics

Fig. #11 A dynamic contact resistance pattern showing exces-

sive contact bounce.

If the dynamic noise or the wavering contacts con-

tinue for periods longer than indicated, it may mean the  

Reed Switch seals are weak or perhaps overstressed . 

This could result in capsule cracking or breaking . Also, 

if the wavering produced has excessive amplitude,  

this could represent a condition of capsules having added 

stress which could produce leaking seals . In this case, 

outside air and moisture may seep into the capsule  

producing unwanted contamination on the contacts .  

See Figure #12 & #13 .  

Fig. #12 A dynamic contact resistance pattern portraying ex-

cessive dynamic noise indicating potential stressed or cracked 

glass seal.

Fig. #13 A dynamic contact resistance pattern with indicated 

excessive  contact  wavering  often  indicates  a  stressed  or 

cracked glass seal.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

14

standexelectronics.com

Reed Switch Characteristics

Also, when the contact resistance varies by a small de-

gree with successive closures, contamination, a leaking 

seal, particles, loose or peeling plating may exist, poten-

tially shortening life expectations (Figure #14) . Varying 

the frequency applied to the coil sometimes produces 

more subtle awareness of resonance related problems . 

This will also manifest itself with higher amplitude or 

longer times of dynamic noise or contact wavering .

Fig. #14 A dynamic contact resistance pattern showing contact 

resistance changing in each successive operation indicating 

contact contamination.

Any time long life, stable contact resistance, and fault 

free operation are conditions in your application, dynami-

cally testing the contacts and having tight testing limits 

are a must . 

Switching Voltage, 

iusually specified as a maximum in 

units of Volts DC or Volts peak, is the maximum allow-

able voltage capable of being switched across the con-

tacts . Switching voltages above the arcing potential can 

cause some metal transfer . The arc potential generally 

occurs over 5 Volts . Arcing is the chief cause of shorted 

life across the contacts . In the 5 V to 12 V range most 

contacts are capable of switching well into the tens of 

millions of operations depending on the amount of cur-

rent switched . Most pressurized Reed Switches can not 

switch more than 

500 Volts, principally because they can not break the arc 

occurring when one tries to open the contacts . Gener-

ally, switching above 500 Volts requires evacuated Reed 

Switches, where up to 10,000 Volts is possible . Switching 

below 5 Volts, no arcing occurs and therefore no blade 

wear occurs, extending Reed Switch lifetimes well into 

the billions of operations . Properly designed Reed Relays 

can switch and discern voltages as low as 10 nanoVolts .

Switching Current

 refers to that current measured in 

Amperes DC (peak AC), switched at the point of closure 

of the contacts . The higher the level of current the more 

sustained the arcing at opening and closing and therefore 

the shorter the life of the switch .

Carry Current,

 also measured in Amperes DC (peak 

AC), is specified as the maximum current allowed when 

the contacts are already closed . Since the contacts are 

closed, higher currents are allowed . No contact damage 

can occur, since the only time arcing occurs is during 

the opening and closing transitions . A Reed Switch is 

also able to transport higher currents, when the pulse 

duration is very short, since the heating here is minimal . 

Conversely, unlike electromechanical armature style 

relays, the Reed Relay can switch or carry currents as 

low as femptoAmperes (10-15 Amperes) .

Stray Capacitance

 measured in microFarads or Pico 

Farads is always present for example due to to conduct-

ing paths and cable . When switching voltage and current, 

the first 50 nanoSeconds are the most important. This is 

where the arcing will occur. If there is a significant amount 

(depending on the amount of voltage switched) of stray 

capacitance in the switching circuit, a much greater arc 

may occur, and thereby reducing life . When switching 

any sizable voltage, it is always a smart idea to place 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

15

standexelectronics.com

Reed Switch Characteristics

a fast current probe in the circuit to see exactly what 

one is switching in the first 50 nanoSeconds. Generally 

speaking, when switching voltages over 50 Volts, 50 pi-

coFarads or more can be very significant to the expected 

life of the switch . 

Common Mode Voltage

 is also another parameter that 

can have a significant effect on the life of a Reed Switch. 

Depending upon the circuit and the environment, com-

mon mode voltages can in effect, charge stray capaci-

tances in the switching circuit and dramatically reduce 

Reed Switch life in an unexpected manner . Again, a fast 

current probe can reveal a startling voltage and current 

switched in that first 50 nanoSeconds, having no bearing 

on one’s actual load . When line voltages are present in or 

near sensitive circuits, be cautious . Those voltages can 

be coupled into the circuit creating havoc with your life 

requirements . Typically, a faulty Reed Switch is blamed 

for this reduced life, when in actuality, it is a product of 

unforeseen conditions in the circuit .

Switching Load

 is the combined voltage and current 

switched at the time of closure . Sometimes there is 

confusion with this parameter . For a given switch, with a 

switching rating of 200 Volts, 0 .5 Amperes and 10 Watts, 

any voltage or current switched, when multiplied together, 

can not exceed 10 Watts . If you are switching 200 Volts, 

then you can only switch 50 milliAmperes . If you are 

switching 0 .5 Amperes, then you can only switch 20 Volts . 

Breakdown Voltage

 (Dielectric Voltage) generally is 

higher than the switching voltage . On larger evacuated 

Reed Switches, ratings as high as 15,000 Volts DC are 

not uncommon . Some smaller evacuated reeds can stand 

off up to 4000 Volts DC . Small pressurized reed switches 

generally withstand 250 to 600 Volts DC .

Insulation Resistance

 is the measure of isolation 

across the contacts and is probably one of the most 

unique parameters that separate Reed Switches from 

all other switching devices . Typically, Reed Switches 

have insulation resistances averaging 1 x 1014 ohms . 

This isolation allows usage in extreme measurement 

conditions where leakage currents in the picoAmpere or 

femtoAmpere range would interfere with the measure-

ments being taken . When testing semi-conductors, one 

may have several gates in parallel where the switching 

devices have combined leakage currents that become 

significant in the test measurement circuit.

Dielectric Absorption

 describes the effect different 

dielectrics have on very small currents . Currents below 

1 nanoAmpere are affected by the dielectric’s tendency 

to slow or delay these currents . Depending upon how 

low a current one is measuring, these delays can be 

on the order of several seconds . Standex Electronics 

engineers have designed Reed Relays and circuits to 

minimize dielectric absorption . 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

16

standexelectronics.com

Reed Switch Characteristics

Operate Time

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0

10

20

30

40

50

Pull-in (AT)

Operate Time (ms)

Release Time

0

5

10

15

0

10

20

30

40

Drop-out (AT)

Release time (µs)

 

Operate Time

 is the time it takes to close the contacts 

and stop bouncing . Except for mercury wetted contacts, 

when the reed blades close, they close with enough force 

to set them in harmonic motion . This critically damped 

motion dissipates rapidly due to the relatively strong 

spring force of the reed blades . One generally sees one 

or two bounces occurring over a 50 ms to 100 ms period . 

Most small Reed Switches operate, including bounce, in 

the range of 100 ms to 500 ms . See Figure #15 .

Fig. #15 A typical graph of the operate time for increasing Pull-

In AT values. With higher Pull-in AT the Reed Switch gap in-

creases taking a longer time for the contacts to close.

Release Time 

is the time it takes for the contacts to open 

after the magnetic field is removed. In a relay, when the 

coil turns off, a large negative inductive pulse (‘kick’) oc-

curs causing the reed blades to open very rapidly . This 

release time may be in the order of 20 ms to 50 ms . If a 

diode is placed across the coil to remove this inductive 

voltage spike (which can be 100 Volts to 200 Volts), the 

contact opening time will slow to about 300 ms . Some 

designers require the fast release time, but cannot have 

the high negative pulses potentially being coupled into 

sensitive digital circuity . So they add a 12 Volt to 24 Volt 

zener diode in series with a diode, all of which is in paral-

lel across the coil . Here, when the coil is turned off, the 

voltage is allowed to go negative by the zener voltage 

value, which is sufficient to cause the contacts to open 

generally under 100 ms . See Figure #16 . 

Fig. #16 A graph of the release time for increasing Dropout 

AT. With increasing Drop-out AT the restoring force increases 

causing even faster release time.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

17

standexelectronics.com

Reed Switch Characteristics

Resonant Frequency

0

10

20

30

40

50

60

70

80

90

6500

7000

7500

8000

8500

9000

Resonant frequency (Hz)

Cumulative frequency 

percen

t

Contact Capacitance (gap)

0

0,1

0,2

0,3

0

10

20

30

40

Pull-in (AT)

Electrostatic 

capacitance (PF

)

Resonant Frequency

 for a Reed Switch is that physical 

characteristic where all reed parameters may be affected 

at the exact resonance point of the Reed Switch . Reed 

capsules 20 mm long will typically resonate in the 1500 

to 2000 Hz range; reed capsules on the order of 10 mm 

will resonate in the 7000 to 8000 range . Avoiding these 

specific resonance areas will insure a fault free environ-

ment for the Reed Switch . Parameters typically affected 

are the switching voltage and the breakdown voltage . 

See Figure #17 .        

Fig. #17. A depiction of a group of 10 mm Reed Switches and 

its resonant frequency distribution.

Capacitance 

across the contacts is measured in pico-

Farads and ranges from 0 .1 pF to 0 .3 pF . This very low 

capacitance allows switching usage, where semiconduc-

tors having 100’s of picoFarads, can not be considered . In 

semiconductor testers, this low capacitance is absolutely 

critical . See Figure #18 .

Fig. #18 As the Pull-in AT increases its gap increases, there-

fore reducing the capacitance across the Reed Switch.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

18

standexelectronics.com

Reed Switch Characteristics

Using Reed Switches in a sensing environment, one 

generally uses a magnet for actuation . It is important 

to understand this interaction clearly for proper sensor 

functioning . Sensors may operate in a normally open, 

normally closed, change over or a latching mode .  

In the normally open mode, when a magnet is brought 

toward the Reed Switch the reed blades will close . 

When the magnet is withdrawn the reed blades will 

open . With the normally closed sensor, bringing a mag-

net to the Reed Switch the reed blades will open, and 

withdrawing the magnet, the reed blades will re-close . 

In a latching mode the reed blades are in either an open 

or closed state . When a magnet is brought close to the 

Reed Switch the contacts will change their state . If they 

were initially open, the contacts will close . Withdrawing 

the magnet the contacts will remain closed . When the 

magnet is again brought close to the Reed Switch, with 

a changed magnetic polarity, the contacts will now open . 

Withdrawing the magnet the contacts will remain open . 

Again, reversing the magnetic polarity, and bringing the 

magnet again close to the Reed Switch the contacts 

will again close and remain closed when the magnet is 

withdrawn . In this manner, one has a latching sensor or 

a bi-stable state sensor . In the following diagrams, we 

will outline the guidelines one must be aware of when 

using a magnet. Please keep in mind the magnetic field 

is three-dimensional .

A permanent magnet is the most common source for 

operating the Reed Switch . The methods used depend 

on the actual application . Some of these methods are the 

following: front to back motion . See Figure #19 .  

Fig. #19 A Reed switch being shown with a magnet being  

moved in front to back motion.

Rotary motion (see below Figure #20); ring magnet with 

parallel motion (see Figure #21)

Fig. #21 A circular magnet showing a Reed Switch effectively 

passing through its centers showing the opening and closing 

points.

Fig. #20 A reed switch being used with magnets in rotary motion.

How Reed Switches are used with a  

Permanent Magnet

Datenbuch-Reed-Technology-EN-2022-html.html
background image

19

standexelectronics.com

Reed Switch Characteristics

The use of a magnetic shield to deflect the magnetic flux 

flow. See Figure #22.  

Fig. #22 The effects of a magnetic shield passing between a 

Reed Switch and permanent magnet shunting the magnetic 

lines of flux which influences the opening and closing of the 

Reed Switch.

Pivoted motion about an axis . See Figure #23 .

Fig. #23 A pivoting magnet is shown influencing the opening 

and closing points of a Reed Switch.

Parallel motion (Figure #24, Figure #25, Figure #26, 

Figure #27, Figure #28) and combinations of the above 

perpendicular motion (Figure #29, Figure #30, Figure 

#31 and Figure #32) .  

Before we investigate each of these approaches, it is 

important to understand the fields associated with the 

various Reed Switch vs . magnet positions and their on/off 

domain characteristics . The actual closure and opening 

points will vary considerably for different Reed Switches 

and different sizes and strengths of magnets .

First consider the case where the magnet and Reed 

Switch are parallel . In Figure #24, the open and closure 

domains are shown in the x and y-axis . These domains 

represent the physical positioning of the magnet relative 

to the Reed Switch along the x-axis . The closure and 

opening points are relative to the movement of the mag-

net along this x axis, where the magnet is fixed relative 

to the y-axis . Here, three domains exist, wherein Reed 

Switch closure can take place . Keep in mind the center 

domain is much stronger and the graph gives a relative 

idea of the closure points on a distance basis along the

y-axis . The hold areas shown, demonstrates the hyster-

esis of the Reed Switch and will vary considerably for 

different Reed Switches. In fluid level controls, having 

a wider hold area can be beneficial, particularly if there 

is constant disruption to the fluid level as in a moving 

vehicle. Using the configuration shown in Figure #24, 

the maximum distance away from the Reed Switch for 

closure is possible . This approach has the best magnetic 

efficiency.

Fig. #24 The opening, closing and holding points are shown 

for a magnet passing in parallel to Reed Switch and being  

affected by the center magnetic lobe.

 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

20

standexelectronics.com

Reed Switch Characteristics

Fig. #25 The opening and closing points are shown for a mag-

net making a close approach in parallel to a Reed Switch. Here 

the Reed Switch will close and open three times. 

Also, for parallel motion, if the magnet and switch are 

close enough, parallel motion can create three closures 

and openings as demonstrated in Figure #25 . 

Fig. #26 The closing and opening is portrayed for a magnet ap-

proaching a Reed Switch in parallel from an end point.

Passing the magnet by the Reed Switch farther away, 

one closure and opening will occur . Another approach 

for magnets used in a parallel application with parallel 

motion is shown in Figure #26, where the closure point 

uses the smaller outer magnetic domain . 

Another approach for magnets used in a parallel appli-

cation, but with vertical motion, is shown in Figure #27 

where the closure point uses the inner larger magnetic 

domain . In Figure #28 the vertical motion uses the outer 

magnetic domain .

Fig. #27 The closing, holding, and opening are portrayed for a 

magnet parallel to the Reed Switch, but moving perpendicular 

to the plane of the Reed Switch and being influenced by the 

center magnet lobe. 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

21

standexelectronics.com

Reed Switch Characteristics

Fig. #28 The closing, holding, and opening are presented for a 

magnet parallel to the Reed Switch, but moving perpendicular 

to the plane of the Reed Switch and being influenced by the 

outer magnetic lobe.

Another approach for magnets used in a parallel appli-

cation, but with vertical motion, is shown in Figure #29 . 

Please note this view is showing the y-z-axis . The clo-

sure and opening states are clearly shown for several 

positions of the magnet .

Fig. #29 Motion of the magnet is depicted in the y-z axis where 

the magnet is parallel to the Reed Switch, but moving perpen-

dicular to its plane. The closure, holding, and opening points 

are shown.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

22

standexelectronics.com

Reed Switch Characteristics

In Figure #30, the magnet is perpendicular to the Reed 

Switch . Here the x-y axis is shown with the relative 

closure, holding and opening points . Parallel magnet 

movement is along the x-axis, but displaced at a distance 

y from the x-axis . Here two closures and openings can 

take place .

Fig. #30 The opening and closing points are shown for a ver-

tically mounted magnet making an approach parallel to the 

Reed Switch. Here the Reed Switch will close and open two 

times.

In Figure #31, the magnet is again perpendicular to the 

Reed Switch . Magnet movement is still parallel but on and 

along the x-axis . No Reed Switch closure takes place . 

Fig. #31 The opening and closing points are shown for a verti-

cally mounted magnet making an approach parallel to the axis 

of the Reed Switch. Here the Reed Switch will close and open 
two times.

In Figure #32, the magnet is perpendicular to the Reed 

Switch . Here the x-y axis is shown with the relative 

closure, holding and opening points . Magnet movement 

is along the y-axis, but displaced a distance x from the 

y-axis . Here two closures and openings can take place 

as shown . 

Figure #32 The opening and closing points are shown for a 

vertically mounted magnet making an approach perpendicular 

to the axis of the Reed Switch through its end point. Here the 

Reed Switch will close and open two times.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

23

standexelectronics.com

Reed Switch Characteristics

In Figure #33, the magnet is perpendicular to the Reed 

Switch . Here the x-y axis is shown with the relative mag-

net movement along the actual y-axis and the magnet 

movement is fixed relative to the x-axis. Here no closures 

take place .

Fig. #33 No closure points are shown for a verti-cally mount-

ed magnet making an approach perpendicular to the axis of 

the Reed Switch and through its center point. Here the Reed 

Switch will not close at all. 

With the above closure and opening boundaries relative 

to magnet placement, an assortment of closure and open 

configurations can be set up when moving the magnet 

in more than one axis of motion, i .e . rotary motion, etc . 

Also, in the above cases we held the movement of the 

Reed Switch fixed in position. By holding the magnet fixed 

and moving the Reed Switch, if the application calls for 

it, the same expected closures and opening distances 

would be expected . There can be multiple poles existing 

in one magnet, and under these conditions the closure 

and opening points will change . Experimentation may be 

required to determine the closure and opening points . 

Biasing a Reed Switch with another magnet will allow 

normally closed operation . Bringing another magnet, of 

opposite polarity, in close proximity to the magnet/Reed 

Switch assembly will open the contacts . See Figure #34 .

Fig. #34 A Reed Switch can be biased closed with a magnet. 

When  a  second  magnet  with  an  opposing  magnetic  field  is 

brought close, the Reed Switch will open giving rise to a nor-

mally closed sensor.

 

Also, using a biasing magnet will allow Reed Switch 

operation in the hold area or hysteresis area, thereby 

creating a latching sensor . (see Figure #35) In this situ-

ation, real care needs to be taken in exact placement of 

the biasing magnet and the operating magnet needs to 

be restricted to certain areas . To switch from bi-stable 

state to bi-stable state the operating magnet’s polarity 

or direction needs to be reversed .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

24

standexelectronics.com

Reed Switch Characteristics

Fig. #35 A Reed Switch can be biased with a magnet in such 

a way to establish a latching sensor. When a second magnet 

with a given polarity is brought close, the contacts will close. 

Withdrawing the magnet the contacts stay closed. Bringing a 

magnet with opposite polarity close to the Reed Switch, the con-

tacts will open and remain open when the magnet is withdrawn.

Standex Electronic has developed a bridging sensor 

which can operate in either a normally open or normally 

closed state . When a sheet of ferro-magnetic material 

(metal door, etc .) is brought up to the sensor the Reed 

Switch will close; when it is withdrawn, the contacts will 

open (Figure #36) No external magnets are required to 

operate the bridge sensor (see our MK02 Series) .

Fig. #36 Standex Electronics has designed a patented bridge 

sensor  requiring  no  external  magnets.  When  the  sensor  is 

brought close to a ferromagnetic sheet or plate the sensor 

contacts will close. When the sheet is withdrawn, the contacts 

will open.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

25

standexelectronics.com

Reed Switch Characteristics

Since their introduction several years ago, the Hall effect 

sensor has captured the imagination of design engineers . 

Generally, it was thought that if it’s in solid state that it’s a 

more reliable approach, particularly when comparing it to 

electromechanical devices . However, several remarkably 

interesting advantages are observed when comparing 

the reed sensor technology to the Hall effect technology .

But first, let’s take a closer look at the reed sensor tech-

nology . The key component in the reed sensor is the reed 

switch, invented by Western Electric back in the 1930’s . 

The other major component is the magnet or electromag-

net used to open or close the reed switch . Over the last 

seventy years the reed switch has undergone several 

improvements, making it more reliable, improving it’s 

quality and reducing it’s cost . Because of these dramatic 

improvements of reed switches, they have become the 

designin choice in several critical applications where 

quality, reliability and safety are paramount . 

Perhaps the most dramatic application and testimony of 

the reed’s quality and reliability is its use in Automatic 

Test Equipment (ATE) . Here this technology is used 

exclusively . The reed switches are used in reed relays, 

switching in the various test configurations for integrated 

circuits, ASICs, wafer testing and functional printed circuit 

board testing . For these applications up to 20,000 reed 

relays may be used in one system . Here one relay fail-

ure constitutes a 50-ppm failure rate . Therefore to meet 

this requirement, the reed relays need to have quality 

levels much better than 50-ppm . Heretofore, it was un-

heard of to have an electromechanical device with this 

quality level . Similarly the same holds true for several 

semi conductor devices as well . Once beyond the initial 

operational quality testing, the reed relays then need to 

perform well over life . Here they have been proven to out 

perform all other switching devices . Because, in many 

cases the automatic test equipment is operated 24 hours 

a day and 7 days a week to fully utilize it’s high capital 

expense; and therefore, billions of operations may be 

required during the reed relay’s lifetime .

Another example of its favored use is in air bag sensors, 

where they have passed the test of time in a crucial 

safety application . Reed sensors are currently used in 

many critical automotive safety equipment (brake fluid 

level sensing, etc .), along with many medical applications 

including defibrillators, cauterizing equipment, pacemak-

ers and medical electronics where they isolate small 

leakage currents .

In both technologies, the sizes are shrinking as is evi-

denced in the enclosed picture . However, when compar-

ing the reed sensor over a Hall effect sensor we see 

several advantages:

Cost-Effective

Generally the cost of the Hall effect device is low, but it 

requires power and circuitry to operate . Also, its signal 

output is so low it often times requires amplification cir-

cuitry as well . The net result, the Hall effect sensor can 

be considerably more expensive than the reed sensor .

High Isolation

The reed switch has superior isolation from in-put to 

output and across the switch up to 1015 Ohms . This 

reduces leakage currents to femto amps (1015 amps) 

levels . On the other hand, Hall effect devices have sub-

micro amp leakage levels . In medical electronic devices 

inserted into the human body as probes (invasive use) or 

pacemakers it’s very important not to have any leakage 

current near the heart, where micro amp and sub-micro 

amp currents can alter the heart’s key electrical activity . 

Hermetically Sealed

The reed is hermetically sealed and can therefore operate 

in almost any environment .

Low Contact Resistance

The reed has very low on resistance typically as low 

as 50 milliohms, whereas the Hall effect can be in the 

hundreds of ohms .

Reed Sensors vs. Hall Effect Sensors

Datenbuch-Reed-Technology-EN-2022-html.html
background image

26

standexelectronics.com

Reed Switch Characteristics

Switching Power

The reed can directly switch a host of load ranging from 

nano volts to kilovolts, femto amps to Amps, and DC to 

6 GHz . The Hall effect devices have very limited ranges 

of outputs

High Magnetic Sensitivity

The reed sensor has a large range of magnetic sensitivi-

ties to offer .

Easy Mounting

Reed sensors are not susceptible to E .D .I ., where elec-

trostatic discharge may often times severely damage the 

Hall effect device .

High Voltage

Reed sensors are capable of withstanding much higher 

voltages (miniature sizes are rated up to 1000 Volts) . 

Hall effect devises need external circuitry for ratings as 

high as 100 Volts .

High Carry Current

The reeds are capable of switching a variety of loads, 

where the Hall effect sensor delivers only smaller volt-

ages and currents .

High Shock Resistance

The reed sensor is typically tested to withstand a three-

foot drop test, which is comparable to the Hall effect 

sensor .

Long Life Expectancy

Because the reed sensor has no wearing parts, low 

level loads (<5V @ 10 mA and below), will operate sat-

isfactorily well into the billions of operations . This rivals 

semiconductor MTBF figures.

Wide Temperature Range

The reed sensor is unaffected by the thermal environ-

ment, and is typically operated from -50° C to +150° C 

with no special additions, modifications or costs. The Hall 

effect sensors have a limited operational range .

No external Power

Ideal for portable and battery-powered devices .

There are many very good applications of reed products . 

Selection of the proper reed in the proper application, 

often time is critical . Some reed/relay companies are 

excellent at designing in reeds in critical applications 

where quality, reliability and safety are paramount .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

27

standexelectronics.com

Reed Switch Characteristics

Comparative Table: Reed Sensors vs. Hall Effect Sensors

Specifications 

Reed Sensor

Hall Effect Sensor

Input requirements

External magnet field >5 Gauss time

External magnetic field >15 gauss time

Sensing distance

Up to 40mm effectively

Up to 20mm effectively

Output requirements

None

Continuous current >10mA, depending 

on sensitivity

Power required all the time

No

Yes

Requirements beyond sensing device

None

Voltage regular, constant current source, 

hall voltage generator, small-signal 

amplifier, chopper stabilization, Schmitt 

trigger, short-circuit protection, external 

filter, external switch

Hysteresis

Ability to adjust to meet design requirement

Fixed usually around 75%

Detection circuit required

None

Yes, and generally needs amplification

Ability to switch loads directly

Yes, up to 2A and 1,000V, depending on 

the reed selection

No, requires external switching

Output switching power

Up to 1,000W, depending on switch 

selection

Low millitwatts

Voltage switching range

0 to 200V (1,000V available)

Requires external switch

Current switching range

0 to 3A

Requires external switch

Output sensitivity to polarity

No

Yes, critical for proper operation

Output offset voltage sensitivity

None

Yes, exacerbated by sensitivity to over- 

coming, temperature dependencies, and 

thermal stress

Chopper circuit requirements

None

Yes, helps reduce output offset voltage; 

requires additional external output 

capacitance

Frequency range

DC to 6 GHz

Switching frequency 10,000 Hz

Closed output on resistance

0 .050 Ohm

>200 Ohm

Expected life switching >5A @ 10mA

> 1 billion operations

Unlimited

Capacitance across output

0 .2 pF typ

100 pF typ

Input / Output  isolation

10

12

 Ohm min .

10

12

 Ohm min

Isolation across output

10

12

 Ohm min .

10

6

 Ohm min

Output dielectric strength

Up to 10kV available

<10 V typical

EDI (ESD) susceptibility

No, requires no external protection

Yes, requires external protection

Hermeticitiy

Yes

No

Shock

> 150g 

>150 g

Vibration

> 10g

>50 g

Operating temperature

-55°C to 200°C

0 °C to 70°C, typ

Storage temperature

-55°C to 200°C

-55°C to 125°C

Datenbuch-Reed-Technology-EN-2022-html.html
background image

28

standexelectronics.com

Reed Switch Characteristics

Specifications

Reed Switch

Mechanical Microswitch

Sensing Distance - Touch

Up to 40mm effectively

Touch (zero distance)

Power Required all the Time

No

No

Input Requirements

External magnetic field >5 gauss min.

Mechanical Force

Hysteresis

Ability to adjust, to meet design request

Differential Travel (D .T .)

Life Expectancy: Low Level

10

10

 cycles

10

6

 cycles

Switching Voltage

Up to 200V (10,000V available)

250VAC

Switching  Current / Carry  Current

Up to 3A / Up to 5A

Up to 25A

Switching Load Minimum

No load required (μV / pA)

50mW

Switching Load Maximum

Up to 100 Watts

Up to 5,000 Watts

Insulation Resistance

10

14

 Ohm

10

9

 Ohm

Contact Resistance

50 milliohm

100 milliohm

Noise

Almost no switching noise

Switching Noise

Overload

Very sensitive

Insensitive

Hermeticity

Yes

No

General

Galvanic isolation (air gap)

Galvanic Isolation (air gap)

Assembly

20,000 pcs

5,000 pcs

Reed Switches in Comparison  

with Mechanical Switches

Datenbuch-Reed-Technology-EN-2022-html.html
background image

29

standexelectronics.com

About Magnets

Magnets are available in multiple specifications on the 

market . Almost all dimensions and geometries can be 

realized . To activate the reed switch a magnet (magnet 

field)  is  needed. The  different  magnet  materials  have 

either more positive or negative specifications, depend-

ing on the dimension and geometries as well as on the 

environment . Most preferred and used forms are cylin-

ders, rectangles, and rings . Depending on the different 

requirements, magnets can be magnetized in many 

different ways (figure #1).

Furthermore each magnet material has a different mag-

net force as well as a different flux density. Additionally 

to dimension and material, other factors exist that define 

the energy of a magnet . These are mounting position, 

environment and other magnetic field witch influence the 

interaction between reed sensor/switch and magnet . In 

applications were a magnet is used to activate a reed 

sensor/switch, the environmental temperature needs to 

be considered (in the application as well as in storage) . 

High temperatures can cause irreversible damage (so-

called Curie temperature) and will have heavy impact 

on the magnetic force and the long term stability . AlNiCo 

magnets are best suitable for applications up to 450°C .

Magnets and their Specifications

Fig. #1 An assortment of magnets are shown. Magnets can be formed and made into almost any shape. 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

30

standexelectronics.com

About Magnets

Costs

Ferrite

AlNiCo

NdFeB

SmCo

Energy (WxHmax .)

Ferrite

AlNiCo

SmCo

NdFeB

Working Temperature

NdFeB

Ferrite

SmCo

AlNiCo

Corrosion - Resistant

NdFeB

SmCo

AlNiCo

Ferrite

Opposing Field - Resistant

AlNiCo

Ferrite

NdFeB

SmCo

Mechanical Strength

Ferrite

SmCo

NdFeB

AlNiCo

Temperature Coefficient

AlNiCo

SmCo

NdFeB

Ferrite

LOW 

  

     

         

HIGH

AINICo Features

Standard Geometric and Magnetization

Rectangle

Cylinder

• 

Working Temperature 

from -250 to 450 

o

C

• 

Low Temperature  

Coefficient

AINiCo

Magnetic Values according to  

DIN 17410

Min .

Typ .

Max .

Units

Energy Product

(B x 

H) 

max .

35

kJ/ 

m

3

Remanence

600

1300

mT

Coercivity

H

cB

45

kA/m

Coercivity

H

cJ

48

kA/m

Density

7 .3

g/cm

3

Max . Operating Temperature

450

o

C

Curie Temperature

850

o

C

All details correspond to manufacturers information & magnet material

General Information to Magnet Material

Magnets have reversible and irreversible demagneti-

zation  specifications.  Be  specially  careful  with  shock, 

vibration, strong and close external magnetic fields as 

well  as  high  temperatures. All  these  factors  influence 

the magnetic force and the long term stability in dif-

ferent intensities . Preferably the magnet is mounted 

on the moving part of the application . Professional 

tuning of magnet and reed switch can improve the 

functionality of the whole sensor-magnet system . 

 

AlNiCo – Magnets

Raw materials for AlNiCo magnets are aluminium nickel, 

cobalt, iron and titanium . AlNiCos are produced in a 

sintering - casting procedure . The hard material needs 

to be processed by grinding to be cost effective . Due to 

its  specifications,  the  best  dimension  is  a  remarkably 

longer length than its diameter . In combination with reed 

sensors / switches  we  recommend  a  length / diameter 

ratio of more than 4 . AlNiCo magnets have an excellent 

temperature stability . Cylindrical AlNiCo magnets can be 

used with all Standex Electronics reed sensors / switches 

without any problems .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

31

standexelectronics.com

About Magnets

SmCo Features

Standard Geometric and Magnetization

Disc

Rectangle

Cylinder

• 

High energy density

• 

Small size

• 

Working temperature 

up to 250 

o

C

• 

Best opposing field-

resistance

• 

Available plastic 

bounded

NdFeB Features

Standard Geometric and Magnetization

Disc

Flat Rectangle

Ring

• 

High energy density

• 

Small size

• 

Working temperature 

up to 180 

o

C

• 

Lower prices com-

pared to SmCo

• 

Available plastic 

bounded

Rare earth magnets like SmCo and NdFeB have the 

highest energy density per volume and weight and also 

the best demagnetization resistance . Following below, 

we compare other magnets with the same energy:

• Hartferrit   =    Volumes 6 cm

3

• AlNiCo 

=    Volumes 4 cm

3

• SmCo 

=    Volumes 1 cm

3

• NdFeB 

=    Volumes 0 .5 cm

3

Rare – Earth Magnets (NdFeB & SmCo)

Datenbuch-Reed-Technology-EN-2022-html.html
background image

32

standexelectronics.com

About Magnets

SmCo

5

Magnetic Values according to DIN 17410

Min .

Typ .

Max .

Units

Energy Product

(B x H) 

max .

150

220

kJ/ m

3

Remanence

B

r

900

1050

mT

Coercivity

H

cB

700

kA/m

Coercivity

H

cJ

1500

kA/m

Density

8 .3

g/cm

3

Max . Operating Temperature

250

o

C

Curie Temperature

750

o

C

All details correspond to manufacturers information & magnet material

NdFeB

Magnetic Values according to DIN 17410

Min .

Typ .

Max .

Units

Energy Product

(B x H) 

max .

200

400

kJ/ m

3

Remanence

B

r

1020

1400

mT

Coercivity

H

cB

800

kA/m

Coercivity

H

cJ

955

2000

kA/m

Density

7 .6

g/cm

3

Max . Operating Temperature

160

o

C

Curie Temperature

330

o

C

All details correspond to manufacturers information & magnet material

Both magnets are produced by sintering and can only be 

processed by grinding, due to the strength and brittle of 

the material . The temperature range goes up to + 250 °C . 

Very small magnets can be produced . Disadvantages are 

the high raw material prices and the limited availability 

of special alloys .

 The supply of different geometry, size and magnetization 

allow many creative combination of reed sensor / switch 

and magnet and help to find the best functionality of the 

sensor – magnet system for each application .

 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

33

standexelectronics.com

About Magnets

Ferrite Features

Standard Geometric and Magnetization

Disc

Rectangle

Cylinder

Ring

• 

Cheapest magnet 

material

• 

Working temperature 

up to 300 

o

C

• 

Many options in form 

and magnetiuation

• 

Available plastic 

bounded

Ferrite

Magnetic Values according to DIN 17410

Min .

Typ .

Max .

Units

Energy Product

(B x H) 

max .

26

kJ/ m

3

Remanence

B

r

200

410

mT

Coercivity

H

cB

200

kA/m

Coercivity

H

cJ

240

kA/m

Density

4 .8

g/cm

3

Max . Operating Temperature

250

o

C

Curie Temperature

450

o

C

All details correspond to manufacturers information & magnet material

Hard ferrite magnets are produced with iron oxide and 

barium or strontium oxide . The raw materials are mixed 

together and normally pre sintered, to generate the 

magnetic phase . The pre sintered mixture then gets 

crushed . The resulting powder gets pressed together 

(wet or dry) either in a magnetic field (an - isotropic) or 

without a magnetic field (isotropic) and in the end sin-

tered . Proceedings are only possible by grinding . Due 

to the low cost of the raw material, hard ferrite magnets 

are the cheapest magnet type out of the actual supply of 

magnets . Ferrites have a very good electrical isolation 

effect and are hard to demagnetize even in strong exter-

nal magnetic fields. Corrosion tendency is low. Preferred 

shapes are long and thin but also round forms are easy 

to produce . Disadvantages are the high breakability and 

the low tensile strength . The strength and brittleness of 

hard ferrites are similar to ceramics . Furthermore the 

temperature resistance is limited and they have only a 

low energy to volume ratio .

Hard Ferrite – Magnets

Datenbuch-Reed-Technology-EN-2022-html.html
background image

34

standexelectronics.com

About Magnets

The strong magnetic forces of attraction can cause skin bruises. Sufficient 

security distances need to be kept between each magnet and all other 

ferromagnetic elements!

A crash of magnets with high energy can produce splinters . Therefore al-

ways wear protection gloves and glasses!

Grinding dust of Rear – Earth Magnets is spontaneously inflammable. Al-

ways process with water!

Crashes of magnets can cause sparks . Handling and processing in EX – 

environment is therefore strictly prohibited!

Strong magnetic fields can influence electronic and electrical devices as 

well as data mediums . Don’t bring magnets close to peace makers, navi-

gation instruments, diskettes, plug-in boards etc .

For air cargo a special declaration maybe possible .

Radioactivity as well as joining together equal poles can reduce the ma-

gnetic force .

The highest defined working temperature must not be passed.

For all questions concerning magnets and, of course, reed products, please consult us!

Handling Information for Magnets

Datenbuch-Reed-Technology-EN-2022-html.html
background image

35

standexelectronics.com

About Magnets

Magnetization

Applications

Arrangement

Magnetized in height 

(preferred orientation)

Motors, magnetic couplings, 

ABS-systems, locking sys-

tems, cutter, press cylinder

Isotropic

Anisotropic

Axial magnetization

Loud-speakers, pot-magnet 

systems, holding systems, 

magnet switch, protection gas 

control

Isotropic

Anisotropic

Axial, sector-shaped 

magnetized, e .g . 6-pole

Synchronized motors, ma-

gnetic couplings, brakes, hall 

sensors, hard-disc-drive

Isotropic

Anisotropic

Radial magnetization

Lifting magnets, holding sys-

tems, magnet bearings

Isotropic

Anisotropic 1)

Diametric magnetization

Synchronous motors, pumps

Isotropic

Anisotropic 1)

Magnetized on sec-

torshaped surface, e .g . 

6-pole magnet

Magnetic separation, brakes, 

holding systems, hall sensors, 

hard-disc-drive

Isotropic

Anisotropic

Pole-oriented

Multi-pole in circumfe-

rence magnetized e .g . 

4-pole

Dynamos, engines, magnetic 

couplings, brakes, hall sen-

sors, tachometer

Isotropic

Pole-oriented

Two- or multi pole 

magnetized at inside -ø, 

e .g . 4-polig

Magnetic couplings, brakes, 

motors, hall sensors, tacho-

meter

Isotropic

Anisotropic

Magnetized on lamellar- 

shaped surface P = pole 

pitch

Holding systems, protection 

gas control . hall sensors, 

brakes

isotropic

anisotropic

pole-oriented

Radial magnetization

Motors, magnetic couplings

Isotropic

Anisotropic

Diametric magnetization

Motors, magnetic couplings

Isotropic

Anisotropic

h

S

N

S

N

s

N

S

N

N

s

s

N

N

S

S

N

N

P

N

N

S

S

S

N

N

S

N

S

N

S

S

N

N

S

S

S

N

S

N

s

s

N

N

S

S

S

N

N

N

S

S

N

N

S

S

N

N

S

S

S

N

N

N

s

s

s

s

s

s

s s

N

N

N

N

N

N

N

N

h

S

N

S

S

S

N

N

N

S

S

N

N

Magnetization

Datenbuch-Reed-Technology-EN-2022-html.html
background image

36

standexelectronics.com

Notes

Datenbuch-Reed-Technology-EN-2022-html.html
background image

37

standexelectronics.com

Precautions

Many users of Reed Switches for sensor and reed relay 

applications try to make the sensors and or relays them-

selves internally . Often however, they do not observe 

some basic precautions and preventive measures to 

insure reliable operation of the switch . Below we try to 

cover the key areas that users and manufacturers must 

observe .

Reed  Switch  modifications  can  be  very  dangerous  to 

the Reed Switch if not done properly . Primarily, this is 

because the reed lead is large by comparison to the glass 

seal . Here a balance is achieved in Reed Switch sen-

sitivity and mechanical strength . If the lead of the Reed 

Switch was much smaller than the glass, seal stress 

and glass breakage would not be an issue . However, to 

achieve the sensitivity and power requirements in the 

Reed Switch, a larger lead blade is necessary . With that 

in mind, it cannot be emphasized enough, any forming 

or cutting of the Reed Switch leads must be done with 

extreme caution . Any cracking or chipping of the glass 

are signs that damage has occurred . Internal damage can 

occur with no visible signs on the seal . In these instances, 

seal stress has occurred, leaving a torsional, lateral, or 

translational stress in the seal . This produces a net force 

on the contact area that can affect the operate charac-

teristics (Pull-In and Drop-Out), contact resistance, and 

life characteristics .

Most Reed Switch suppliers can perform value added 

cutting and shaping of the leads in a stress free environ-

ment using proper tooling and fixtures. Often times this 

is the most economical approach for users, although it 

may not seem so at the time .

Many times the user will often choose to make their own 

modifications, and only after manufacturing and quality 

problems with the product, do they go back and choose 

the approach of letting the Reed Switch manufacturer 

perform the value added requirements. Below, in figure 

#1 and #2, is the proper approach for cutting and/or 

bending the Reed Switch . The effect on the Pull-In and 

Drop-Out characteristics of cutting and bending the Reed 

Switch will be explained later in more detail .

Fig. #1 Presentation of the proper and improper way of bend-

ing a Reed Switch. Supporting the switch lead while bending 

is a must.

Handling and Load Precautions when using Reed 

Switches in various Sensor and Relay Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

38

standexelectronics.com

Precautions

Fig. #2 Properly supported the switch lead while cutting is re-

quired, otherwise damage can occur to the Reed Switch. 

Soldering and Welding

Many times soldering or welding of the Reed Switch is 

required . Reed Switches are usually plated with a suit-

able solderable plating . Welding is also easily carried 

out on the nickel/iron leads of the Reed Switch as well . 

However, in both processes, if not done properly, stress, 

cracking, chipping or breaking of the Reed Switch can 

occur . When soldering or welding, the farther one is away 

from the glass seal the better . Many times, this may not 

be possible . Welding can be the most dangerous if one 

is welding very close to the seal . Here a heat front of up 

to 1,000 °C can conduct its way to the seal .

Since it arrives on one end of the seal first, the other 

end of the seal may be at 20 °C . This causes a dramatic 

thermal gradient to exist across the seal which can disrupt 

the seal in many ways, all of which, will give rise to faulty 

Reed Switch operation. See figure #3.

Fig. #3 Soldering and welding can generate a heat front to 

the glass to metal seal of the Reed Switch causing potential 

damage.

Soldering, in a similar manner, close to the seal can have 

the same effect to a lesser extent because of the lower 

solder temperatures involved (200°C to 300°C) .

Two ways to improve the likelihood of success are by 

heat sinking the lead of the Reed Switch (figure #4) or by 

preheating the Reed Switch and/or assembly .

Fig. #4 Use of Heat Sinking or preheating Reed Switches for 

soldering or welding can prevent heat stress damage.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

39

standexelectronics.com

Precautions

Most commercial wave soldering machines have a pre-

heating section before the PCB or assembly is immersed 

into the solder wave . Here the thermal shock is reduced 

by the existing higher ambient temperature preexisting 

before the solder wave, thereby reducing the thermal 

gra-dient to the reed switch seal .

Printed Circuit Board (PCB)

Mounting Reed products mounted on PCBs can some-

times  be  a  problem.  If  the  PCBs  have  a  flex  to  them 

after wave soldering, removing this flex may be required 

when mounting the board to a fixed position. When the 

flex is removed, the hole distance, where a Reed Switch 

for instance may be mounted, can change by a small 

amount . If there is no provision in the mounting to take 

this small movement into consideration, the Reed switch 

seal will end up absorbing the movement, which leads to 

seal stress, glass chipping or cracking . Care should be 

taken in this area, particularly when very thin PCBs are 

used and flexing or board distortion is common.

Using Ultrasonics

Another approach to making a connection to a Reed 

Switch is ultrasonic welding . Reed Switch Sensors and 

Reed Relays may also be sealed in plastic housings 

where the sealing process uses ultrasonic welding . In 

addition, cleaning stations use ultrasonic welding . In all 

these areas the Reed Switch can be damaged by the 

ultrasonic frequency . Ultrasonic frequencies range from 

10kHz to 250kHz, and in some cases even higher . One 

does not only have to be concerned with the resonant 

frequency of the Reed Switch and its harmonics, but also 

of the resonant frequency of the assembly in which the 

Reed Switch resides . Given the right frequency and the 

exact conditions severe damage can occur to the con-

tacts . If using ultrasonics in any of the above conditions, 

be very cautious and perform exhaustive testing to insure 

there is no interaction or reaction with the Reed Switch .

 

Dropping Reed Switch Products

Dropping the Reed Switch, a Reed Sensor, or a Reed 

Relay on a hard object, typically on the floor of a manu-

facturing facility, can induce a damaging shock to the 

Reed Switch . Shocks above 200 Gs should be avoided 

at all costs . (See Figure #5) . Dropping any of the above 

on a hard floor from 30 cm or more (greater than one foot) 

can and will often destroy a Reed Switch where G forces 

greater than 100 G are not uncommon . Not only can 

the glass seal crack under these circumstances, but the 

reed blades may be dramatically altered . Here the gaps 

may have been drastically increased or the gaps may be 

closed, due to these high G forces . Simple precautions of 

placing rubber mats at assembly stations can eliminate 

these problems . Also, instructing operators that if a reed 

product is dropped it can not be used until it is re-tested .

Fig. #5 Dropping the Reed Switch on a hard surface can in-

duce several 100 G to the contacts many times altering the 

switch characteristics.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

40

standexelectronics.com

Precautions

Encapsulating Reed Switch Products

Further damage can occur to a Reed Switch when one 

attempts to package the Reed Switch by sealing, pot-

ting, or encapsulating . Whether this is done by a one or 

two part epoxy, thermoplastic encapsulation, thermoset 

encapsulation, or other approaches, damage to the glass 

seal can occur . Without any buffer, the encapsulants 

crack, chip or stress the glass seal . Using a buffer com-

pound between the Reed Switch and the encapsulant 

that absorbs any induced stress is a good approach to 

eliminate this problem . Another approach would be to 

match the linear coefficient of thermal expansion with 

that of the Reed Switch, thereby reducing stress as the 

temperature fluctuates. However, keep in mind, this ap-

proach does not take into consideration the shrinkage 

that occurs in most epoxies and encapsulants during 

the curing stage . 

Sometimes a combination of both approaches may be 

the best way to seal a product with a Reed Switch .

Temperature Effects and Mechanical 

Shock

Temperature cycling and temperature shock if naturally 

occurring in a Reed Switch application must be taken 

into consideration . Again, temperature changes creat-

ing movement with various materials due to their linear 

coefficients of thermal expansion will induce stress to 

the Reed Switch if not properly dealt with . All our Reed 

Sensors and Reed Relays have been designed to handle 

temperature changes and mechanical shock . Through 

rigorous  qualification  testing  by  exposure  to  tempera-

ture cycling, temperature shock and mechanical shock, 

potential design defects have been eliminated from our 

products .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

41

standexelectronics.com

Precautions

The Reed Switch contact rating is dependent on the 

switch size, gap size or ampere turn rating, contact mate-

rial and atmosphere within the glass capsule . To receive 

the maximum life for a given load some precautions may 

be necessary . 

Because a Reed Switch is a mechanical device and has 

moving parts, there are circumstances where life will be 

shortened due primarily to contact wear . Switching no 

load or loads where the voltage is less that 5 Volts @ 10 

mA or less, the contacts undergo little or no wear . Here 

life times in excess of billions of operations are expected 

and realized . In the 10 Volt range, higher contact wear 

will take place . The amount of wear is dependent upon 

the current switched . Generally speaking, switching 10 

Volts @ 10 mA, life times of 50 million to 200 million op-

erations can be expected . If one is looking for more life 

under these circumstances and you can not eliminate the 

actual switching of the load, mercury wetted contacts may 

be the correct solution . Here the contacts actually have 

a small amount of mercury on them so that no net metal 

is ever transferred from contact to contact . Life for most 

‘hot’ switching loads using mercury wetted contacts will 

also be in the billions of operations even when switching 

100’s of Volts at 10’s of mA .

Switching pure DC loads is always advised . All the data 

shown in our life test section, has been taken under this 

condition . Avoid loads with a leading or trailing power 

factors . 

The quick disconnection creates a high induction volt-

age, which will result in arcing . This creates burns on 

the contact surface .

When the contacts see a net overall capacitive load, an 

inrush of current will occur when closing the contacts . 

Contact damage and even sticking will occur depend-

ing up the total capacitance, voltage present and series 

resistance .

Tungsten filament lamps, a very popular switching load 

for Reed Switches particularly in automotive, have inrush 

currents due to their cold filaments. Once the light is on 

the resistance in the filament rises rapidly reducing the 

current flow. Typically current surges in the order of 10 

to 20 times the stead state current can be expected . 

Knowing  the  cold  filament  resistance  is  important  to 

determine the size of the inrush current . Adding some 

series resistance to the same circuit can have a dramatic 

improvement on the life of the switch .

Capacitive and Inductive Loads  

Stray capacitance may be present, to some degree, 

when switching any voltage and current . When closing 

and switching a given voltage and current, the first 50 

nanoSeconds are the most important (figure #6). This is 

where the exact amount of arcing will occur . If there is a 

significant amount (depends on the amount of voltage 

switched), of stray capacitance in the switching circuit, 

a much greater arc may occur and thereby reduce life . 

When switching any sizable voltage, it is always a smart 

idea to place a fast current probe in the circuit to see ex-

actly what one is switching in the first 50 nanoSeconds. 

Generally speaking, when switching voltages over 50 

Volts, 50 picoFarads or more can be very significant to 

the expected life times . If the Reed Switch is operated 

remotely with a long cable connection, that cable can 

act like a long distributed capacitance . Shields and other 

potentially capacitive components can also lend their 

capacitance to high inrush currents .

Load Switching and Contact Protection

Datenbuch-Reed-Technology-EN-2022-html.html
background image

42

standexelectronics.com

Precautions

Fig. #6 Surprisingly large inrush currents can be generated 

across the contact when stray capacitance is charged to com-

pliance voltages. Contact life may be dramatically shortened.

When line voltages are present in or near sensitive cir-

cuits, be cautious . Those voltages can be coupled into 

the circuit creating havoc with your life requirements . 

Typically, a faulty Reed Switch is blamed for this reduced 

life, when in actuality, it is a product of unforeseen condi-

tions in the circuit . 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

43

standexelectronics.com

Precautions

Under above conditions, protective circuitry can be added 

which will minimize the metal transfer at the time of the 

transitions, but not eliminate it. Circuits shown in figure 

#7 are very typical . The capacitance can be only a few 

pF attributed to stray capacitances or actual capacitive 

com-ponents in the mf range . Capacitors in an elec-

tronic circuit store charge . By their nature they like to 

give up their entire charge as quickly as possible . With 

no resistance or impedance to the flow of the current, 

that is exactly what will occur .

Fig. #7 Switching capacitance directly will damage the con-

tacts rapidly with high inrush currents. Adding a resistor or an 

inductor will reduce the inrush current and reduce the contact 

wear.

Inrush currents are to be avoided or minimized when 

closing the contacts of a Reed Switch . If your circuit al-

lows series resistance to be added directly in line with 

the Reed Switch, that is generally the best choice . The 

higher the resistance the better as shown in Figure #7 .

Using an inductor or adding inductance in the circuit 

can be effective as well . Inductors initially impede the 

flow of current, thereby reducing inrush currents. Here a 

careful balance must be calculated such that too much 

inductance is not added, thwarting its effect and creating 

another problem when the contacts open . 

Switching inductive loads such as relays, sole-noids, 

coil driven counters, small motors or inductive circuits 

will all require protective circuitry to lengthen the life of 

the reed contacts (see figure 8).

Protection Circuitry

Datenbuch-Reed-Technology-EN-2022-html.html
background image

44

standexelectronics.com

Precautions

Fig. #8 Abruptly opening a circuit with an inductor can pro-

duce a very large back voltage. Adding a diode in parallel with 

the coil will dramatically reduce this voltage. An RC network 
across the contact will also help.

Inrush Current Loads 

Lamp loads can also produce high inrush currents when 

they are initially switched on . Here typically tungsten 

filaments are used in small bulbs which will have inrush 

currents as high as 10 times their normal operating cur-

rent when initially switched on. See figure #9. Adding re-

sistance in series with the lamp can dramatically reduce 

the inrush current and play a major role in extending the 

life of the Reed Switch .

Another approach is to add a parallel resistor across 

the contacts as shown in Figure #9 . In this case, a small 

current always flows through the filament keeping it hot 

and  its  resistance  high. This  current  flow  is  balanced 

such that the filament is not ‘glowing’. Now when the 

Reed Switch is activated, the current switched is close 

to its steady state current .

Fig. #9 Lamps when first turned on have a high inrush current because of their cold filament. Adding series resistance will reduce 

the inrush. Having a resistor in parallel with the contacts will allow a trickle current to flow, heating the lamp filament below it. Then 

when the contacts close the filament is hot and does not draw an inrush current.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

45

standexelectronics.com

Ampere-Turns (AT) versus Millitesla (mT)

With the advent of the Reed Switch, developed by Bell 

Labs in the 1930s, it was convenient to measure its 

operate characteristics using the units of ampere turns . 

Since the Reed Switch is cylindrical it is easy to make 

the measurement of its closure, release and contact 

resistance using a coil with a given geometry, wire size 

and number of turns . It is easy to conventionalize this 

approach as long as other users, internal or external, 

find no problem using ampere-turns (AT) as their unit 

of measure .

However,  a  real  problem  arises  when  one  finds  that 

no convention has ever been adopted in the Reed 

Switches’ long history; in fact, most manufacturers of 

Reed Switches have their own standard . Therefore, 

companies who purchase their Reed Switches for making 

Reed Relays, Reed Sensors or other reed products find 

they have to deal with an assortment of AT standards . 

No true standard is offered to customers who use Reed 

Relays, Reed Sensors, etc .

Users find themselves selecting reed products with no 

idea how to categorize or select them for their own ap-

plications . This results in much time lost and frustration 

in trying to select the proper product . Often times, many 

thousands of dollars may be lost through high production 

failures or production line shut down, before determining 

the correct Reed Switch sensitivity selection .

What we plan to present here is a standard that manufac-

turers of Reed Switches, manufacturers of reed products, 

and users of reed products can all use . We will present 

a simple way to bridge the approach of measuring the 

magnetic field strength of a Reed Switch from the Reed 

Switch manufacturer/reed product manufacturer to the 

reed user’s application .

Before we present this approach, we need to review 

a few very important points that generally affect Reed 

Switch applications:

1 . 

When a Reed Switch is initially measured, it is 

made with its given overall length . This length is 

established by the manufacturer to offer the users 

the most flexibility for short and long length design 

requirements . As one cuts the Reed Switch to a 

given size for a given application the AT for that 

switch will change . If now measured in the same 

coil to a given cut length, the AT will be different . 

If  significant  lead  length  is  cut  off  the AT  change 

can be dramatic . This occurs because the reed 

blades are ferromagnetic and the more magnetic 

material  present  the  more  efficient  the  magnetic 

field strength. Cutting away the magnetic material 

will reduce the magnetic field strength; thereby, re-

ducing the magnetic sensitivity of the Reed Switch . 

Some companies for a given special requirement 

will  supply  the AT  difference  in  their  specification 

for a given cut length . However, if the user cannot 

measure his application in the standard test coil 

used by the Reed Switch supplier because his ap-

plication does not ‘fit’ into it, which is most times the 

case, it becomes impossible to directly correlate 

between the two companies when using AT only . 

 

 

   

2 . 

Reed Switches that are not cut, but bent into a new 

configuration, will often undergo an AT change as 

well . Here, whenever the magnetic path is altered, 

the magnetic field strength may change depending 

upon the new given configuration. 

 

 

  

3 . 

When a Reed Switch is bent into a new configura-

tion with or without cutting the lead length, the AT 

may be additionally altered by improperly bending 

the Reed Switch . All Reed Switches have some 

susceptibility to any stress placed on either end of 

its glass to metal seal . Some switches are more 

susceptible than others . In any case, a stress to 

the seal can alter the mechanical operation and 

thereby alter its AT . The Reed Switch gap gener-

ally averages less than 25 microns (0 .001”) . Any 

small mechanical change produced by either a tor-

sional, rotational or linear force can give rise to an 

A Comparison of the measured Magnetic Field 

Strength using Ampere-Turns (AT) and Millitesla (mT)

Datenbuch-Reed-Technology-EN-2022-html.html
background image

46

standexelectronics.com

Ampere-Turns (AT) versus Millitesla (mT)

AT or contact resistance change . The contact gap, 

contact design, blade overlap, lead material, lead 

material hardness, lead material length and thick-

ness, seal strength, seal length, glass length and 

measurement approach, will all influence the AT of 

a Reed Switch .  

Since the user in most cases can not measure his mag-

netic field requirements in AT, the easi-est way and more 

accepted way is to measure the requirement in Gauss or 

Millitesla (mT) . Here 10 Gauss is equal to 1 mT making 

the in-terchange between the two units an easy task . 

More generally accepted outside the Reed Switch and 

reed product manufacturing arena is the use of Gauss 

and Tesla or Millitesla (mT) . 

Bridging Ampere-Turns (AT) to Milli-

tesla (mT)  

The rest of this discussion will be to bridge the gap be-

tween ampere-turns (AT) to Millitesla (mT) . The lower the 

AT or mT rating of a Reed Switch the lower the magnetic 

field strength required to close the Reed Switch. To ac-

complish this bridge, we have chosen to use its internal 

KMS standard coils as our AT standard; and bridging to 

mT by using a standard AlNiCo 5 magnet with a given 

length and mT rating . We found the easiest way to make 

this bridging of units was to do the following: 

1 . 

First measure a group of Reed Switches in our 

standard KMS coil and record the operate AT . 

 

 

   

2 . 

Using a linear micrometer table, with a 1240 mT 

AlNiCo 5 magnet measuring 4 mm by 19 mm in 

length, mounted at its axis origin, the magnetic field 

strength was measured (in mT) at regular mm inter-

vals along the linear axis . See Figure 1 . Here it is very 

important not to have any ferromagnetic material as 

part of the test setup or anywhere near the testing . . 

 

  

 

3 . 

Using the same setup as in step two, we now 

measure the operate point in mm of the previously 

measured Reed Switches used in step one . 

 

 

  

 

4 . 

The mm distance of the closure points is now 

mapped with the mT field strength taken in step two

The graphs that follow were produced in exactly this 

above described manner . Keep in mind this data is taken 

for the full length, uncut Reed Switch . However, this data 

can be used for various cut lengths by using another 

graph, which presents the percent of change for a given 

cut length . This percentage change graph is shown for 

various AT switches and the percentage changes not 

covered can be extrapolated using the graph data . 

Using the graphs in figure 5ff, we can directly convert 

to mT .

An example of using this approach with the included 

graphs is the following:

1 . 

Your application requires you to use our KSK-1A85 

Reed Switch, and you need to use only its cut length 

of 30 mm . 

 

 

 

 

 

2 . 

You plan to have the Reed Switch close 15 mm  

away from the magnet you have chosen .    

 

 

  

3 . 

You are capable of measuring your magnetic field 

strength at this distance with a standard gaussme-

ter, and find you have a 2.2 mT field 15 mm from 

your 

magnet . 

 

   

 

4 . 

You  next  look  at  figure  7.  where  the AT  and  mT 

graphs presents the comparison you need for the 

KSK-1A85 . But since you are cutting the Reed 

Switch to 30 mm you need to determine the per-

cent increase expected . For a 20 AT Reed Switch 

being cut to 30 mm the percent increase is approxi-

mately 30% or 6 AT change (see Figure 3) . This 

brings the AT of the switch up to 26 AT . Now, look-

ing at Figure 3 you see 26 AT corresponds to about 

1 .7 

mT .   

   

Datenbuch-Reed-Technology-EN-2022-html.html
background image

47

standexelectronics.com

Ampere-Turns (AT) versus Millitesla (mT)

 

5 . 

Here the original 20 AT switch will close well under 

the field of 2.2 mT giving you plenty of margin. In 

this way, depending upon your tolerances, you can 

directly select the AT range you require .  

Please be aware, that a Hall probe only measures the 

field strength at a certain point. Whereas a Reed Switch 

absorbs  the  magnetic  field  lines  of  its  entire  length.  

Therefore this approach can only be used for a rough 

approximation but, will enable your engineers to make a 

preselection of the Reed Switch easily, quickly and cost 

effectively for your application . Following this, we would 

be able to help you with the precision adjustment . 

Fig. #1 Presentation of the equipment and test layout in which the magnetic data was taken using a linear micrometer.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

48

standexelectronics.com

Ampere-Turns (AT) versus Millitesla (mT)

Pull-In AT vs Reed Switch Cut Length

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

Reed Switch Cut Length (mm)

 

12 AT
14 AT
17 AT
20 AT

Pull-In 

AT

Pull-In AT vs Reed Switch Cut Length

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

22

24

26

28

30

32

34

36

Reed Switch Cut Length in (mm)

Pull-In AT

5 AT
8 AT
12 AT
14 AT
17 AT
20 AT

Pull-In AT vs Reed Switch Cut Length

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

22

24

26

28

30

32

34

36

38

40

42

44

46

Reed Switch Cut Length (mm)

5 AT

8 AT

12 AT

14 AT

17 AT

20 AT

Pull-In 

AT

Pull-In AT vs Reed Switch Cut Length

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

22

24

26

28

30

32

34

36

38

40

42

44

46

Reed Switch Cut Length (mm)

5 AT

8 AT

12 AT

14 AT

17 AT

20 AT

Pull-In 

AT

The following graphs show the AT change for various cut 

lengths of Reed Switches .

Fig. #2 Presentation of the operate AT change for various cut 
lengths for a given operate AT.  

Fig. #3 Presentation of the operate AT change for various cut 
lengths for a given operate AT. 

Fig. #4 Presentation of the operate AT change for various cut 

lengths for a given operate AT. 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

49

standexelectronics.com

Ampere-Turns (AT) versus Millitesla (mT)

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

10,00

14,00

18,00

22,00

26,00

Pull-In AT vs Pull-In Distance in mm

Pull-In Distance mm

Pull-In AT

Pull-In AT vs Pull-In mT

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

0,00

0,50

1,00

1,50

2,00

2,50

Pull-In mT

Pull-In AT

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

Pull-In AT vs Pull-In Distance in mT

Pull-In mT

Pull-In AT

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

8,00

12,00

16,00

20,00

24,00

Pull-In AT vs Pull-In Distance in mm

Pull-In Distance in mm

Pull-In AT

We have also supplied graphs showing the AT operate 

point versus mm distance so that a gaussmeter is not 

necessary . Just using these enclosed graphs will allow 

you to make the correct selection assuming you are us-

ing a similar magnet as was used in our data selection .

Fig. #5 The Pull-In AT is presented with its corre-sponding mT 

Pull-In level.

Fig. #6 The Pull-In AT is presented with its corresponding Pull-

In distance from the magnet, and is measured in mm. 

Fig. #7 The Pull-In AT is presented with its corresponding mT 

Pull-In level.

Fig. #8 The Pull-In AT is presented with its corresponding Pull-

In distance from the magnet, and is measured in mm. 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

50

standexelectronics.com

Ampere-Turns (AT) versus Millitesla (mT)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

8,00

12,00

16,00

20,00

24,00

Pull-In AT vs Pull-In Distance in mm

Pull-In mT

Pull-In AT

0,00

10,00

20,00

30,00

40,00

50,00

60,00

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

Pull-In AT vs Pull-In mT

Pull-In mT

Pull-In AT

Fig. #9 The Pull-In AT is presented with its corresponding mT 

Pull-In level .

Fig #10 The Pull-In AT is presented with its corresponding Pull-

In distance from the magnet, and is measured in mm.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

51

standexelectronics.com

Application Examples

Introduction

Reading the previous sections on the Reed Switch 

basics, key parameters, and operational characteristics 

before delving into this section will give one a better 

background and more insight into developing require-

ments for your own applications .

Without question, the Reed Switches’ hermeticity lends 

itself to more switching applications than any other 

switching device . Its ability to be used as a complete 

sensing component by itself or the ease of packaging 

it into special sensing requirements is done without any 

complicated process or high tooling costs .

There are so many existing and potential applications 

for Reed Sensors that it would be impossible to discuss 

them all here . We will however, cover some of the basic 

applications which we hope, will give insight and help 

to your application . Once you review this section and 

some of the sensor specifications offered in this book, 

please feel free to call our applications department, where 

qualified  engineers  will  be  able  to  answer  questions 

pertaining to your application . Free samples are always 

available as well .

Obviously if your application requires one of our stan-

dard sensors from our catalog, that is clearly the best 

approach and the quickest solution to satisfying your 

design requirement . However, more than half of our 

shipped sensors are from special requirements . Since 

many sensing requirements are unique, working with 

customers on their special applications is expected .

Using the Reed Switch by itself can seem like the sim-

plest approach . However, without proper consideration 

and precaution it could become disastrous . If you decide 

to go this route, be sure to read our precautions section . 

Most important to keep in mind, the Reed Switch is a 

glass capsule and is susceptible to breakage . Observing 

this, and properly mounting the switch in a stress free en-

vironment, will prove to be a winning combination . If you 

do have failures or erratic operation, please discuss your 

problem with our applications engineering . Many times 

we have taken over the application and manufactured 

the entire sensor thereby producing a fault free sensor . 

In the end, it would have been less expensive having 

us design and manufacture the entire sensor from the 

beginning . Keeping this in mind, we really are open to 

working with you on your application in either manner .

Reed Switch Selection

Initially the most important step is the proper selection 

of the correct Reed Switch for a given application . If 

the sensor is simply switching the gate of a transistor 

or digital gate any Reed Switch will handle that require-

ment . The question then becomes one of size and cost . 

Looking through our Reed Switch selection chart will 

help you arrive at the best choice . If you are switching a 

load, ‘hot’ switching a voltage at some current level, care 

must be taken to select the proper wattage Reed Switch 

with the corresponding required voltage and current 

level . Sensors requiring long life times (10’s of millions 

of operations) will need special attention to the load you 

are switching . If you are switching 5 Volts @10 mA or 

less you will not have a life problem; above this level care 

must be taken . Talking with our applications engineers 

and reviewing our life testing section will be helpful .

Reed Sensor Packaging

Usually packaging is the safest approach when devel-

oping a Reed Sensor . Carefully protecting the glass to 

metal seal from potential damage or stress will result in a 

fault free application . When packaging the Reed Switch, 

even when it ‘looks’ fine, stress may have been induced 

through bending, cutting, soldering, welding, potting, or 

encapsulating the Reed Switch, with erratic behavior 

resulting . Packaging the Reed Switch without inducing 

any stress is critical to proper operation and long life, 

whether it is packaged by the user or by the Reed Switch 

Sensor manufacturer . Collaboration on the application, 

between the user and the Sensor manufacturer must be 

carried out in a detailed fashion .

Reed Switch and Reed Sensor Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

52

standexelectronics.com

Application Examples

Using our Reed Switch Sensor selector guide will give 

the user some ideas as to packaging styles and sizes . 

Special packages with specific connectors or connections 

are very much a norm . So do not hesitate, to offer your 

special packaging requirement . Our special packages are 

far too numerous to show in our Data Book . When deter-

mining the closure and opening distance care must be 

taken to include the distance within the package as part 

of the sensing distance . Standard packages offered by 

Standex Electronics will take this distance into consider-

ation in the design . However, on special packages, keep 

this distance in mind because it does affect sensitivity .

Plastic packages are easiest to tool and are the least 

expensive . However, if a rugged enclosure is required, 

use of a non-ferromagnetic material may be the best 

approach . Be careful not to include any nickel, iron, or 

cobalt in the package. They will shunt the magnetic field.

Lead lengths and connectors are wide open with hun-

dreds of possibilities for all potential requirements .

Reed Sensor Mounting

Mounting a Reed Sensor is generally quite open with a 

multitude of options . However, care must be taken not 

to mount the sensor on any ferro-magnetic material or 

be within its influence. Keep in mind, magnetic flux lines 

prefer to travel in ferromagnetic material, which in effect, 

will have a shunting effect on the magnetic field.

We have shown cases where this effect can be used for 

positive results in some applications in our operational 

section, but one must give consideration to magnetic 

materials in the vicinity of the application . Also, any 

magnetic components that are also in the vicinity of an 

application, such as inductors, transformers, toriods, 

etc. must be given consideration to their influence in the 

magnetic sensing circuit . Our Reed Sensors come with 

an assortment of ways in which to be mounted . Many 

have simple slots for screw hole mounting; some have 

doubleback sticky tape; some simply screw into panels; 

others have pins for PCB through hole mounting; others 

have surface mount ‘J’ or ‘gull’ leads for mounting on SMT 

boards . Variations of the above are available as well, to 

meet all your application mounting possibilities .

Reed Switch Electrical Connections

All our Reed Sensors are manufactured with an assort-

ment of ways in which to be electrically connected . Most 

of the popular ways are PCB mount, leads of varying 

length for soldering, leads with connectors and surface 

mount soldering . Some lead wires will have an array of 

terminals available as options for making the electrical 

connection . Most of our series offer terminals on the leads 

for quick solderless connections . Surface mount solder-

ing is becoming increasingly popular . Our MK1, MK15, 

MK16, and MK17 were all designed with that in mind . 

Reed Switch Sensing Applications As stated, the list for 

different sensing applications is endless . We will make 

an attempt at presenting some of the more common 

sensing applications, which we hope will nurture ideas 

that may offer solutions to your sensing application . Keep 

in mind, no external power is required in a Reed Sensor 

application . The Reed Switch in most cases, once closed 

will switch the load you require . 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

53

standexelectronics.com

Application Examples

Trailer Hitch Detection and Lights

Headlights and Taillights

Brake Fluid Sensor

Tire Pressure Monitoring

Anti-Theft Alarms

Ignition Immobilizer

Anti Lock Brakes

Interior and Dashboard Lighting / LED

Washer Level Sensor

Windshield Wiper Operation

Remote Door Locks and Keyless Entry

Coolant Level Sensor

Crash Safety Sensing

Sunroofs

Gas Cap Detection

Fuel Level Sensors

Antennas

Engine Transformers,

Coils and

Ignition Assemblies

Door Latch Sensors

Gear Shift

Music Video Systems

Seat Belt Detection

Brake Pedal

Battery Deactivation

Exhaust Fumes Detection

HVAC Controls

Mirror Controls

Hood Latch Verification

Standex Electronics dynamic capabilities and solutions 

provide reed switches, relays, and sensors, magnetics, 

and fluid level sensing products throughout the trans-

portation industry . Think of anything that turns on/off, 

opens/closes, requires power transfer, lighting, starting, 

measuring, or detecting – and we can play a role within 

that application .

 

From read outs on the dashboard to measurement of 

coolant, brake, windshield, water in fuel, tire pressure, 

and emissions – our components perform within vital 

processes within automobiles, heavy-duty trucks, recre-

ational vehicles, airplanes, trains, motorcycles, E-Cars, 

E-Bikes, boats, and more .

Automotive & Transportation Market Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

54

standexelectronics.com

Application Examples

Liquid Level Detection

More  and  more  level  sensing  of  brake  fluid,  window 

washer  fluid,  and  water  cooling  fluids  are  controlled 

by Reed Sensors. A float, with a magnet mounted in it, 

is generally placed in the container . The Reed Switch 

is placed either inside or under the container for float 

detection .

In the past, automotive manufacturers used the Reed 

Switch in the brake fluid application in the following man-

ner: when the container is full the float opens the Reed 

Switch. When the liquid level drops, the float goes down 

and activates the Reed Switch . A lamp is then activated 

on the dashboard . Nowadays, automotive manufactur-

ers use the Reed Switch in reverse order . When the 

container is full, the float with the magnet, actuates and 

closes the Reed Switch. When the level of the float drops, 

the Reed Switch opens . The change in monitoring the 

opening instead of the closure has the advantage that a 

malfunction of the switch can be detected much easier . 

If the on-board computer on the automobile can electri-

cally detect a level sensor, then an advanced level sensor 

can be used . This sensor has more electronic compo-

nents than a Reed Switch . It is made with a PC board 

on which a resistor is mounted in series that protects 

the Reed Switch, and a second resistor is mounted in 

parallel so that the computer detects that the sensor is 

connected and in place .

Liquid level sensor applications range from one switch to detect 

a high or low, to arrays of many to accurately monitor fluid levels.

Brake Fluid Detection

Convertible Roof Position Sensor

Datenbuch-Reed-Technology-EN-2022-html.html
background image

55

standexelectronics.com

Application Examples

Battery Deactivation Controlled by a 

Reed Sensor

Brake Pedal Position

Datenbuch-Reed-Technology-EN-2022-html.html
background image

56

standexelectronics.com

Application Examples

Reverse osmosis

Anchor position

Hatch position

Battery detection

Winch level

Warning signals

Wind speed and direction sensor

Shore power detection

Bilge pump smart sensor

Fluid level sensors: fuel, oil, water, etc.

Clean water supply, toilet control

Kill switch

Sensor systems in

joysticks and control panel

Gearshift position,

Speed indicator

GPS positioning system

Radar antenna sensor

Detect our drive position,

Rudder position,

Trim tap position

Similar to automotive applications, Reed Sensors are 

used in marine and boat applications for level sensing 

and position detection . 

Smart Bilge Pump Sensor

Marine and Boat Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

57

standexelectronics.com

Application Examples

Security

Door Sensors

Window Sensors

Control Panels

Smoke Alarms

HVAC and Plumbing

Furnaces

Air Conditioning Compressors

Air Conditioning Condensers

Dehumidifiers
Humidifiers

Solar Panels

Gas Smart Meters

Electric Smart Meters

Instant Water Heaters

Standard Water Heaters

Water Meters

Shower Pumps

Pool and Spa Pumps

Sprinkler System Controllers

Transportation

Washer Level Sensor

Coolant Level Sensor

Keyless Entry

Ignition Immobilizer

Anti Lock Brakes

Dashboard Lighting

Marine Coils

Ignition Assemblies

Hood Latch Verification

Dashboard Lighting

Appliances

Dishwasher

Range

Oven

Microwave

Coffeemaker

Refridgerater

Ice Maker

Washers & Dryers

Other

Designer Lighting

Automatic Shades

Tablet Keyboards

Sound Sensors for Toys

Guitar Amplifiers

Microphones

Organs

Fitness Equipment

Garage Door Openers

Speakers

Household appliances and electronics feature much 

higher efficiency and are now being designed in conjunc-

tion with smart metering devices . Detecting door posi-

tion, and monitoring fluid levels are just a few examples 

of how reed switch sensors are making their way into 

household appliances .

Dishwasher Spray Arm Detection

Smart Home Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

58

standexelectronics.com

Application Examples

Security Control for Appliance Door 

Detection

The white industry of refrigerators, freezers, microwave 

ovens, stoves, etc . requires safety elements that detect 

the status (open/closed) of the appliance doors . These 

door sensors are designed in many sizes and shapes de-

pending upon the specific application. Many are specifi-

cally designed with special tooling . Generally, both a 

Reed Switch and a magnet are used, and in many cases, 

added circuitry is built into a PCB for smart sensing . 

If the sensor does not activate after a specified period 

of time, an alarm will sound, alerting one that the door 

is ajar . In the case of a freezer, several hundred dollars 

in frozen meats and other foods can be saved from 

spoilage if an open door is detected . The Reed Sensor 

is usually mounted in the chassis of the appliance and 

the permanent magnet is placed in the doorframe . Thus, 

when the door is closed, the magnet’s position is above 

or parallel to the sensor . When someone opens the door, 

the circuit is broken .

Water Flow Sensor

In this application, the sensor recognizes the movement 

of water . The Reed Switch, in going from an open to a 

closed state, produces a fast response to the initiation 

of water flow; in turn, an action sequence is initiated. 

Applications such as electric water heaters, air condi-

tioners,  etc.  represent  some  examples. A  baffle  plate 

with a magnet mounted to it is used in the water flow 

line. When water begins to flow, the baffle plate moves 

parallel to the water flow. A Reed Switch is strategically 

positioned to pick up, or sense, this movement, and once 

the magnetic field is sensed, the Reed Switch closes. In 

the case of a water heater, it instantly detects the water 

flow, and in turn triggers the heating element to be turned 

on . The alternative method of detecting the temperature 

change when cold water is added into the tank can take 

a much longer time for detection, resulting in the loss 

of valuable heating time, particularly when high water 

usage is involved

Measuring the Quantity of a Liquid or Gas

Water or fluid flow can be easily measured by mounting 

a propeller just outside the water pipe and connecting 

it underneath the plastic casing of the meter . The water 

flows through the pipe and spins the propeller. A mag-

Datenbuch-Reed-Technology-EN-2022-html.html
background image

59

standexelectronics.com

Application Examples

net is mounted on the propeller and a Reed Sensor is 

mounted outside of the plastic casing . In this case, each 

propeller rotation is counted as the magnet rotates past 

the Reed Sensor . The rotations are tallied and electronic 

circuitry converts the rotations to volumes of water (or 

other liquid) flowing through the pipes. In a similar man-

ner, the flow of gas and electricity can also be measured.

Our MK3 Sensor is often used for such applications, but 

we have many other sizes and shapes also worthy of 

your consideration .

Consumer Electronics

Sensors and switches make their way into many types 

of consumer electronics . Just about any application in-

volving movement or the the need to switch something 

on and off . A proximity sensor used in a cell phone or 

digital camera has a switch housed in the device and a 

permanent magnet positioned within the moving screen . 

Once the screen is rotated or slid to one side the magnet 

lines up with the switch contacts causing the screen to 

activate the phone or camera .

Another use for a reed sensor in a cell phone is when the 

phone is used with a docking station . When the phone is 

place into the docking station, the magnet activates the 

switch causing the phone to go into hands-free mode or 

switches into car mode for the use of a global position-

ing system GPS .

Applications

• 

Barcode Scanner

• 

Camera screen activation

• 

Cell phone screen activation

• 

Chair lift

• 

Copier position sensors

• 

Electric toothbrush

• 

Hotel security card reader

• 

Hot Tubs & Spas

• Interlocking

• Keyboards

• 

Laptop closure sensing

• 

Massage chair

• 

Printer sensors

• 

Water flow sensor

• 

Utility meter sensors

Hobby & Toy

 

Today’s toys are being designed with more and more 

moving parts requiring simple, reliable and inexpensive 

sensing solutions . Our magnetic reed sensors are a 

perfect fit in countless toy sensor applications.  

For example: a baby doll that drinks a bottle may have a 

reed sensor positioned beneath the mouth and a perma-

nent magnet molded into the bottle and when the bottle 

is held up to the it’s mouth, the baby makes a drinking 

sound or stops crying .

 

Applications

• 

Car race track

• 

Baby doll position sensor

• 

Electronic board game position sensor

• 

Mechanical movement sensing

• 

Model train

• 

Video game peripherals

Datenbuch-Reed-Technology-EN-2022-html.html
background image

60

standexelectronics.com

Application Examples

Fire and Safety doors in public buildings, hospitals, gov-

ernment buildings, hotels and other buildings regularly 

frequented by people, require the doors to be shut at all 

times except in an emergency . By law, the doors must 

be electronically controlled; if they are opened, proper 

warnings must be given . 

The topic of security gets more and more important – 

and Standex Electronics has the solutions for a lot of 

applications .

Safety Applications

• 

Passive infrared detectors

• 

Smoke and fire alarms

• 

Dial-up modems 

• 

Ultrasonic detectors

• 

Cargo & freight theft prevention

• 

Door sensor

• 

Emergency door sensor

• 

Explosive Proof

• 

Fire extinguisher

• 

Hotel security

• 

Position sensor

• 

Vehicle restraint

• 

Window sensor

Door Sensor for Fire, Safety & Emer-

gency Exit 

Hotel Security

Safety and Security

Datenbuch-Reed-Technology-EN-2022-html.html
background image

61

standexelectronics.com

Application Examples

In portable and implantable devices it is equally important 

to utilize a switch that is ultra miniature and one that 

consumes the least amount of power . Reed switches 

and sensors consume no power in their normally open 

state . Reed Relays are used in many types of medical 

equipment that require high current and/or high voltage . 

Equipment such an electrosurgical generator requires a 

high voltage relay to aid in regulating the right amount of 

current used to cauterize vessels during surgery . Similar 

equipment may use RF energy combined with saline to 

seal off vessels therefore high frequency relays would 

provide a maker solution .

Medical Applications

• 

Camera pill

• 

Handheld surgical tools

• 

Glucose monitor

• 

Hearing aid

• 

Implantable cardioinverter defibrillator ICD

• 

Orthopedic micro power instruments

• Pacemaker

• 

Portable defibrillators

• 

Surgical Instruments

• 

Spine stimulator implant

• 

Video camera pill

• 

Hospital bed

• 

Lift chair position

• 

Mobility scooter

• 

Patient lift

• 

Power wheelchair

• 

Stair lift position

• 

Wheelchair ramp position

• 

Cleaning equipment

• 

Drug dispensing systems

• 

Electrosurgical generators

• 

EKG equipment

• 

Insulin pumps

• 

Intravenous pumps

Portable medical equipment - Defibrillator

Medical

Datenbuch-Reed-Technology-EN-2022-html.html
background image

62

standexelectronics.com

Application Examples

With the ever increasing requirements for electronics 

and electronic systems, the need exists to be able make 

voltage and current measurements covering several or-

ders of magnitude . From nano-volts to kilovolts and from 

fempto-amps to amps . To do this with one instrument is 

almost impossible; however, multimeter designers have 

been able to expand the order of magnitude of these 

measurements in recent years . To be able to do this, 

the reed relay has become an essential component . Our 

specialized reed relays have helped designers meet this 

challenge . 

Test and Measurement Applications

• 

Automated Test Equipment

• 

Battery powered

• 

Cable testers

• 

Chip testers

• 

Data Acquisition/Scanning Systems

• Electrometer

• 

Functional PCB testers

• 

High voltage

• Industrial

• 

Integrated circuit testers

• 

Linear distance

• 

Medical equipment testers

• 

Modular Instrumentation

• Multimeters

• 

Network Analyzers

• Oscilloscopes

• 

RF Attenuators

• 

TVS Tester

• 

Wafer testers

• 

Weather meters

High End Multimeters Use Reed Relays to Measure Low & High Voltages

Test and Measurement

Datenbuch-Reed-Technology-EN-2022-html.html
background image

63

standexelectronics.com

Application Examples

The hermetically sealed Reed Switches can switch low 

signals, which are required for the various applications 

within the telecommunication sector .

Telecommunication Applications

• 

Device disabling

• Interlocking

• 

Mobile phone position sensing

• 

Off hook sensing

• 

Switching a cellular phone on/off in a flip phone

• 

Telephone line switching

• 

Cellular phone antenna switching

• 

Line sensing

• 

Line switching

• 

Modem switching

• 

Pager T/R switching

• 

Portable radios

• 

RF Receivers

• 

Test equipment

Reed relays for portable radios and communication systems

Telecommunication

Datenbuch-Reed-Technology-EN-2022-html.html
background image

64

standexelectronics.com

Application Examples

Many more Applications possible…

• 

Motor rotor sensing

• Thermostats

• 

Test and measurement equipment

• 

Rain gauge sensor

• 

Wind speed and direction sensing

• 

Barometric sensing

• 

Inside / outside  temperature  sensing

• 

Position sensor for exact window sun-shade  

 control

• 

Solar panels

• 

E-Bikes brake detection

• 

Sensor solutions for agriculture, forestry and cons-  

 

truction machinery

• 

Many more

E-Cars connector detection

Visit our website at www .standexelectronics .com to explore our diverse range of animated applications, including 

and beyond what is offered in this book .

Further Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

65

standexelectronics.com

Reed Relays

In a Reed Relay, the Reed Switch uses an electromag-

netic coil for activation and is shown in its simplest form 

in Figure # 1 . Reed Relays require relatively little power 

to operate and are generally gated using transistors, 

TTL directly or cmos drivers . Reed Relay contacts, 

when switched dry, (currentless closure or less than 5 

Volts @ 10 mA), will literally operate well into the billions 

of operations . In areas like automatic test equipment, 

where Reed Relays may be called upon to switch tens 

of millions of operations per year, the Reed Relay rises 

to the challenge .

Fig. #1 A Reed Relay consists of a copper insulated wire wound 

coil with a Reed Switch traditionally mounted on its center axis. 

Using the proper design, materials, placing an electro-

static shield around the Reed Switch internal to the coil 

and driving the shield, will allow coupling or passage of 

very small signals (nanoVolt signals or femptoAmpere

currents) through the relay with little or no interference . 

See  figure  #2. This  is  virtually  impossible  with  other 

technologies except at very high cost .

 

Fig. #2 Depiction of a Reed Relay showing the coil, Reed Switch, 
and shield (coaxial) placement.

Using a coaxial shield internal to the coil, the Reed Relay 

looks like a transmission line to high frequency signals . 

With Reed Switches becoming smaller and smaller, 

overall Reed Relay packages have shrunk to less than 

8 mm long, reducing the distributed capacitance (switch 

to shield) to less than 0.8 pF. See figure # 3 This has al-

lowed Reed Relays to carry frequencies up to 6 GigaHz 

without serious loss of signal strength (3 dB down) . 

Typically, insertion losses as low as 0 .2 dB and VSWR 

of 1 .1 out to 2 GHz are now realizable . Reed Relays’ RF 

characteris-tics rival the gallium arsenide mosfets and at 

1 GHz and above are very cost competitive . Reed Relays 

are now commonly used in semiconductor test equipment 

and cellular telecommunication equipment because of 

their superior better RF characteristics . 

Fig.  #3 A  Reed  Switch  mounted  internal  to  a  coaxial  shield 

provides and excellent RF path for Giga Hertz frequencies.

Numerous applications for Reed Relays exist today and 

are increasing every day . Please see our applications 

section for more detailed Reed Relay usage .

The Reed Switch used as a Reed Relay

Datenbuch-Reed-Technology-EN-2022-html.html
background image

66

standexelectronics.com

Reed Relays

Introduction

Reed Relay applications continue grow every year 

despite severe competition from other small switching 

devices such as semiconductors and electromechanical 

armature style relays .

Because the contacts in a Reed Relay are hermetically 

sealed, the contacts can switch low level signals as low 

as femtoamps and nanovolts . Electromechanical relays 

cannot do this because they are not hermetically sealed 

and have polymer films build up on their contacts that 

require a voltage arc to break through this layer before 

conduction can take place . Similarly, semiconductors 

have capacitance, leakage currents and semiconductor 

offsets to deal with that clearly limit the switching and 

detection of low voltages and currents .

Also, electromechanical relays, at best, can switch up to 

low millions of operations . Because its armature moves 

about a pivot point, wearing occurs, reducing life . The 

Reed Switch has no wearing parts and therefore, under 

signal conditions will switch into the billions of operation 

with fault free operation .

Reed Relays are ideally used for switching applications 

requiring low and stable contact resistance, low capaci-

tance, high insulation resistance, long life and small size . 

For specialty requirements such as high RF switching, 

very high voltage switching, extremely low voltage or 

low current switching, again Reed Relays are also ideal .

Reed Relay Features

• 

Long life (10

9

 operations)

• 

Multi-pole configurations up to 8 poles

• 

Form A (normally open switching)

• 

Form B (normally closed switching)

• 

Form C (single pole double throw - normally 

 

closed contacts break before the normally open 

 makes)

• 

Form D (single pole double throw - normally open

 

contacts make before the normally closed breaks)

• 

Form E (latching – bi-stable state switching )

• 

Low contact resistance (less than 50 milliohms)

• 

High insulation resistance (greater than 10

14

 ohms)

• 

Ability to switch up to 10,000 volts

• 

High current carrying ability

• 

Ability to switch and carry signals as low as 10 

 nanovolts

• 

Ability to switch and carry signals in the femtoamp

 range

• 

Capable of switching and carrying signals up to 10 

 Gigahertz

• 

Operate times in the 100μs to 300 μs range

• 

Operating temperature  from –55 to 100°C 

• 

Capable of operating in all types of environments 

 

including air, water, vacuum, oil, fuels, and dust 

 

ladened atmospheres

• 

Ability to withstand shocks up to 200 Gs

• 

Ability to withstand vibration environments of 50 Hz 

 

to 2,000 Hz at up to 30 Gs

• 

Very small sizes now available

• Auto-insertable

• 

Standard pin-outs

• 

Large assortment of package styles available

• 

Large assortment of Reed Switch options available

• 

Large assortment of coil resistances

• 

Relays can be driven in a current or voltage mode

• 

UL, CSA, EN60950, VDE, BABT 223ZV5 approved 

 

on many of our relays

• 

Magnetic shielding available on many of our 

 relays

Reed Relay Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

67

standexelectronics.com

Reed Relays

Reed Relays are susceptible to magnetic effects which 

may degrade performance under certain conditions . This 

report presents a practical approach to reducing magnetic 

effects among and between Reed Relays . The guidelines 

can be applied to many cases .

With the trend toward reducing the size of electronic 

equipment, Reed Relays are typically placed in proximity 

to one another . Magnetic coupling between relays can 

affect parameters such as pull-in and dropout voltage . In 

some circumstances, adjacent relays will be adversely

affected by their neighbors .

Experimental data is provided for some basic Reed 

Relay arrays under worst-case conditions . An analysis 

of the data is presented with equations . The data was 

gathered on single in-line package (SIL) Reed Relays, 

but applies to most Reed Relay packages because the 

basic physical principles are the same .

A checklist for designing a relay array or matrix covers 

the factors necessary to minimize the electromagnetic 

effects most likely to be encountered . Systematically 

progressing through the checklist will aid in reducing or 

eliminating many troublesome variables 

Factors Affecting Reed Relay Magnetic

Interaction 

A host of factors, internal and external, determine how a 

Reed Relay will perform when installed in a matrix assem-

bly and subjected to electromagnetic interference (EMI) .

Internal Factors:

 Early in the design phase, the user 

and the manufacturer must discuss the application and 

consider all the internal factors:

• 

Coil wire gauge

• 

Coil resistance

• 

Coil ampere-turns (AT)

• 

Coil winding direction

• 

Coil winding terminations

• 

Type of Reed Switch assembly

• 

Number of Reed Switches in the relay

• 

Internal magnetic shielding

External Factors: 

Controlling external factors generally 

is accomplished by giving proper attention to the operat-

ing environment of the Reed Relay . How much effort is 

expended on these factors will depend on how strongly 

they adversely affect design performance . Consideration 

should be given to these factors:

• 

Nearby magnetic fields

• 

Relay spacing in the relay matrix

• 

Magnetic polarity arrangement

• 

External magnetic shielding

Magnetic Coupling between Reed Relays

To better understand the magnetic coupling between 

adjacent Reed Relays, consider this example . Figure #4 

shows a portion of a relay matrix with two adjacent Reed 

Relays mounted on a PC board . The relays, K1 and K2, 

are identical in construction and the direction of current 

flow is the same in each.

Magnetic  field  lines  are  shown  when  both  relays  are 

energized . When K1 and K2 are energized, their op-

posing magnetic fields will adversely affect each other. 

This is shown where the field of K2 is extended into the 

body of K1 .

When K2 is energized and K1 is not operating, the pul-

lin and dropout voltage of K2 is within the range of the 

manufacturer’s  specifications. Attempting  to  energize 

K2 when K1 is operating results in an increase of the 

pull-in and dropout voltage for K2, perhaps beyond the 

manufacturer’s limits .

Reducing Magnetic Interaction in  

Reed Relay Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

68

standexelectronics.com

Reed Relays

    (a) 

              (b) 

  

 (c) 

  

             (d) 

  

          (e)

When K1 is energized with a current flowing opposite 

to that in K2, an attempt to energize K2 results in lower 

pull-in and dropout voltages . 

Fig. #4 Magnetic Interaction Effects in Reed Relays

Experimental Data on Topical Relay 

Matrices 

Relay matrices can be configured in a number of ways. 

In this analysis, data is presented on five typical configu-

rations . Polarity considerations also have been limited . 

The  configurations  and  magnetic  polarities  presented 

demonstrate some worst-case effects of relay-magnetic 

interaction .

Experimental Setup

Experimental data was gathered on 0 .20“ wide molded 

SIP relays. The test matrix configurations are shown in 

figure #5.

Data was taken while all relays surrounding the rela-

yunder-test (RUT) were energized with the same mag-

netic polarity . Once all relays were energized, the RUT 

(with the same magnetic polarity as its neighbors) was 

incrementally energized to the pull-in point . The dropout 

voltage data was taken in a similar manner .

All data was gathered using a 5V coil drive . With higher 

voltage coils that generate equivalent ampere turns, the 

results are similar . Higher ampere-turn coils produce 

slightly higher interaction effects . For data presented on 

magnetically shielded relays, the magnetic shielding is 

internal and an integral part of the relay (fig. #6).

Fig. #5 Relay Test Configurations: (a) Two In-Line Matrix; (b) Three In-Line Matrix; (c) Five In-Line Matrix; (d) Stacked Matrix of 

10 and (e) Stacked Matrix of 15.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

69

standexelectronics.com

Reed Relays

(a)

(b)

Data Analysis

In general, near worst-case magnetic interaction condi-

tions for pull-in voltage in a matrix exist when all relay 

fields have the same polarity and all the fields are from 

adjacent  relays  (fig.  #5). The  interaction  is  somewhat 

reduced when the matrices have relays mounted end-

to-end  (figure  5d  and  5e). This  effect  can  be  seen  in 

figure 6b.

Under the expected worst-case conditions presented, 

dropout voltage is not really a concern since it increases 

and tracks the pull-in voltage, maintaining approximately 

the same voltage change . The dropout voltage may 

become a major concern if the magnetic polarity of 

adjacent relays is opposite to that of the RUT (aiding) . 

This situation can be avoided by assigning appropriate 

voltage polarities to the relays and using relays of con-

sistent manufacture .

The  change  in  pull-in  voltage  (ÄPI)  is  defined  as  the 

pull-in voltage with interaction effects minus the pull-in 

voltage without interaction effects . Percent increases for 

the pull-in voltages presented were calculated at the 5-V 

nominal coil voltage . Stated mathematically .

% ΔPI = ΔPI(100)/5 volts

Equation #1

For a given matrix, the change in pull-in voltage essen-

tially remains the same for all relays having pull-in volt-

ages of various levels . If one relay without interaction, for 

example, has a pull-in voltage of 2 .3 V, it will shift to 2 .7 

V with interaction (ΔPI of 0.4 V). Now consider a second 

relay in the same matrix under the same conditions that 

has an initial pull-in of 2 .6 V . With interaction, the pull-in 

voltage will rise to 3 .0 V

(again the ΔPI is 0.4 V).

Calculating the Effects of Magnetic

Interaction

To further examine the magnetic interaction effects on 

Reed Relays, consider an example using the three-relay 

matrix of 5-V SIL relays in figure #5b on 0.20“ centers 

(no magnetic shielding) . All testing will be performed on 

the center relay which has an actual pull-in voltage of 

2 .6 V by itself . The outer two relays are activated with 5 V 

applied to the coil .

Fig. #6 (a) Percent Pull-In Voltage Increase vs. On-Center Distance Between SIL Relays. Data was taken using the three-relay 

test matrix (see Figure 5). (b) Percent Pull-In Voltage Increase vs. the Number of Relays in the test configuration, using matrix 

for up to 15 relays.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

70

standexelectronics.com

Reed Relays

The center relay will be energized and the expected 

pull-in voltage change can be calculated .

First calculate the pull-in voltage change . For the ex-

ample, these equations will be used:

ΔPI =(% ΔPI x Vnom)/100

Equation #2

Where ΔPI = the expected pull-in voltage change.

% ΔPI =the percent interaction calculated at the nominal 

voltage and shown in the graphs of experimental data . 

Vnom  =  the  nominal  coil  voltage  as  specified  by  the 

manufacturer .

PIwc = Plact + ΔPI

Equation #3

PIwc = the worst-case increased pull-in voltage under 

interactive conditions .

Plact = the actual pull-in voltage without external mag-

netic interference .

Referring to figure #6a, at a nominal coil voltage of 5 V, 

the magnetic interaction is 14 .2% . Using equation #2 to 

calculate ΔPI:

ΔPI = (14.2 x 5)100 = 0.71 volts

The relay has an actual pull-in voltage of 2 .6 V . Therefore, 

the near worst-case pull-in voltage can be calculated 

using Equation #3:

PIwc = 2 .6 + 0 .71 = 3 .31 volts

Equation #4

The value calculated for Plwc is perhaps the worst case 

for the given matrix under all possible polarity (magnetic 

and electrical) conditions. The value calculated for, ΔPI 

is a close approximation over the entire pull-in voltage

range .

Furthermore, ΔPI  ~ ΔDO;  that  is,  the  dropout  voltage 

change in the matrix closely follows the change in pul-

lin voltage . For example, in the calculation for PIwc, if 

the dropout voltage was measured to be 1 .4 V without 

magnetic influence, its value will change to 2.11 V for 

the conditions described . Except for rare cases where 

special dropout conditions are required, dropout voltage 

changes as described do not present a problem .

Ways to reduce Magnetic Effects

• 

Specify Reed Relays with internal shielding

• 

Use external magnetic shielding on the matrix

• 

Provide for larger spacing between relays

• 

Avoid simultaneous operation of adjacent relays

• 

Design a special matrix configuration

Special Conditions

For conditions presented in figure #6, the data was taken 

on single unenergized relays surrounded by energized 

relays . In many actual applications, the relays are ener-

gized under a host of different circumstances . Typically, 

banks of relays are energized together .

For example, the data gathered in Figure 5a will be 

reduced by approximately a factor of two by energizing 

the relays in the same matrix in this manner: energize 

all relays simultaneously with a ramping voltage while 

monitoring the center relay .

Here the interaction effects will be reduced by a factor 

of two . This same effect will be observed with faster and 

faster ramp speeds (approximately a step function) if the 

relays are still energized simultaneously .

This reduction in interaction occurs because of the re-

duced surrounding magnetic fields present at the time 

of contact closure, where the actual pull-in voltages are 

typically half the nominal voltage .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

71

standexelectronics.com

Reed Relays

Fig. #7 Alternative Pairs Relay Test Configurations. 

Special Matrix Applications

Under certain conditions, the consistent direction in 

which the coils are wound and terminated, particularly 

when mounted close together, can reduce the magnetic 

influence.

The matrix shown in figure #7 uses the opposing mag-

netic polarities and consistent coil manufacture to reduce 

interaction without the added cost of magnetic shielding . 

This effect (fig. #8) is achieved by wiring the matrix as 

shown in figure #7.

The data presented in figure #5 can be compared to the 

data presented in figure #6 for a similar nonmagnetically 

shielded SIL matrix of 15 where the polarities are in the 

same direction . The improvement or reduced interaction 

is 2.5 % in figure # 8 compared to 6% in figure #6.

Checklist for Designing a Relay Matrix

1 .

 Applied Voltage

2 . 

Temperature Effects

3 .

 Available PC board space

4 . 

Distance between adjacent relays

5 . 

Energizing the matrix

6 . 

Magnetic shielding

7 .

 Life Characteristics

8 . 

Design Analysis

Fig. #8 Alternate Pairs Matrix.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

72

standexelectronics.com

Reed Relays

1. 

Applied Voltage: 

The power supply under maxi-

mum load and at 50 °C can be as low as 4 .9 V min-

imum . Under some circumstances, the load volt-

age may be in series with transistor/diode drops of  

0 .7 V maximum over the operating temperature 

range . The working voltage of the power supply is 

reduced to 4 .3 V, the actual voltage applied to the 

relay coil . 

2. 

Temperature Effects: 

If the maximum system 

operating temperature is 50 °C and the specified 

relay pull-in voltage is 3 .6 V maximum at 25 °C for 

a 5-V nominal coil voltage, a rise in voltage from  

3 .6 V to 3 .96 V maximum at 50 °C can be expected . 

 

 

   

3. 

Available PC Board Space: 

A 5 x 10 relay ma-

trix (50 relays) is required. To fit the relays on the 

board, a crowded arrangement must be employed 

(only 7 .75 in .2 of board space is available) . 

 

4. 

Distance between Adjacent Relays: 

The relays 

must be placed on 0.20“ centers, five rows of 10 

relays 

each . 

 

   

 

5. 

Energizing the Matrix: 

In this application, a maxi-

mum of three relays is energized simultaneously . 

Figure #6a presents the interaction data required 

for this application . Here the worst case occurs for 

the non-magnetically shielded 0 .20“ separation 

and is 7 .5 % . By using equation 2, the interaction 

effects are calculated as a worst-case pull-in volt-

age increase of 0 .38 V . 

 

 

 

6. 

Magnetic Shielding:

 It is decided not to use mag-

netic 

shielding . 

 

   

 

7. 

Life Characteristics.

 In general, when switching 

intermediate to high-level loads, the coil voltage 

overdrive should be about or equal to 100% (about 

or equal to two times the actual pull-in voltage) for 

best-life characteristics . Here the relay coil over-

drive is small; however, only low-level switching is 

expected . Therefore, the life characteristics should 

not be affected .

 

 

   

8. 

Design Analysis: 

If the results found in item 5 

were added to the results in item 2, the maximum 

pull-in voltage will rise to 4 .34 V under interactive 

conditions . This exceeds the minimum voltage of 

4 .3 V . Probably the two simplest approaches at this 

point are increasing the power supply voltage or 

lowering the initial maximum pull-in voltage rating 

from 3 .6 V to at least 3 .2 V maximum . This would 

leave sufficient added overdrive under worst-case 

conditions . 

Summary

Magnetic interaction effects on Reed Relays can rep-

resent a significant problem if ignored. Many solutions 

are possible .

The foundation for determining worst-case scenarios 

on the basic matrix types is presented in this article . A 

systematic approach to designing a relay matrix can be 

achieved by referring to the checklist provided .

It is strongly suggested that the user consult with the 

relay manufacturer early in the design process . Follow-

ing this methodology will greatly diminish the potential 

for unpredictable relay matrix performance .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

73

standexelectronics.com

Reed Relays

Specifications

Reed Relay

Mechanical Relay

Solid State Relay

Switching Time

100 μs - 1 ms

> 5 ms

< 100 μs

Life Expectance: Low Level

10

10

 cycles

10

6

 cycles

Nearly unlimited

Power Consumption

3mW possible

50 mW

3mV possible

Switching Voltage

10 kVDC

1 .5 kVDC

1 .5 kVDC

Switching Current /

Carry Current

Max .  3A / Max .  5A

Up to 40A

Up to 40A

Load Minimum

No load requirement (μV/pA)

50mW

50mW

Insulation Resistance

10

14

 Ohm

10

9

 Ohm

10

Ohm

Noise

No switching noise

Partly high switching noises

No switching noise

Insertion Loss

Low (0 .5dB)

Low (0 .5dB)

High (2dB)

Overload

Very sensitive

Insensitive

General

Linear graph from DC to 

GHz range

Linear graph from DC to 

GHz range

Distortion of the signal

General

Galvanic isolation (air gap)

Galvanic isolation (air gap)

No galvanic isolation  

(low/high)

Reed Relays in Comparison with Solid State  

and Mechanical Relays

Datenbuch-Reed-Technology-EN-2022-html.html
background image

74

standexelectronics.com

Reed Relays

CRR- and CRF-Reed Relays for usage 

in Automated Test Equipment

CRR for functional test systems . Functional test systems 

continue to grow in size, pin count and complexity . Each 

pin usually requires 3 to 5 test connections . Each test 

connection needs to be isolated from all the others . In-

troducing any leakage paths thwarts the signals under 

test potentially shunting them to the point where they 

lose their functionality .

Because of the high pin counts, the number of test 

connections grows dramatically . Here the need to sat-

isfy these test connections with an ultra small surface 

mounted relay (CRR series) becomes ideal with the 

following specifications:

1 . 

Extremely small size (8 .6 x 4 .4 x 3 .55 mm)

2 . 

Ability to mount the Reed Relays on both sides of 

the board

3 . 

Standard internal magnetic shielding eliminating 

any magnetic interaction even in the tightest ma-

trices

4 . 

Insulation resistance to all points typically 1014 

ohms

5 . 

Over 200 volts isolation across the contacts

6 . 

A minimum of 1500 volts isolation between switch 

and coil

7 . 

Thermal offset voltage across the contacts in the 

one microvolt or less range

8 . 

Contact capacitance is less than 0 .2 pf

CRF-Relays 

for wafer, memory, and integrated circuit 

test systems . Integrated circuit and wafer testers have 

continued to take on an ever more complex format with 

the need for faster and faster clock rates . With clock rates 

in the 2 GHz range, components must be able to pass 

continuous wave signals with frequency responses in 

the 8 to 10 GHz range . These fast switching high speed 

digital signals require these new frequency responses 

so that signals are not slewed or reflected going through 

the switching components in these systems . .

The CRF Reed Relay represents an ideal switch in these 

component testers for the following reasons: 

1 . 

The frequency response of 7 GHz is a current criti-

cal need

2 . 

Rise time change through the relay of 40 pico- 

seconds typical

3 . 

High return loss

4 . 

Insertion loss less than 1 dB at 6 GHz

5 . 

Extremely small size

6 . 

Ability to mount the Reed Relays on both sides of 

the board (with internal magnetic shielding elimi-

nating any magnetic interaction)

7 . 

Insulation resistance to all points typically 1014 

ohms 

8 . 

Over 200 volts isolation across the contacts

9 . 

A minimum of 1500 volts between switch and coil

10 . 

Thermal offset voltage across the contacts in the 

one microvolt or less range

11 . 

Contact capacitance less than 0 .2 pf

12 . 

Open contacts to shield capacitance 0 .6 pf

7 GHz RF-Reed Relays – Applications

Datenbuch-Reed-Technology-EN-2022-html.html
background image

75

standexelectronics.com

Reed Relays

Height: max .

*All dimensions in mm (inches)

DIMENSIONS

PIN OUT

(Top View)

POST REFLOW

PAD LAYOUT

Instrumentation (CRR and CRF)

1 . 

On measuring input of multimeters where voltage 

isolation is required, low voltage offsets (on the 

order of 1 microvolt or less) and very low sub-pi-

coamp leakages are needed .

2 . 

Feedback loops where high frequency, low leak-

age, and voltage isolation are required

3 . 

In Attenuators where a high frequency response is 

required, low leakage paths are essential, long life 

(in excess of 100 million operations), and elimina-

tion of any inter-modular distortion is a clear need .

Multi-pole Configurations  

When circuits require common points tied together, ca-

pacitance becomes a real problem . Trying to reduce this 

capacitance can be a real effort with no clear solution . 

Using our new relay approach multipole relays with com-

mon tie points are no problem configuring with resulting 

reduced capacitance . Relay drivers, connectors, etc . 

can be easily added forming RF switching modules, RF 

attenuators, T/R switches, ‘T’ switches, etc . 

Fig. #9 Mechanical layouts with Ball Grid Array (BGA).

Datenbuch-Reed-Technology-EN-2022-html.html
background image

76

standexelectronics.com

Reed Relays

Most important in the testing of any component for 

frequency response over 100 MHz is a good Network 

Analyzer and carefully designed test fixtures for calibra-

tion as well as for the actual testing . The same is true 

when testing in the time domain . When measuring rise 

time characteristics, one must be aware of overshoot 

and undershoot of the rise time pulse that may affect the 

signal quality adversely . 

Fixture design starts with suitable SMA connectors on 

high frequency board material . There are several materi-

als suitable for this including FR-4, G-Tech materials, and 

several Rogers PCB materials . Many feel FR-4 material 

is suitable since the fixture zeroing process will eliminate 

its high frequency loss characteristics . As a general rule, 

below 6 GHz is okay; above 6 GHz use of Rogers high 

frequency circuit materials such as, RO3203 or RO4350 

will improve the test performance . Rogers has several 

other materials available depending upon the TCE match-

ing of the component/s or performance requirements . 

Most of these materials are ceramic filled.

Figures 15, 16, 17 and 18 below show calibration board 

layouts for a shorted to ground, and open circuit, through 

line transmission, a 50 ohm impedance termination, 

and the layout used to test the device . As many ground 

points as possible were used along with avoiding and 

sharp corners . All signal path transitions were made as 

gradual as possible .

Once the calibration testing was completed, our test pro-

cess was as follows using an Agilent Network Analyzer 

Model number 8720ES (See test layout in figure #14).

All calibration boards were entered into the network ana-

lyzer and stored . The relay under test was then measured 

and stored . The calibration data was then entered and 

the losses due to the board under the various configu-

rations was extracted yielding the results shown below . 

This was compared with data extracted from a MIMICAD 

pro-gram using the equivalent circuit presented and the S 

parameters; and it was found both tracked very closely . 

See the results from the data shown below taken from 

network analyzer . Included are the isolation, insertion 

loss, and VSWR . Also, included below is a Smith chart 

indicating the impedance for a given frequency over the 

entire frequency range .

Applications Notes for RF-Relay Measurement in 

both the Frequency and Time Domain

Datenbuch-Reed-Technology-EN-2022-html.html
background image

77

standexelectronics.com

Reed Relays

Dielectric

Conductor

Ground

Fixture Design

Definition of the exact geometry your test fixture will take 

is the first key step. Listed below are four geometries 

and their corresponding equations for calculating the 

characteristic impedance . 

Fig. #10 Coaxial cable geometry 

Z

o

 = 60/(

 (

ε

r

)) ln ((2h)/d) 

Equation #5 (for a coaxial cable)

   

Where h and d are defined above and εr is the dielectric 

constant for the material between conductors .

Fig. #11 Round wire over a ground geometry.

 

Z

o

 = 60/(

 (

ε

r

)) ln ((4hk

p

)/d)

Equation #6 (for a round wire over ground)

 

for a round wire over ground

 

   

Here k

p

 is the proximity factor for round wire over ground, 

which is near unity when the ratio h/d is large; but for 

close spacing is approximately

   

k

p

 = ½   + (

  (4h2 – d2))/4h

Equation #7

k

p

 is reduced to ½ when the round wire touches the 

ground at d = 2h . The proximity effect results from the 

same mechanism as skin effect . Mutual repulsion drives 

like currents to the extreme outer edges of individual 

conductors carrying current in the opposite direction . This 

crowds the current in round wires toward the side nearest 

a ground . As is the case while signal is going through 

the relay, the proximity effect and skin effect are indistin-

guishable for a coaxial line because the entire surface of 

the round center conductor is at the same distance from 

the shield . Proximity effect is not normally considered for 

thin rectangular conductors, but skin effect does drive the 

currents toward the edges of the conductors .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

78

standexelectronics.com

Reed Relays

TransmissionTest Port

(RF IN)

Reflection Test Port

(RF OUT)

8720ES Network Anaylzer

300KHz - 20 GHz

TEST

BOARD

Condcutor

Fig. #12 Buried microstrip geometry.

 

Z

o

 = 60/(

  (

ε

r

)) ln ((5.98h)/(0.8w + t))

Equation #8 (buried microstrip over ground)  

Fig. #13 Stripline geometry.

 

Z

o

 = 60/(

 (

ε

r

)) ln (3.8(h +0.5t)/(0.8w + t))    

Equation #9 (Stripline between ground planes)

Test Setup and Test Fixtures

Key to the proper testing of a component in an RF circuit 

is the proper use of test fixtures.

Fig. #14 Test Setup.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

79

standexelectronics.com

Reed Relays

Calibration Approach Critical

• 

The fixtures were constructed to serve as calibra-

tion boards to allow for better characterization of 

the  relays. All  the  fixture  boards  used  to  test  the 

relays under test (RUT) used SMA connectors for 

connection to and from the test equipment and for 

terminations . The following are the makeup of the 

boards under test:

• 

RUT calibrated with a 50 ohm line and open termi - 

 nation

• 

RUT calibrated with a 50 ohm line and shorted 

 termination

• 

RUT calibrated with a 50 ohm line and 50 ohm 

 termination

• 

RUT calibrated with a 50 ohm through line

Fig. #15 50 Ohm termination board.

Fig. #16 Open/short termination board.

 

 

Fig. #17 Through line transmission termination board.

Fig. #18 Relay under test termination board.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

80

standexelectronics.com

Reed Relays

Insertion Loss

Copper Wire Insertion Loss

Fig.  #19  Insertion  loss  tested  to  7  GHz  for  the  Reed  Relay 

shown in figure #9.

Horizontal full scale: 7.0 GHz.

Vertical scale:10 dB/div referenced from the 0 mark.

Fig.  #20  Insertion  loss  tested  to  7  GHz  for  the  Reed  Relay 

shown in Figure # 9 but with the internal Reed Switch replaced 

with a bare copper wire.

Horizontal full scale: 7.0 GHz.

Vertical scale: 10 dB/div referenced from the 0 mark.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

81

standexelectronics.com

Reed Relays

VSWR

Isolation

Fig. #21 Voltage Standing Wave Ratio (VSWR) tested to 6.5 

GHz for the Reed Relay shown in figure #9.

Horizontal full scale: 6.5 GHz.

Vertical  scale:  1.0/div  referenced  from  the  bottom  line  1.0 

mark.

Fig. #22 Isolation tested to 7 GHz for the Reed Relay shown 

in figure #9.

Horizontal full scale: 7.0 GHz.

Vertical scale: 10 dB/div referenced from the 0 mark.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

82

standexelectronics.com

Reed Relays

Return Loss 

Fig.  #23  Return  loss  tested  to  6.5  GHz  for  the  Reed  Relay 

shown in figure #9.

Horizontal full scale: 6.5 GHz.

Vertical scale: 10 dB/div referenced from the 0 mark.

Fig. #24 Represents the characteristic impedance going 

through the Reed Relay shown in figure #9. Waves 1 through 

5 depict calibration points.

Horizontal full scale: 750 ps.

Vertical  scale:  150  milliUnit/div  referenced  from  the  0  unit 

mark. The vertical scale measures the reflection coefficient.

1 - Short Before Relay

2 - Open Contacts

3 - Close Contacts

4 - Closed Contacts - Shorted

5 - Closed Contacts - 50 Ohm

Smith Chart

Fig. #25 Shows a Smith Chart plotted for frequencies to 4 GHz. 

The second dotted circle starting from the right is the 50 Ohm 

impedance point.

Datenbuch-Reed-Technology-EN-2022-html.html
background image

83

standexelectronics.com

Reed Relays

Test Results

Figures #19 through 25 represent the results of our test-

ing using the procedures previously described and the 

fixtures presented. The fixtures used were made from 

FR-4 printed circuit board material . Improvements to the 

fixturing, using some of the Rogers PCB material may 

improve the results .

Insertion Loss 

As explained earlier, insertion loss is the loss of power 

going through the relay . Insertion loss is one of the most 

important measurements in RF because it is simply 

a measure of the loss of the signal going through the 

component (Reed Relay) . Minimizing this loss is a key 

interest .

First, it can be clearly seen that the insertion loss looks 

excellent up to 7 GHz, as shown in Figure # 19 . As shown, 

the insertion loss curve is very flat and begins to tail off 

at 7 GHz . Clearly, this indicates signals, whether digital 

or analog, will fare very well when switched and pass-

ing through this CRF ceramic Reed Relay . When using 

semiconductors as a switching element, intermodulation 

distortion may sometimes occur, giving rise to distortions 

in the frequency response . With a passive device such 

as the Reed Relay, no intermodulation distortion exists, 

resulting in a very flat insertion loss up to 7 GHz. Hav-

ing this very flat insertion loss allows the user the ability 

to switch, carry or deal with a multitude of different fre-

quencies or different width digital pulses, without having 

to worry about having different switches to handle the 

different frequencies .

At higher and higher frequencies, it has been proposed 

that a Reed Relay, because it uses nickel/iron as its 

center conductor, will not have very good performance 

characteristics . Skin effect is often the proposed culprit, 

because nickel and iron, being ferromagnetic, have a high 

magnetic permeability μ. However, this is not the case as 

shown in figure #20, where the Reed Switch in figure #9 

was replaced with a pure copper wire. Comparing figures 

#19 and #20, one sees little or no difference . Under high 

power transmission conditions, a difference would prob-

ably be seen . But as is the case in many applications, 

the power being switched is very low; and therefore, we 

only see a negligible effect up to seven GHz . 

VSWR

VSWR represents the effects of the transmission of 

power due to standing waves . When standing waves 

are  present  on  a  line,  some  power  is  being  reflected 

back on the line and re-reflecting again from the source. 

This back and forth reflection produces standing waves. 

These standing waves interfere with the transmission of 

the original signals from the source because they are 

continuously present and continually absorb power . Fig-

ure #21 presents the VSWR for the Reed Relay shown 

in Figure # 9 . While still an important RF characteristic 

for analog continuous wave analysis, insertion loss is 

looked on more for RF characteristics .

Isolation

Isolation is the ability of a component to isolate the RF 

signal from propagating further in a circuit . For a Reed 

Relay, the isolation is a measure of the ability to halt fur-

ther progress of the signal when it is in the open state . We 

all think of a switch in the open state as meaning no signal 

passes beyond those open contacts . However, with RF 

we know an open circuit is not totally open because the 

capacitance across the contacts represents a leakage 

path; and indeed with high enough frequencies, that’s 

exactly what occurs . Presented in Figure #22 one can 

see isolation of –50 dB or greater at low RF frequencies 

which drops to –15 dB at 3 GHz and continues to a level 

of –10 dB at 7 GHz . Contributing to this drop off in isola-

tion is the contact gap . Increasing the gap on the Reed 

Switch is very difficult to do because it would require a 

larger capsule, which would increase the package size . 

Also, a larger gap will make the switch less sensitive for 

closure, requiring more coil power . If the isolation is a 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

84

standexelectronics.com

Reed Relays

critical parameter in an application, stringing more than 

one Reed Relay together will help . Also using a ‘T’ switch 

or half ‘T’ switch will yield much higher isolations .

Return Loss 

Return loss is also an RF parameter that is not used as 

much as the insertion loss or isolation . As stated, it is a 

measure of the power of the RF signal being reflected 

back to the source . As can be seen in Figure #23, the 

return loss has only 35 db of reflected signal at the lower 

frequencies and about 10 db reflected back at 6.5 GHz. 

Here the larger the dB level the lower the percentage of 

the signal being reflected.  

Characteristic Impedance

To gain most information from a characteristic im-

pedance measurement of the relay it is fruitful to make 

measurements of the signal up to certain points while 

going through the relay . Since this measurement is a 

spatial measurement, the actual impedance at each point 

of the relay can be measured . The following points of 

reference were made as shown in Figure #24:

1 . 

A short before the relay defining when the signal 

enters the relay

2 . 

Open contacts define the signal up to the middle 

of the relay

3 . 

Closed  contacts  define  the  signal  path  up  to  the 

end of the relay

4 . 

Closed contacts with the relay shorted

5 . 

Closed contacts with the relay terminate in 50 ohms

Superimposing the 5 traces on the actual trace through 

the relay, a full picture of the characteristic impedance 

can be seen at each point though the relay . This is very 

valuable particularly if the relay or component is slightly 

off the 50 ohm impedance . As shown in the trace in 

Figure #24, the relay is slightly above 50 ohms . With 

the trace being high, this indicates a slightly inductive 

entrance into and out of the relay . Compensating with a 

little capacitance on each end of the relay will tune the 

impedance to the desired level . This will in turn improve 

the performance of the relay in a given circuit and in-

crease its performance at higher RF frequencies as well .

Smith Chart

If one is looking at different RF frequencies in a given 

application or at a specific frequency, a Smith Chart can 

help by presenting the characteristic impedance over a 

given frequency range . The Smith Chart presents a plot 

of the response of fre-quencies every 50 KHz up to 4 

GHz . Shown in Figure # 25, the plot of points is centered 

around the 50 ohm real point . To better understand this 

Smith Chart, the second dotted circle starting from the 

right center point of the large circle is the 50 ohm imped-

ance circle . The center line of the circle running horizon-

tally, is the real axis . Plots above this line are inductive 

and plots below this line are capacitive . As shown, the 

plot of the CRF relay is in a tight circle around the real 

axis, and centered around the 50 ohm circular axis .

Summary

As can be seen the CRF Reed Relay is an excellent Reed 

Relay for switching and carrying RF signals at least up 

to 7 GHz and beyond . Our current efforts are to improve 

its characteristics up to 10 GHz and beyond . This is a 

reachable goal as we try to continually develop new RF 

relays, pushing the current bandwidth and current ‘state 

of the art’ . As higher and higher frequencies are used and 

components are needed to develop these circuits, the 

need for Reed Relays like the CRF series and subse-

quent improvements on performance over existing data 

will be needed . Our engineers are up for this challenge .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

85

standexelectronics.com

Life Test Data

The life of a Reed Switch can vary widely depending on 

the exact switching circumstances . Over the years, many 

improvements have been made to the Reed Switch, 

which have played a major role in improving its reliability .

Reed Switches, because of their hermetically sealed 

properties and no wearing parts, will switch no load or 

signal loads into the billions of operations, in most cases 

with minimal contact resistance changes . In fact, over 

long life at no load, the contact resistance will often times 

drop approximately 5 mOhms to 10 milliohm .

Standex Electronics offer several different types of 

switches ranging from 4 mm long to 50 mm long, ca-

pable of switching nanoVolts up to 10,000 Volts; capable 

of switching femtoAmps up to 5 Amps, and capable of 

switching DC on up to 6 GigaHz . Generally speaking, 

we offer Reed Switches in Sensor or Relay applications 

having tungsten, rhodium, ruthenium, palladium or iridium 

contacts . 

When trying to optimize your life requirement be sure 

to consult our precautions selection . Several areas of 

concern are discussed both mechanically and electroni-

cally . The load section in particular will give you important 

insight when switching any loads with inductance, capaci-

tive, or inrush current loads .

It is always best to test the particular switch under actual 

switching loads for the life you require . A life test offers 

a high level of safety .

Life Requirements

Datenbuch-Reed-Technology-EN-2022-html.html
background image

86

standexelectronics.com

Activate Distance

D2

D1

D2

D3

D4

D4

D5

D5

Resulting from position and movement of the actuator magnet .

Activate Distance

Datenbuch-Reed-Technology-EN-2022-html.html
background image

87

standexelectronics.com

Activate Distance

308

www.meder.com

MEDER electronic

ACTIVATE DISTANCE

Typ

Artikel-Nr.

Magnetische

Empfindlichkeit

 

Position und Bewegung 

max. Anzugsdistanz in mm

 

Position und Bewegung 

min. Abfalldistanz in mm

 

mT

D1

D2

D3

D4

D5

D1

D2

D3

D4

D5

MK03

-1A66

B

-500W

2232711054

> 1,70

15,0

6,5

9,3

8,5

8,5

17,5

8,0

11,4

10,1

10,1

MK03

-1A66

C

-500W

2233711054

> 2,30

13,0

4,4

7,4

7,2

7,2

16,5

6,5

9,9

9,5

9,5

MK03

-1A66

D

-500W

2234711054

> 2,70

11,0

4,0

5,7

6,5

6,5

14,5

5,5

8,5

9,0

9,0

MK03

-1A66

E

-500W

2235711054

> 3,10

10,0

3,5

4,5

5,7

5,7

13,5

5,0

8,0

8,5

8,5

M

K04

-1A66

B

-500W

2242661054

> 1,70

15,0

6,5

9,3

8,5

8,5

17,5

8,0

11,4

10,1

10,1

MK04

-1A66

C

-500W

2243711054

> 2,30

13,0

4,4

7,4

7,2

7,2

16,5

6,5

9,9

9,5

9,5

MK04

-1A66

D

-500W

2244711054

> 2,70

11,0

4,0

5,7

6,5

6,5

14,5

5,5

8,5

9,0

9,0

MK04

-1A66

E

-500W

2245661054

> 3,10

10,0

3,5

4,5

5,7

5,7

13,5

5,0

8,0

8,5

8,5

MK05

-1A66

B

-500W

2252711054

> 1,70

15,0

6,5

9,3

8,5

8,5

17,5

8,0

11,4

10,1

10,1

MK05

-1A66

C

-500W

2253711054

> 2,30

13,0

4,4

7,4

7,2

7,2

16,5

6,5

9,9

9,5

9,5

MK05

-1A66

D

-500W

2254661054

> 2,70

11,0

4,0

5,7

6,5

6,5

14,5

5,5

8,5

9,0

9,0

MK05

-1A66

E

-500W

2255661054

> 3,10

10,0

3,5

4,5

5,7

5,7

13,5

5,0

8,0

8,5

8,5

MK06-4-A

2206040000

< 1,70

18

8.5

15

12

13.5

19

9.5

16

13.5

15

MK06-4-B

2206040001

> 1,70

16

7.5

12.5

10.5

11

17

8

13.5

11.5

12

MK06-4-C

2206040002

> 2,30

14

7

10.5

9.5

9.5

16

7.5

13

11

12

MK06-4-D

2206040003

> 2,70

13

6.5

10

9

9

15

7

11.5

10

10.5

MK06-4-E

2206040004

> 3,10

12

5.5

8.5

8

8

13

6

9.5

9

9

MK12

-1A66

B

-500W

9122711054

> 1,70

18

8

14

13

11.5

20.5

10

17

14.5

13

MK12

-1A66

C

-500W

9123711054

> 2,30

16

6

11.5

9.5

8.5

18

8.5

15

12.5

11.5

MK12

-1A66

D

-500W

9124711054

> 2,70

14

5

7.5

7.5

5.5

17

6.5

11.5

11.5

9.5

MK12

-1A66

E

-500W

9125711054

> 3,10

13

4

5.5

7

3.5

16

6

11

11

8.5

MK11/M8

-1A66

B

-500W

9118266054

> 1,70

15,0

6,5

9,3

8,5

8,5

17,5

8,0

11,4

10,1

10,1

MK11/M8

-1A66

C

-500W

9118366054

> 2,30

13,0

4,4

7,4

7,2

7,2

16,5

6,5

9,9

9,5

9,5

MK11/M8

-1A66

D

-500W

9118066054

> 2,70

11,0

4,0

5,7

6,5

6,5

14,5

5,5

8,5

9,0

9,0

MK11/M8

-1A66

E

-500W

9118566054

> 3,10

10,0

3,5

4,5

5,7

5,7

13,5

5,0

8,0

8,5

8,5

MK13

-1A66

B

-500W

9132661054

> 1,70

15,0

6,5

9,3

8,5

8,5

17,5

8,0

11,4

10,1

10,1

MK13

-1A66

C

-500W

9133711054

> 2,30

13,0

4,4

7,4

7,2

7,2

16,5

6,5

9,9

9,5

9,5

MK13

-1A66

D

-500W

9134711054

> 2,70

11,0

4,0

5,7

6,5

6,5

14,5

5,5

8,5

9,0

9,0

MK13

-1A66

E

-500W

9135661054

> 3,10

10,0

3,5

4,5

5,7

5,7

13,5

5,0

8,0

8,5

8,5

MK14

-1A66

B

-100W

9142711054

> 1,70

15

7

11

10

8

16

8

12

12

9

MK14

-1A66

C

-100W

9143711054

> 2,30

11

5

8

9

6

13

6.5

10

11

7.5

MK14

-1A66D-100W

9144711054

> 2,70

10

4

6

6

4.5

12

5

8

8

6.5

MK14

-1A66

E

-100W

9145711054

> 3,10

9

3

4

4

2.5

11

4.5

7

6

5

MK15

-

B

-2

9151710022

> 1,70

14

6.5

7

9

7

16

8

9

9.5

8

MK15

-

C

-2

9151710023

> 2,30

13

6

6.5

8.5

6.5

15

7.5

8.5

9

7.5

MK15

-

D

-3

9151710024

> 2,70

12

5.5

6

7.5

5.5

14

7

8

8.5

7

MK15

-

E

-3

9151710025

> 3,10

11

5

4.5

7

3.5

13

6

7

8

6

Note: The mentioned distances in millimeters in the table are typical values, they can differ in applications.

Type                          

Part-No.

Magnetic  

Sensitivity

Position and Movement  

max. Pull-in Distance in mm

Position and Movement  

min. Drop-out Distance in mm

mT

D1

D2

D3

D4

D5

D1

D2

D3

D4

D5

Note: The mentioned distances in millimeters in the table are typical values, they can differ in applications .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

88

standexelectronics.com

Activate Distance

309

www.meder.com

MEDER electronic

ACTIVATE DISTANCE

Typ

Artikel-Nr.

Magnetische

Empfindlichkeit

 

Position und Bewegung 

max. Anzugsdistanz in mm

 

Position und Bewegung 

min. Abfalldistanz in mm

 

mT

D1

D2

D3

D4

D5

D1

D2

D3

D4

D5

MK16

-

B

-2

9161870022

> 1,70

15

7

11

10

9.5

16

8

12

11

11

MK16

-

C

-2

9161870023

> 2,30

13

6

8

8

8

14.5

7

10

10

9.5

MK16

-

D

-2

9161870024

> 2,70

12

5.5

7

7.5

7

14

6.5

9

9.5

9

MK16

-

E

-2

9161870025

> 3,10

11

5

6

7

5.5

13.5

6

9.5

9

8.5

MK17

-

B

-2

9171009022

> 1,70

15

7.5

12.5

10

11

16

8

13.5

11

12

MK17

-

C

-2

9171009023

> 2,30

14.5

7

10

9

9.5

15.5

7.5

11.5

10

10.5

MK17

-

D

-2

9171009024

> 2,70

12.5

6

9.5

8

8

14

7

11

9.5

9.5

MK17

-

E

-2

9171009025

> 3,10

12

5.5

8.5

7.5

7.5

13.5

6.5

10.5

8.5

9

MK18

-

B

-300W

9182100034

> 1,70

16.5

8

14.5

10

12

18.5

9.5

16.5

10.5

14

MK18

-

C

-300W

9183100034

> 2,30

14

7

11

9

9.5

15.5

8

12.5

10

11

MK18

-

D

-300W

9184100034

> 2,70

12

5.5

9

8

7.5

14

7.5

11

9.5

10

MK18

-

E

-300W

9185100034

> 3,10

11

5

7

7

6

13.5

7

10.5

9

9.5

MK20/1

-

B

-100W

9202100014

> 1,70

11

5.5

9

6.5

7.5

11.5

6

10

7

8

MK20/1

-

C

-100W

9203100014

> 2,30

10.5

5

8

6

7

11

5.5

9

6.5

7.5

MK20/1

-

D

-100W

9204100014

> 2,70

10

4.5

7

5.5

6.5

10.5

5

8

6

7

MK20/1

-

E

-100W

9205100014

> 3,10

9.5

4

6

5

6

10

4.5

7

5.5

6.5

MK21M

-1A66

B

-500W

9212100054

> 1,70

13

5.5

4.5

8

3

14

6.5

5.5

9

4

MK21M

-1A66

C

-500W

9213100054

> 2,30

11

4

2.5

6.5

1.5

13

6

4.5

8.5

3.5

MK21M

-1A66

D

-500W

9214100054

> 2,70

9.5

3.5

1

5

1

11.5

5

2.5

7

2

MK21M

-1A66

E

-500W

9215660054

> 3,10

8

2.5

x

4

x

10

3.5

x

6

x

Alle angegebenen Distanzen sind gültig mit folgenden Magneten:

 

2500000002 / M2, Schraubmagnet 

2500000004 / M4, Schraubmagnet 

 

2500000013 / M13, Schraubmagnet 

2500000021 / M21, Schraubmagnet

Diese Tabelle enthält nur einen Teil unseres Sensorsortiments. Schaltdistanzen für alle anderen Serien, Schaltertypen, Sonderausführungen und mit anderen 

Magneten auf Anfrage.

Note: The mentioned distances in millimeters in the table are typical values, they can differ in applications.

4003004003 / offener Rundmagnet, ø 4x19 mm 

2500000005 / M5, Schraubmagnet

Type                          

Part-No.

Magnetic  

Sensitivity

Position and Movement  

max. Pull-in Distance in mm

Position and Movement  

min. Drop-out Distance in mm

mT

D1

D2

D3

D4

D5

D1

D2

D3

D4

D5

Note: The mentioned distances in millimeters in the table are typical values, they can differ in applications .

All distance data above are valid for the magnets below: 

 

4003004003 / open cylindrical magnet, ø 4x19 mm 

2500000005 / M5, screw magnet 

2500000002 / M2,  screw  magnet  

 

2500000013 / M13,  screw  magnet 

2500000004 / M4,  screw  magnet  

 

2500000021 / M21,  screw  magnet 

 
The table on this page contains only part of our sensor product range . Switching distances for other series, switch types, special sen-
sors and with other magnets can be obtained upon request .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

89

standexelectronics.com

Glossary

Notes

Datenbuch-Reed-Technology-EN-2022-html.html
background image

90

standexelectronics.com

Glossary

The following definitions refer to the generally used terms 

relating to Reed Switches, Reed Sensors, Reed Relays 

and  Electromechanical  Relays.  Some  of  the  definitions 

have multiple names. The most popular name was chosen 

for this listing and is listed under that name. However, we 

have tried to list those other common names under the most 

popular name.

Actuation Time

 is the time from initial energization to the 

first closing of open contact or opening of a closed contact, 

not including any bounce .

Ampere Turns

 (AT or NI) is the product of the number of 

turns in an electromagnetic coil winding times the current 

in amperes passing through the winding. AT usually defines 

the opening and closing points of contact operate conditions .

Armature

 is the moving magnetic member of an electro-

magnetic relay structure .

Bias Magnet

 is a steady magnetic field (permanent magnet) 

applied to the magnetic circuit of a relay or sensor to aid or 

impede operation of the contacts .

Bias

,  Magnetic  is  a  steady  magnetic  field  applied  to  the 

magnetic circuit of a switch .

Blade

 is used to define the cantilever portion of the reed 

switch contained within the glass envelope .

Bobbin

 is a spool, coil form or structure upon which a coil 

is wound .

Bobbinless Coil

 (self supporting coil) is a coil formed with-

out the use of a bobbin .

Bounce

, Contact is the intermittent opening of closed con-

tacts occurring after initial contact actuation or closure of the 

contacts due to mechanical rebound, or mechanical shock 

or vibration transmitted through the mounting .

Break

 defines the opening of closed contacts.

Breakdown Voltage

 is that voltage at which an arc or break 

over occurs between the contacts .

Breakdown Voltage

, Pre-ionized is the voltage level at 

which the voltage breaks down across the contacts, after 

which, the voltage had been recently broken down across 

the contacts, creating an ionized state in the glass capsule . 

Usually the break-down voltage in the pre-ionized state is 

a lower value and more repeatable . It is a truer measure of 

the breakdown voltage level .

Bridging

 is the undesired closing of open contacts caused 

by a metallic bridge or protrusion developed by arcing caus-

ing the melting and resolidifying of the contact metal .

Changeover Contact

 (also referred to as a Form C or single 

pole double throw (SPDT)) has three contact members, one 

of them being common to the two contacts . When one of 

these contacts is open, the other is closed and vice versa .

Coaxial Shield

 is an electrostatic shield grounded at both 

the input and output .

Coil

 is an electromagnetic assembly consisting of one or 

more windings of copper insulated wire usually wound on a 

bobbin or spool . When current is applied to the coil, a mag-

netic field is generated, operating the contacts of a Reed 

Relay or Electromechanical Relay .

Common Mode Voltage

 usually refers to a voltage level 

as measured between one or more lines and ground (com-

mon) or a current flowing between one or more lines and 

ground (ground) .

Contact 

refers to the contact blades making up a Reed 

Switch or Electromechanical Relay .

Contact, Bifurcation

 is a forked, or branching of contacting 

member so formed or arranged, as to provide some degree 

of independent dual contacting .

Contact, Break-before-make

  (Form  C)  defines  the  se-

quence in which one contact opens its connection to another 

contact and then closes its connection to a third contact .

Contact Force

 is the force which two contact points exert 

against each other in the closed position under specified 

conditions .

Contact Form

 describes the type of contacts used for a 

given design or applications (ex . 1 Form A, 1 Form B, etc .)

Contact, Form A

 is a single pole single throw (SPST) nor-

Glossary of Commonly used Terms Relating to  

Reed Switch Products

Datenbuch-Reed-Technology-EN-2022-html.html
background image

91

standexelectronics.com

Glossary

mally open (N .O .) switch .

Contact, Form B

 is a single pole single throw (SPST) nor-

mally closed (N .C .) switch .

Contact, Form C

 is a single pole double throw (SPDT) 

where a normally closed contact opens before a normally 

open contact closes .

Contact, Form D

 is a single pole double throw where the 

normally open contact closes before normally closed contact 

opens (continuity transfer) .

Contact, Form E

 is a bistable contact that can exist in either 

the normally open or normally closed state . Reversing the 

magnetic field causes the contacts to change their state.

Contact, Current Rating

 is the current which the contacts 

are designed to handle for their rated life .

Contact, Gap

 is the gap between the contact points when 

the contacts are in the open state .

Contact, Make-before-break

  (Form  D)  defines  the  se-

quence in which one contact remains connected to a second 

contact while closing on a third contact and then the second 

contact opens its connection .

Contact, Rating

 refers to the electrical load-handling ca-

pability of relay contacts under specified conditions for a 

prescribed number of operations .

Contact, Reed

  defines  a  Reed  Switch  whereby  a  glass 

enclosed,  magnetically  operated  contact  using  thin,  flex-

ible, magnetic conducting leads or blades as the contacting 

members .

Contact Resistance

 is the electrical resistance of closed 

contacts; measured at their associated contact terminals 

after stable contact closure .

Contact Seal

 refers to a contact assembly sealed in a 

compartment separate from the rest of the relay .

Contact Separation

 is the distance between mating con-

tacts when the contacts are open .

Contact, Snap Action

 describes the crisp closure and 

opening of contacts at or around the operate points where 

the contact resistance remains constant and stable .

Contact, Stationary

 is a member of a contact combination 

that is not moved directly by the actuating system . 

Contact Tip

 is the point at the end of a contact where the 

contacts come together when closed .

Contact Transfer Time

 (in a Form C switch) is the time dur-

ing which the moving contact first opens from a closed posi-

tion and first makes with the opposite throw of the contact.

Contact Weld

 is a fusing of contacting surfaces to the extent 

that the contacts fail to separate when intended .

Contact Wipe

 occurs when a contact is making the rela-

tive rubbing movement of contact points after they have 

just touched .

Contacts, Mercury Wetted

 are contacts that make closure 

via a thin film of mercury maintained on one or both contact 

surfaces by capillary action .

Control Voltage

 is another name for the voltage applied 

across the coil of a relay and refers to that point where the 

relay will operate .

Crosstalk

 is the electrical coupling between a closed contact 

circuit and other open or closed contacts on the same relay 

or switch, expressed in decibels down from the signal level .

Current

 is the rate of flow of electrons in a circuit measured 

in amperes (unit A) .

Current, AC

  is  alternating  current  flow  from  positive  to 

negative .

Current, DC

 is current flow in one direction.

Current, Carry

 is the amount of current that can safely be 

passed through closed switch contacts .

Current, Inrush

 is the surge of current a load may draw 

at initial turn on and may be many times greater than the 

steady current draw .

Current Leakage

 is that parameter measuring the unwanted 

leakage of current across open contacts and/or leakage 

current between the coil and contacts .

Current Rated Contact

 is the current which the contacts 

are designed to handle for their rated life .

Currentless Closure

 refers to contacts closing with no 

voltage existing or current flowing at the time of closure.

Cycling

 refers to the minimum number of hours during which 

a relay may be switched between the off state and the on 

state at a fixed, specific cycle rate, load current, and case 

temperature without failure .

De-energize

 is the act of removing power from a relay coil .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

92

standexelectronics.com

Glossary

Dielectric Strength

 or Breakdown Voltage is the maximum 

allowable voltage, usually measured in DC Volts or Peak 

AC, which may be applied between two specified test points 

such as input-output, input-case, output-case and between 

current-carrying and non-current-carrying metal members .

Dropout

 refers to maximum value of coil current or voltage at 

which a Reed Switch or Relay resumes its natural condition .

Dropout Value

 is the measured current, voltage or distance 

when the contacts open .

Duty Cycle

 is the percentage of time on versus time off or 

duty cycle = Ton/Toff .

Dynamic Contact Resistance

 is the repetitive measure-

ment of contact resistance measured 1ms to 3 ms after 

contact closure .

Electrostatic Shield

 is a copper alloy material terminated 

to one or more pins and located between two or more 

mutually insulated elements within a relay which minimizes 

electrostatic coupling between the coil and Reed Switch in 

a Reed Relay .

Energization

 is the application of power to a coil winding 

of a relay .

Frequency, Operating

 represents the rate or frequency at 

which contacts be switched on and off .

Frequency Response

 is the frequency at which the output 

signal decreases by 3 dB from the input signal .

Gap, Magnetic

 describes the nonmagnetic portion of a 

magnetic circuit .

Hermetic Seal

 is an encapsulation process where the 

contacts are sealed in a glass to metal seal in the case of 

a Reed Switch . In the case of a relay, the contacts and coil 

are sealed .

Holding Current

 is the minimum current required to main-

tain closed contacts .

Holding Voltage

 is the minimum voltage required to main-

tain closed contacts .

Hysteresis

1 . The lag between the value of magnetism in a magnetic 

material, and the changing magnetic force producing it; 

magnetism does not build up at the same rate as the force, 

and some magnetism remains when the force is reduced to 

zero . Also, the difference in response of a device or system 

to an increasing and a decreasing signal .

2 . Hysteresis is also referred to the difference between 

the operate voltage and the release voltage and can be 

expressed as a percentage of release/operate .

I/0 Capacitance

 is the capacitance between the input and 

output terminals or between the coil and contacts .

I/0 Isolation Voltage

 refers to the voltage value before volt-

age breakdown occurs . It is the same as breakdown voltage .

Impedance

 refers to the resistance in ohms composed of DC 

resistance, inductive reactance, and capacitive reactance 

added vectorally in an RF circuit .

Insulation Resistance

 is the DC resistance in ohms 

measured from input to output or across the contacts . 

Measurement is usually done by applying 100 Volts to one 

of the points to be measured and the other is connected to 

a picoameter .

Latching Relay

 is a relay that maintains its contacts in the 

last assumed position without needing to maintain coil ener-

gization . To change the state of the contacts, the magnetic 

field must be reversed.

Leakage Current

 is the current flow from input to output or 

across the contacts when the contacts are in the open state .

Load, Contact

 is the electrical power encountered by a 

contact set in any particular application .

Load Power Factor

 is the phase angle (cos) between load 

voltage and load current in an electrical circuit caused by 

the reactive component of the load .

Load Voltage

 refers to the supply voltage range at the output 

used to normally operate the load .

Low Thermal Relay

 is a Reed Relay designed specifically 

to switch very low microvolt or nanovolts signals without 

distorting their signal level .

Magnetic Flux

 is the total magnetic induction, or lines of 

force, through a given cross section of a magnetic field.

Magnetic Interaction

 is the undesired effect when relays 

are mounted in close proximity, the flux produced when the 

coils are energized affects the pickup and dropout values of 

the adjoining relays . This either increases or decreases both 

pickup and dropout values . The direction of the parameter 

shift is determined by whether the stray flux aids or bucks 

the flux produced by the coil of the relay under consideration. 

Problems may result from bucking flux raising the pickup 

Datenbuch-Reed-Technology-EN-2022-html.html
background image

93

standexelectronics.com

Glossary

V
R

 2

V
W

 2

A

 2

 W

 W

 A

 V

 A

 W

 V

V
R

A R

V A

A

 2

R

 √

WR

 √

W

R

W

WATTS

W

VOLTS

W

OHMS

A

AMPS

voltage close to the coil drive voltage or by aiding the flux of 

sufficient magnitude that the relay will not drop out when its 

drive is removed . To calculate the change in pull-in voltage 

and dropout voltage, multiply the percent change shown 

by the relay’s nominal voltage . For example, if the percent 

change in pull-in voltage is 14% for a 5V nominal relay, the 

pull-in voltage will increase by 0 .7 volts .

Magnetic Pole

 is the end of a magnet, where the lines of 

the flux coverage, and the magnetic force is strongest (north 

or south pole) .

Magnetic Shield 

is a thin piece of ferromagnetic metal 

surrounding a relay to enhance its magnetic field internally 

while reducing the stray magnetic field external to the relay.

Magnetostrictive Force

 usually refers to the force produced 

on the contacts with current flowing and the coil energized. 

Here the magnetic field of the coil and the magnetic field 

produced by the current flowing through the contacts interact 

with each other producing a torsional force .

Make

 refers to the closure of open contacts .

Mechanical Shock, Non-operating

 is the mechanical 

shock level (amplitude, duration and wave shape) to which 

the relay or sensor may be subjected without permanent 

electrical or mechanical damage (usually during storage or 

transportation) .

Mechanical Shock, Operating

 is the mechanical shock 

level (amplitude, duration and wave shape) to which the relay 

or sensor may be subjected without permanent electrical or 

mechanical damage during its operating mode .

Miss, Contact

 is the failure of a contact mating pair to close 

in a specified time or with a contact resistance in excess of 

a specified maximum value.

MOV (Metal Oxide Varistor)

 is a voltage-sensitive, non-

linear resistive element . MOV’s are clamp-type devices 

that exhibit a decrease in resistance as the applied voltage 

increases . They are usually characterized in terms of the 

voltage drop across the device while it is conducting one 

milliamp of current . This voltage level is the conduction 

threshold . The voltage drop across an MOV increases 

significantly with device current. This factor must be taken 

into consideration when determining the actual protection 

level of the device in response to a transient .

Normally Closed (N.C.)

, Contacts (Form B) represents a 

state of contacts before any magnetic field is applied to them 

in which they exist in the closed state .

Normally Open (N.O.)

, Contacts (Form A) represents a state 

of contacts before any magnetic field is applied to them in 

which they exist in the open state .

OHM’s Law

 the following is a table of common electrical 

conversions

Operate Time 

or (contact operate time or Pull-in time) is 

the total elapsed time from the instant power is applied to 

the energizing coil until the contacts have operated and all 

contact bounce has ended .

Operating Temperature Range 

is the normal temperature 

range in which a Reed Switch, Sensor, or Relay will suc-

cessfully operate .

Output

 is the portion of a relay which performs the switching 

function required .

Output Capacitance

 is capacitance across the contacts .

Output

 Offset Voltage or thermal offset usually measured 

in microvolts is voltage existing across closed contacts in 

the absence of any signals . The voltage which appears at 

the output of the isolation amplifier with the input grounded.

Overdrive

 is the amount of voltage or ampere turns applied 

after the exact point of closure of contacts is reached . Contact 

resistance is usually measure with 40 % overdrive .

Permeability

 is a characteristic of a magnetic material which 

describes the ease of which it can conduct magnetic flux.

Pickup Value

 refers to the measure of current or voltage 

applied to a relay when the contacts just close . 

Pickup Pulse

 is a short, high-level pulse applied to a relay; 

usually employed to obtain faster operate time .

Pole, Double

 is a term applied to a contact arrangement 

to denote two separate contact combinations, that is, two 

single-pole contact assemblies

Datenbuch-Reed-Technology-EN-2022-html.html
background image

94

standexelectronics.com

Glossary

Pole, Single

 is a term applied to a contact arrangement to 

denote that all contacts in the arrangement connect in one 

position or another to a common state . Pressure, Contact 

refers to the force per unit area on the contacts .

Rating, Contact

 is the maximum rating of the allowable volt-

age and current that a particular contact is rated to switch .

Reed Relay

 is a relay that uses a glass-enclosed hermeti-

cally sealed magnetic reed as the contact members .

Reed Switch or Reed Sensor

 is a switch or relay using 

glass-enclosed magnetic reeds as the contact members 

which includes mercury-wetted as well as dry contact types .

Relay, Antenna switching

 is a special RF relay used to 

switch antenna circuits .

Relay, Close Differential

 is a relay having its drop-out value 

specified close to its pickup value.

Relay, Crystal Can

 defines a relay housed in a hermeti-

cally sealed enclosure that was originally used to enclose 

a frequency control type of quartz crystal .

Relay, Current Sensing

 is a relay that functions at a pre-

determined value of current typically used in teleco  Reset 

refers to the return of the contacts to their normal state 

(initial position) .

Resonant Frequency

 is the tendency of the contacts to 

resonate at certain frequencies determined by their size 

and makeup .

Retentivity

 is the capacity for retaining magnetism after the 

magnetizing force is removed .

Saturation

 exists when an increase of magnetization applied 

to a magnetic material does not increase the magnetic flux 

through that material .

Sensitivity

 refers to the pull-in of a Reed Switch usually 

expressed in ampere-turns .

Shield, Electrostatic

 is the grounded conducting member 

located between two or more mutually insulated elements 

to minimize electrostatic coupling .

Slew Rate

 is the rate of change in output voltage with a large 

amplitude step function applied to the input .

Small Signal Bandwidth

 is the frequency range from DC 

to a frequency where the signal strength is down 3 dB from 

its original signal strength .

Thermal Offset

 usually measured in microvolts is the volt-

age existing across closed contacts in the absence of any 

signals .

Thermal Shock Non-operating

 is the temperature shock 

induced into a group of Relays, Switches or Sensors to 

determine their robustness .

Turn Off or Dropout Time

 refers to the time from initial 

de-energization to the first opening of a closed contact time.

Turn On

 or (contact operate time or Pull-in time) is the total 

elapsed time from the instant power is applied to the ener-

gizing coil until the contacts have operated and all contact 

bounce has ended .

Varistor

 see 

MOV

 .

Vibration, Non-operating

 is the vibration level and fre-

quency span to which the relay may be subjected without 

permanent electrical or mechanical damage .

Voltage, Nominal

 is the typical voltage intended to be ap-

plied to the coil or input .

Voltage, Peak AC

 is the maximum positive or negative volt-

age swing of an alternating current signal or power supply .

Voltage, Peak to Peak AC

 is the maximum positive threw 

negative voltage swing of an alternating current signal or 

power supply . Vp-p =2Vp when no DC offset is present .

Voltage, RMS

 is the Root Mean Square of the positive and 

negative voltage swing of an alternating current signal or 

power supply .

Winding

 refers to the electrically continuous length of insu-

lated wire wound on a bobbin, spool or form .

Winding, Bifilar

 represents two windings with the wire of 

each winding alongside the other, matching turn for turn .

Wipe, Contact

 refers to the sliding or tangential motion 

between two mating contact surfaces as they open or close .

Datenbuch-Reed-Technology-EN-2022-html.html
background image

95

standexelectronics.com

Notes

Datenbuch-Reed-Technology-EN-2022-html.html
background image

96

standexelectronics.com

Notes

Datenbuch-Reed-Technology-EN-2022-html.html
background image
Datenbuch-Reed-Technology-EN-2022-html.html
background image

Contact Information:

Standex Electronics 

World Headquarter

4150 Thunderbird Lane

Fairfield, OH 45014 USA

Standex Americas (OH) 

(+1 .866 .782  .6339)

+1 .866 .STANDEX

info@standexelectronics .com

Standex Asia (Shanghai)

+86 .21 .37606000

salesasia@standexelectronics .com

Standex Europe (Germany)

+49 .7733 .9253 .200

salesemea@standexelectronics .com 

standexelectronics.com

3

LEADING BRANDS