background image

Ultra High Precision Z1-Foil Technology Gold Wire Bondable Chip 

Resistor for Hybrid Circuits for High Temperature Applications 

up to +240°C, Long Term Stability of 0.05%,TCR to ± 1ppm/°C

HTHG* (Z1-Foil)

Vishay Foil Resistors

 

Document Number: 63221

For any questions, contact: 

foil@vishaypg.com

www.vishayfoilresistors.com

Revision: 13-Dec-12

1

INTRODUCTION

Vishay Foil Resistors (VFR) introduces a new line of Ultra 
Precision Bulk Metal

®

 Z1-Foil technology: hybrid chip 

resistors, connected using gold wire bonding. The HTHG 
series features two different layouts of chip designs 
according to the sizes (see figure 3 and table 4). These new 
types of hybrid chips were especially designed for high 
temperature applications up to + 240°C 

(1) 

(working power: to 

150mW at + 220°C), and include gold plated terminals.

The HTHG series is available in any value within the 
specified resistance range. VFR's application engineering 
department is available to advise and make 
recommendations. 

For non-standard technical requirements and special 
applications, please contact 

foil@vishaypg.com

.

TABLE 1 - TOLERANCE AND TCR VS. 

RESISTANCE VALUE 

(1)(2)

(- 55 °C to + 220 °C, + 25 °C Ref.)

RESISTANCE 

VALUE

(

)

TOLERANCE 

(%)

TCR Typical

(ppm/°C)

100

to 125K

± 0.02

± 2.5

50

to < 100

± 0.05

25

to < 50

± 0.1

10

to < 25

± 0.25

5

to 10

± 0.5

Notes

(1)

Performances obtained with ceramic PCB.

(2)

For tighter performances or non-standard values up to 150 k

please contact VFR's application engineering department by 

sending an e-mail to the address in the footer below.

FEATURES

Temperature coefficient of resistance (TCR):

±1 ppm/°C typical  (- 55 °C to + 125 °C, + 25 °C ref.)

±2.5  ppm/°C typical (- 55 °C to + 220 °C, + 25 °C 

ref.)

Resistance range: 5



 to 125 k



(for higher 

or lower values, please contact VFR's application 

engineering department)

Resistance tolerance: to ± 0.02 %

Connection method: gold wire bonding 

Working power: to 150mW at + 220°C

Long term stability: to ± 0.05 % at + 240°C for 2000h, no 

power

Load life stability: to 0.05% at + 220°C for 2000h at 

working power

Vishay Foil resistors are not restricted to standard values; 

specific "as required" values can be supplied at no extra 

cost or delivery (e.g. 1K2345 vs. 1K)

Thermal stabilization time < 1 s (nominal value achieved 

within 10 ppm of steady state value)

Electrostatic discharge (ESD) at least to 25 kV 

Non inductive, non capacitive design

Rise time: 1 ns effectively no ringing

Current noise: 0.010 µV (RMS)/Volt of applied voltage 

(< - 40 dB)

Voltage coefficient: < 0.1 ppm/V

Non inductive: < 0.08 µH

Non hot spot design

Terminal finish available: gold plated (lead (Pb)-free alloy)

Prototype quantities available in just 5 working days 

or sooner. For more information, please contact 

foil@vishaypg.com

FIGURE 1 - POWER DERATING CURVE

100

75

50

25

0

 

-75

-50

-25

0

+25

+50

+75

+100 +125 +150

+200 +225 +250

+175

Ambient Temperature (°C) 

Percent of Rated Power 

+70°C

-55°C

+240

* HTHG was previously named HTH

HTHG-html.html
background image

HTHG (Z1-Foil)

Vishay Foil Resistors

 

www.vishayfoilresistors.com

For any questions, contact: 

foil@vishaypg.com

Document Number: 63221

2

Revision: 13-Dec-12

HIGH TEMPERATURE PRODUCTS 

Resistors are the passive building blocks of an electrical 
circuit.

 

 They may be used for dropping the voltage, buffering 

the surge when the circuit is turned on, providing feedback in 
a monitoring loop, sensing current flow, etc.

 

When the 

application requires stability over time and load, initial 
accuracy, minimal change with temperature for more than 
200 °C, resistance to moisture and a number of other 
characteristics that will be described, only the new 
generation of Vishay Foil Resistors have the attributes 
needed for this application. Over the past few months, there 
has been considerable growth in the demand for precise, 
stable and reliable resistors that can operate in harsh 
environments and especially at high temperatures to 220 °C. 
Many analog circuits for industrial, military, aerospace, 
medical, down-hole, oil well and automotive applications 
require passive components such as resistors to have a 
minimal drift from their initial values when operating above + 
175 °C and in humid environments. In these applications, the 
most important factor is the end of life tolerance (which is part 
of the stability) and to a lesser extent, the initial tolerance. 

The new Vishay Foil resistors provide stabilities well under 
the maximum allowable drift required by customers’ 
specifications through thousands of hours of operation under 
harsh conditions, such as the extreme temperatures and 
radiation-rich environments of down-hole oil-well logging 
applications in the frigid arctic, under the sea or in deep 
space. All Bulk Metal

®

 Foil resistors receive stabilization 

processing, such as repetitive short term power overloads, to 
assure reliable service through the unpredictable stresses of 
extreme operation. Compared to Bulk Metal

®

 Foil, thick and 

thin film resistor elements are produced with a 
non-controllable material. Heat or mechanical stresses on 
the resistive elements cause the particles forming the film to 
expand. However, after these stresses are alleviated, the 
particles in the film matrix do not return to the exact original 
position. That degenerates their overall stability.

Vishay Foil Resistors’ Ultra High Precision Bulk Metal

®

 Foil 

technology includes many types of resistors with a variety of 
standard configurations that can withstand unconventional 
environmental conditions above and below the earth’s 
surface using special post manufacturing operations 
specially developed for this purpose. The stability of a 
resistor depends primarily on its history of exposures to high 
temperature. Stability is affected by:

1. Changes in the ambient temperature and heat from 

adjacent components (defined by the Temperature 
Coefficient of Resistance, or TCR)

2. Destabilizing thermal shock of suddenly-applied power 

(defined by the Power Coefficient of Resistance, or PCR)

3. Long-term exposure to applied power (load-life stability)
4. Repetitive stresses from being switched on and off

In very high-precision resistors that need to operate in an 
environment with temperatures above + 175 °C, these 
effects must be taken into account to achieve high stability 
with changes in load (Joule Effect) and ambient temperature.

The Bulk Metal

®

 Foil Resistors’ new Z1-Foil technology 

provides an order of magnitude reduction in the Bulk Metal

®

Foil element’s sensitivity to temperature changes — both 
external and internal – with emphasis on long term stability in 
high temperature environments.

In order to take full advantage of the low TCR and long term 
stability improvement, it is necessary to take into account the 
differences in the resistor’s response to each of the 
above-mentioned effects. As described below, new products 
have been developed to successfully deal with these factors. 
For high temperature applications where stability and total 
error budget is the main concern, the new generation of 
Vishay Foil resistors offers the best resilience against time at 
elevated temperature.

The new Vishay Foil technology allows us to produce 
customer-oriented products designed to satisfy unique and 
specific technical requirements. In addition to the special 
chip stabilization under extreme environment conditions in 
the production line, we offer additional specially oriented post 
manufacturing operations (PMO) for high temperature 
applications that require an even higher degree of reliability 
and stability.

Electrostatic Discharge (ESD) is another potential problem 
that can cause unpredictable failure in high temperature 
applications that increase the sensitivity of the resistors to 
ESD.

ESD damage to electronic devices can occur at any point in 
the device’s life cycle, from manufacturing to field service. A 
resistor that is exposed to an ESD event may fail immediately 
or may experience a latent defect. With latent defects, 
premature failure can occur after the resistor is already 
functioning in the finished product after an unpredictable 
length of service. Bulk Metal

®

 Foil resistors

 

 are capable of 

withstanding electrostatic discharges at least to 25 kV volts 
without degradation.

VFR’s Application Engineering department is always 
available to assist with any special requirements you might 
have. If you are not sure which resistor best suits your needs, 
please do not hesitate to contact them for more information: 

Foil@vishaypg.com

HTHG-html.html
background image

TABLE 2 - PRODUCT SPECIFICATIONS

PRODUCT

CONNECTING METHOD

SIZES

HTHG

Gold wire bonding

5x5,15x5,15x10

0603,0805,1206,

1506,2010,2512

TABLE 3 - SPECIFICATIONS

CHIP

SIZE

WORKING 

POWER (mW) 

at + 220 °C

(1)

RESISTANCE RANGE

(

)

5x5

25

5 to 10K

15x5

50

5 to 30K

15x10

75

30K to 80K

0603

12.5

100 to 5K

0805

20

5

to 8K

1206

33

5

to 25K

1506

40

5

to 30K

2010

100

5 to 70K

2512

150

5

to 125K

HTHG (Z1-Foil)

Vishay Foil Resistors

 

Document Number: 63221

For any questions, contact: 

foil@vishaypg.com

www.vishayfoilresistors.com

Revision: 13-Dec-12

3

Note

(1)

Maximum working voltage at +220°C for a given resistance value is 
calculated using 

P R

.

FIGURE 2 - TRIMMING TO VALUES 

(Conceptual Illustration)

Mutual Inductance
Reduction due
to Change in
Current Direction

Current Path

Before Trimming

Note:

 Foil shown in black, etched spaces in white

Interloop Capacitance
Reduction in Series

Trimming Process

Removes this Material

from Shorting Strip Area

Changing Current Path

and Increasing

Resistance

Current Path

After Trimming

To acquire a precision resistance value, the Bulk Metal

®

 Foil 

chip is trimmed by selectively removing built-in “shorting bars.” 
To increase the resistance in known increments, marked areas 
are cut, producing progressively smaller increases in resistance. 
This method reduces the effect of “hot spots” and improves the 
long term stability of the Vishay Foil chips.

FIGURE 3 - DIMENSIONS 

in inches (millimeters)

0.020 ± 0.005

(0.508 ± 0.127)

0.150 ± 0.005

(3.81 ± 0.127)

0.050

±

0.005

(1.27

±

0.127)

+ 0.001
- 0.004

+ 0.025
- 0.102

0.019

0.483

(                  )

0.005 ± 0.004

(0.127   

± 0.102)

+ 0.001
- 0.004

+ 0.025
- 0.102

0.029

0.737

(                   )

0.150 ± 0.005

(3.81 ± 0.127)

0.100

±

0.005

(2.54

±

0.127)

0.020 ± 0.005

(0.508 ± 0.127)

+ 0.001
- 0.004

+ 0.025
- 0.102

0.019

0.483

(                   )

0.005 ± 0.004

+ 0.001
- 0.004

+ 0.025
- 0.102

0.029

0.737

(                    )

0.050 ± 0.005

(1.27 ± 0.127)

0.050

±

0.005

(1.27

±

0.127)

0.034

(0.864)

Nominal

0.008

(0.203)

Nominal

0.008

(0.203)

Nominal

Square

0.008

(0.203)

Nominal

0.020 ± 0.005

(0.508 ± 0.127)

15X5

5X5

15X10

(0.127   

± 0.102)

HTHG-html.html
background image

TABLE 4 - DIMENSIONS 

in inches (millimeters)*

D

W

L

L - 0.005 (0.13)

W1 [W - 0.003"]

Gold Plated Terminals

CHIP

SIZE

L

± 0.005 (0.13)

W

± 0.005 (0.13)

THICKNESS

± 0.003 (0.08)

D

NOMINAL

0603

0.063 (1.60)

0.032 (0.81)

0.02 (0.50)

0.006 (0.15)

0805

0.079 (2.01)

0.049 (1.24)

0.02 (0.50)

0.010 (0.25)

1206

0.126 (3.20)

0.062 (1.57)

0.02 (0.50)

0.015 (0.38)

1506

0.150 (3.81)

0.062 (1.57)

0.02 (0.50)

0.012 (0.30)

2010

0.200 (5.08)

0.100 (2.54)

0.02 (0.50)

0.020 (0.51)

2512

0.250 (6.35)

0.126 (3.20)

0.02 (0.50)

0.024 (0.61)

HTHG (Z1-Foil)

Vishay Foil Resistors

 

www.vishayfoilresistors.com

For any questions, contact: 

foil@vishaypg.com

Document Number: 63221

4

Revision: 13-Dec-12

* Notes

• Vacuum pick up is recommended for handling

TABLE 5 - COMPARATIVE PERFORMANCES

(1)

 - THIN FILM VS. BULK METAL

®

 Z1-FOIL 

TECHNOLOGY

TEST OR CONDITIONS

R LIMITS OF THIN FILM 

(TYPICAL)

R LIMITS OF BULK METAL

®

 Z1-FOIL 

TECHNOLOGY - HTHG SERIES

(2)

 

(TYPICAL)

Thermal Shock, 5 x (- 65 °C to + 220 °C)

± 0.1 %

± 0.03% (300 ppm)

Low Temperature Operation, - 65 °C, 45 min at Rated 

Power

± 0.1 %

± 0.0025% (25 ppm)

Moisture Resistance

± 0.1 %

± 0.003% (30 ppm)

Load Life Stability, + 220 °C for 2000 h at Working 

Power (see table 3)

± 0.5 %

± 0.05% (500 ppm)

Long term stability, +240 °C for 2000h, No Power

± 0.5 %

± 0.05% (500 ppm)

Note

(1)

As shown + 0.01 

 to allow for measurement errors at low values.

(2 )

Performances obtained with ceramic PCB.

HTHG-html.html
background image

HTHG (Z1-Foil)

Vishay Foil Resistors

 

Document Number: 63221

For any questions, contact: 

foil@vishaypg.com

www.vishayfoilresistors.com

Revision: 13-Dec-12

5

PULSE TEST

TEST DESCRIPTION

All parts are baked at +125°C for 1 hour and allowed to cool at room 
temperature for 1 hour, prior to testing. By using an electrolytic 
0.01µF capacitor charged to 1200 VDC, a single pulse was 
performed on 30 units of 1206, 10 k

 of Surface Mount Vishay Foil 

resistor and Thin Film resistor. The unit was allowed time to cool 
down, after which the resistance measurement was taken and 
displayed in ppm deviation from the initial reading. 

TEST RESULTS

FIGURE 4 - PULSE TEST DESCRIPTION

"*

2

!!

#$

!!+-

FIGURE 5 - PULSE TEST RESULTS AT 

1200 VDC*

-20000

0

20000

40000

60000

80000

100000

120000

140000

0

5

10

15

20

25

30

ΔR (ppm)

Resistor #

Size: 1206

Value: 10K

n = 30

Thin Film

Bulk Metal

®

 Foil

Note:

Average of 30 units yielded deviation of 30 723 ppm of the Thin Film vs –14 ppm for the Bulk Metal

®

Foil

* Note: Average of 30 units yielded deviation of 30,723 ppm for the 
Thin Film vs. -14 ppm for the Bulk Metal

®

 Foil 

ELECTROSTATIC DISCHARGE (ESD)

ESD can be categorized into three types of damages:

Parametric Failure

 - occurs when the ESD event alters one or more 

device parameters (resistance in the case of resistors), causing it to 
shift from its required tolerance. This failure does not directly pertain 
to functionality; thus a parametric failure may be present while the 
device is still functional.

Catastrophic Damage

 - occurs when the ESD event causes the 

device to immediately stop functioning. This may occur after one or 
a number of ESD events with diverse causes, such as human body 
discharge or the mere presence of an electrostatic field. 

Latent Damage

 - occurs when the ESD event causes moderate 

damage to the device, which is not noticeable, as the device appears 
to be functioning correctly. However, the load life of the device has 
been dramatically reduced, and further degradation caused by 
operating stresses may cause the device to fail during service. 
Latent damage is the source for greatest concern, since it is very 
difficult to detect by re-measurement or by visual inspection, 
because damage may have occurred under the external coating.

TEST DESCRIPTION

 

By using an electrolytic 500 pF capacitor charged up to 4500 V, 
pulses were performed on 10 units of 1206, 10 k

 of three different 

Surface Mount Chip Resistors technologies, with an initial voltage 
spike of 2500 V (Figure 6). The unit was allowed time to cool down, 
after which the resistance measurement was taken and displayed in 
ppm deviation from the initial reading. Readings were then taken in 
500 V increments up to 4500 V.

TEST RESULTS

FIGURE 6 - ESD TEST DESCRIPTION

2500 V to 4500 V

Rx

500 pF

DMM

1 M

Ω

TABLE 6 - ESD TEST RESULTS

VOLTS

R (%)

THICK FILM

THIN FILM

FOIL

2500

-2.7

97

<0.005

3000

-4.2

366

<0.005

3500

-6.2

>5000

<0.005

4000

-7.4

>5000

<0.005

4500

-8.6

OPEN

<0.005

HTHG-html.html
background image

TABLE 7 - GLOBAL PART NUMBER INFORMATION

 (1)

NEW GLOBAL PART NUMBER:  Y079712K7560Q0W  (preferred part number format)

DENOTES PRECISION

VALUE

CHARACTERISTICS

Y

R

 = 



K

 = k

0

 = standard (gold plated)

1 to 999

 = custom

PRODUCT CODE

RESISTANCE TOLERANCE

PACKAGING

0780 = HTHG5x5

0781 = HTHG15x5

0782 = HTHG15X10

0794 = HTHG0603

0795 = HTHG0805

0796 = HTHG1206

0797 = HTHG1506

0798 = HTHG2010 

0799 = HTHG2512

Q

= ± 0.02 %

A

= ± 0.05 %

B

= ± 0.10 %

C

= ± 0.25 %

D

= ± 0.5 %

F

= ± 1.0 %

W

= waffle pack

FOR EXAMPLE: ABOVE GLOBAL ORDER Y0797 12K7560 Q 0 W:
TYPE: HTHG1506

VALUES: 12.7560 k



ABSOLUTE TOLERANCE: 0.02 %

TERMINATION: standard (gold-plated)

PACKAGING: waffle pack

HISTORICAL PART NUMBER:  HTHG1506  12K756  Q W  (WILL CONTINUE TO BE 

HTHG1506

12K756

Q

W

MODEL

RESISTANCE 

VALUE

TOLERANCE

PACKAGING

0780 = HTHG5x5

h

0781 = HTHG15x5

  0782 = HTHG15X10

0794 = HTHG0603

0795 = HTHG0805

0796 = HTHG1206

0797 = HTHG1506

0798 = HTHG2010 

0799 = HTHG2512

12.756 k

Q

= ± 0.02 %

A

= ± 0.05 %

B

= ± 0.10 %

C

= ± 0.25 %

D

= ± 0.5 %

F

= ± 1.0 %

W

= waffle pack

HTHG (Z1-Foil)

Vishay Foil Resistors

 

www.vishayfoilresistors.com

For any questions, contact: 

foil@vishaypg.com

Document Number: 63221

6

Revision: 13-Dec-12

Note

(1)

For non-standard requests, please contact application engineering.

7

9

7

1

K

7

5

2

Y

0

Q

0

6

W

0

HTHG-html.html
background image

Vishay Precision Group

Document No.: 63999

Revision: 27-Apr-2011

www.vishaypg.com

1

Legal Disclaimer Notice

Disclaimer

Legal Disclaimer Notice

Disclaimer

Document No.: 63999

Revision: 27-Apr-2011

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their 
behalf (collectively, “Vishay Precision Group”), disclaim any and all liability for any errors, inaccuracies or 
incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify Vishay Precision Group’s terms and 
conditions of purchase, including but not limited to, the warranty expressed therein.

Vishay Precision Group makes no warranty, representation or guarantee other than as set forth in the terms 
and conditions of purchase. 

To the maximum extent permitted by applicable law, Vishay Precision 

Group disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and 
all liability, including without limitation special, consequential or incidental damages, and (iii) any and 
all implied warranties, including warranties of fitness for particular purpose, non-infringement and 
merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different 
applications and performance may vary over time. Statements regarding the suitability of products for 
certain types of applications are based on Vishay Precision Group’s knowledge of typical requirements that 
are often placed on Vishay Precision Group products. It is the customer’s responsibility to validate that a 
particular product with the properties described in the product specification is suitable for use in a particular 
application.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or 
by any conduct of Vishay Precision Group.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless 
otherwise expressly indicated. Customers using or selling Vishay Precision Group products not expressly 
indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay 
Precision Group for any damages arising or resulting from such use or sale. Please contact authorized 
Vishay Precision Group personnel to obtain written terms and conditions regarding products designed for 
such applications.

Product names and markings noted herein may be trademarks of their respective owners.