background image

Capability Brochure, power film resistor-20120101 

 

Power Film Resistors 

NIKKOHM 

 

 

 

 

 

 

NIKKOHM Co., Ltd. 

Office:      3rd fl., K&Y Bldg., 2-24-4 Nihonbashi Ningyo Cho Chuo Ku, Tokyo 103-0013 Japan 
          Phone: +81-03-3664-1391, Fax: +81-3-3664-5770, kishino-k@nikkohm.co.jp 
Factory:    3-31-2640 Minami Cho Misawa Shi, Aomori 033-0036 Japan 
          Phone: +81-176-53-2105,  Fax: +81-176-53-2106, kishino-k@nikkohm.co.jp 

January 2012

RNP-10S, 20W 

RNP-10, 20W 

RNP-20S, 35W 

RNP-50U, 50W 

RNP-50F, 50W 

RNP-20D, 35W 

RNP-20E, 35W 

RPM200, 200W 

RPL310, 300W 

RPL300, 300W 

RNP-100S, 140W 

RNP-50S, 100W 

RPK900, 600W 

RPM600, 600W 

RPM300, 300W 

RNP-20F, 35W 

Nikkohm_Capability-Brochure-Power-Resistors-html.html
background image

 
 

1. Electric 

Resistance 

By applying either plus or minus voltage to the resistor 
and which causes electric current, the straight line 
characteristics of voltage and current such as Fig.1 are 
observed.  The resistance of the resistor is 1K OHM if 
5mA current is observed under the condition of 5V voltage 
applying. Resistor has a resistance value (unit :OHM).  
Resistance indicates the resistivity for electric current flow.   
Relation of resistance R (OHM) and voltage E (volt) and 
current I (Ampere) is shown as below., 

 

)

(

Ampere

R

E

I

=

 

 

 

 

 

 

 

 

 

 

 

 

In most of cases, the resistor is made with metal resistive 
materials which have resistivity 

ρ

 as peculiar properties of 

physical fixed number. 
By cutting the board-shaped metal resistive material in 
Fig.2, resistance between the both sides of the resistive 
material is calculated as below. 

)

(

ohm

T

W

L

R

×

=

ρ

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

By the calculation of resistance of the metal which is cut 
10mm square with 0.1mm thickness, a resistance 
between the both side points of the metal is calculated as 
Table1.

 

 
 
 
 
 
 
 
 
 

The resistance metal plate size 10mm x 10mm x 1mm can 
be used for milli-ohm level resistor, on the other hand the 
resistance metal less than 0.1um thickness can be used 
for thin film resistor. 
As shown in Table1, the resistance of square type 
resistive material depends on only the thickness of 
resistive material, and that resistance is called as Area 
Resistance which is utilized for the parts product design. 
Area Resistance is utilized as an index value for the film 
thickness in both thin film resistor and thick film resistor. 

 

2.  Heating of resistor 
By applying voltage E to resistor, current I flows through 
inside and Joule loss so called Electricity loss P is 
generated and becomes to heat. 
Electric power P (W) is shown as below. 

)

(

)

(

)

(

2

2

W

R

E

P

W

R

I

P

W

E

I

P

=

×

=

×

=

 

Heat of resistor is released to the air by air convection 
from metal surface or heat radiation in major resistor 
cases, however metal flange equipped resistor assists 
heat release through radiator in the case of power film 
resistor. 
The structure and heat conduction of power film resistor is 
shown in Fig.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1 Voltage-current characteristic of resistor, 

dotted line shows non-linearity 

-5    -4    -3    -2    -1    0    +1    +2    +3    +4    +5 (Volts) 

+6.0 

+4.0 

+2.0 

0.0 

-2.0 

-4.0 

-6.0 

(mA) 

R=1K OHM 

V

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Resistance of metal resistive material 

Width, W 

Thickness, T

Length, L 

Resistivity, 

ρ

 

Resistance meter 

Materials

Resistivity

(ohm

m) 

(mm) 

(mm) 

(OHM) 

Const. 0.49x10^-6

10  1mm  10 0.00049

Manganin

0.44x10^-6

10 1mm 10 0.00044

Ni-Cr 1.10x10

-6

10 1mm 10 0.0011 

Ni-Cr 1.10x10

-6

10 1um 10  1.10 

Ni-Cr 1.10x10

-6

10 0.1um 10  11.0 

Ni-Cr 1.10x10

-6

10 0.01um 10  110.0 

Table 1. 10mm x10mm area resistance 

Capability Brochure, Power-Film Resistors, Series RNP, RPM, RPL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Resistance of metal resistive material 

Terminal, Cu 
Resistive film 
Insulator, ceramics
Heat flow 
Flange, Cu 
Heat sink 

Nikkohm_Capability-Brochure-Power-Resistors-html.html
background image

As shown in Fig.3, heat P(W) generated in resistor is 
partly released from the resistor through terminal, 
however major parts of heat is radiated from radiator 
(metal plate, aluminum board, aluminum block) through 
isolated ceramics (alumina board) and copper flange to 
the air.  Performance of the power resistor is 
characterized by less thermal resistance between 
resistive material and flange.    Alumina board and flange 
are connected by solder and which realize very small 
negligible thermal resistance.  Thermal resistance of 
copper flange is also so small as to be negligible.  
Radiator has a capability of transmitting heat of flange to 
the air, and the thermal resistance is specified in data 
sheet for commercial resistor products, and which is 
inversely proportional to surface area of the radiator.  
Let’s set thermal resistance between resistive material 
and flange as 

θ

rf, thermal resistance of radiator versus air 

as 

θ

h, and temperature of the air inside of the electronics 

equipment box as Ta, then temperature of resistive 
material Tr with electric power consumption P in the 
resistor is expressed as below. 

)

(deg

deg

155

)

(

C

C

Ta

P

h

rf

Tr

+

+

=

θ

θ

 

Rating power Pr is expressed as below, with considering 
Pr to give some safety margin under the condition of 
flange temperature at 25 degree, and set maximum 
operation temperature of resistive material as 155 degree. 

)

(

)

25

155

(

Pr

W

rf

θ

=

 

Unit of thermal resistance is deg.C/W. 
Table2 shows some specific thermal resistance which is 
between resistive material and flange in power resistor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.  Temperature rising of resistor 
Temperature of all portion in resistor are started rising 
once voltage is started to apply for power resistor which 
equips radiator as shown in Fig.3.  Fig.4 shows one 
specific measurement result of the temperature rising.  
Unlike to general air-cooling type resistor, flange power 
resistor which has less ability of heat conduction radiation 
from the surface of resistor, there is a linear shaped 
relation between applied voltage and temperature rising. 
Fig.4(a) shows the relation of temperature rising of flange 

and resistive material which is inside of resistor, under the 
condition to use power resistor of 140W rating equipped 
on the radiator which thermal resistance is 0.2degC/W. 
By subtraction the rising temperature of radiator from the 
temperature rising of flange, temperature rising of 
resistive material are indicated which is based on a flange 
temperature. 
The slope of the straight line indicates the cooling 
performance of the power resistor and thermal resistance 
between resistive material and flange which shows 
0.9degC/W in Fig4(b). 
Maximum rating temperature of resistor is defined by the 
materials which consist of resistor, and which is 155 deg C 
for these power resistors, and derating curve can be 
provided by pulling straight line of the slope of thermal 
resistance from the point of maximum temperature rating 
as shown in Fig.4(c). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Type Package 

Heat 

Resistance 

RNP-20D/E/F  TO263 

3.3 (deg C/W) 

RNP-10S 

TO126 

5.9 (deg C/W) 

RNP-10 

TO220 

5.9 (deg C/W) 

RNP-20S 

TO220 

3.3 (deg C/W) 

RNP-50U 

TO220 

2.3 (deg C/W) 

RNP-50S 

TO247 

1.3 (deg C/W) 

RNP-80S 

TO247 

1.3 (deg C/W) 

RNP-100S 

TO247 

0.9 (deg C/W) 

RPM-200 

SOT227 

0.50 (deg C/W) 

RPM-300 

SOT227 

0.32 (deg C/W) 

RPL 300/310 

--- 

0.32 (deg C/W) 

RPM-600 

SOT227 

0.11 (deg C/W) 

RPK-900 

SOT227 

0.10 (deg C/W) 

RPL1200 

--- 

0.10 (deg C/W) 

TABLE 2. Heat Resistance, resistor-flange, 

Typical 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4. Temperature rise and power derating 

From upper, Fig 4(a)-(b)-(c) 

0     20     40     60     80    100 

Applied Power (W) 

160

140

120

100

80

60

40

20

    0

0     20     40     60     80    100 

Applied Power (W) 

160

140

120

100

80

60

40

20

    0

160

140

120

100

80

60

40

20

    0

-50    00     50    100    150    200 

Flange Temperature (deg C) 

Temperature Rise (deg C) 

RNP-100S Temperature Rise on 0.2 C/W 
heat sink.    Heat resistance is 0.9 C/W. 

Resistor Temp. 

Flange Temp. 

Resistor Temperature Rise 

Slope=0.9 deg C/W 

Slope=0.90 deg C/W

     =1.11 W/deg C

Rating Power (W)

Temperature Rise (deg C) 

Nikkohm_Capability-Brochure-Power-Resistors-html.html
background image

4.    Power derating of resistor 
The power derating curve of resistor shown in Fig4(c) 
indicates the safety operation area with border line.  In 
other words, temperature of resistive material in side of 
resistor reaches maximum temperature on the power 
derating curve.    It is required to let power resistor operate 
under the condition not on the borderline but inside of the 
power derating curve which correspond to the use of load 
reduction, and which purpose is improvement of the 
apparatus operation reliability.  Though load reduction 
depends on the design standard of each system designer, 
it may be common to set load reduction around 25% or 
50%. 
 
5. Resistance 

value 

Measurement position of Resistance is just the point 
5.0mm apart from the bottom end of mold area or painting 
area of resistor, then measurement is executed by using 
Resistance Meter and Kelvin Probe.    Resistor values like 
1.0 OHM or 10.0 OHM etc. are not used continuation 
value but used discrete valid value from the rational 
standardization point.    Those valid values are prescribed 
in JISC5063, IEC60063, etc., and E12 or E24 series are 
used for power resistor.  Nikkohm has used numerical 
values of IEC standard with addition of 2.5 or 5.0 value as 
shown in Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

6.  Tolerance of resistor 
 
Resistors have unevenness resistance value because of 
the industrial products.  Unevenness of tolerance is 
expressed by using % like an expression “±1% tolerance 
guaranteed for this resistor”.    Tolerance of power resistor 
is ±1% or ±5% in general.  Such as RNP-20P which is 
used for the standard equipment of constant current   
 
power supply circuit, which resistor tolerance of ±0.1% is 
so much useful.    In some case, “B” means ±1% and “F” 
means ±5%, and it may be expressed like 0.1%,1%,5% 
without “±”. 

 

6.

 

  Temperature coefficient of resistance 

Since materials of resistor are metal or alloy in general 
and which utilize the metal electrical conduction 
characteristics, resistance tends to be affected by the 
temperature of resistive material and temperature of 
environment. Therefore once the environment 
temperature of extra precision type resistor like  1000 
OHM ± 0.000 OHM, its resistance will be shifted from 
1000 OHM.  If the shift value of resistance in 1 deg C 
change is expressed in ratio, temperature dependence is 
0.005%/deg C or 50ppm/deg C in power resistor.  This 
temperature dependence is called temperature coefficient 
of resistance “TCR”.  Both tolerance of resistance and 
temperature coefficient of resistance adopt the expression 
in ratio, tolerance of resistance is expressed in % and 
temperature coefficient  of resistance is expressed in 
ppm/deg C respectively for the purpose of minimize a digit 
targeted to reduce the mistake of expression.  In the 
case of 2 terminals type power resistor, the same as 
another type resistors, the effect of copper lead for TCR 
(temperature coefficient of resistance) is not negligible, 
therefore TCR tends to be increased following to the low 
resistance as shown in Fig7.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E6+  E12+

 

E24+ 

1.0  

1.0  

1.0  3.3 

1.5  

1.2  

1.1  3.6 

2.2  

1.5  

1.2  3.9 

3.3  

1.8  

1.3  4.3 

4.7  

2.2  

1.5  4.7 

6.8  

2.7  

1.6  (5.0) 

 

 3.3 

 1.8 

5.1 

 

 3.9 

 2.0 

5.6 

 

 4.7 

 2.2 

6.2 

  

(5.0) 

 

2.4  6.8 

  

5.6 

 

(2.5) 7.5 

 

 6.8 

 2.7 

8.2 

 

 8.2 

 3.0 

9.1 

Table 3. E6+, E12+, E24+, Significant Figures

.

 

 
 
 
 
 
 
 

Fig 5 Position of Resistance Measurement 

5.0

mm

 

5.0

mm

 

 

 

Fig 6 Kelvin Probe, Resistance Measurement 

 
 
 
 
 
 
 

Fig 7 TCR of Low Resistance Power Resistor, 

RNP-20S, typical 

0.01                    0.1                      1.0                    10.0 

Resistance, RNP-20S (OHM) 

500 

 400 

 300 

 200 

 100 

      0 

TCR (ppm/deg C) 

Nikkohm_Capability-Brochure-Power-Resistors-html.html
background image

 

7.    Short time overload and pulse overload for power film 
resistor 
Rigidness for the short time overload of power film resistor 
corresponds to power ratings, and the usage under that 
overload condition is strictly limited.  Wire-wound resistor 
is specified to be used under the condition of short time 
overload which accepts 10 times higher than power 
ratings within 5 second.  The reason of the above is 
because of the so large thermal capacity of the resistive 
material of wire-wound resistor than that of power film 
resistor.  The short time overload characteristics within 
0.1s to some seconds depends on the thermal time 
constant which is defined by both thermal capacity (m

 

x

 

C) and thermal conduction (

θ

) of resistive material. 

Let’s calculate to obtain a temperature of resistive material 
after t second passed from the heat start period (t=0) with 
applied heat power W.  Thermal capacity (C) is 
expressed as follows assuming specific heat (c) and mass 
(m). 

)

/

(

)

(

)

/

(

K

kg

J

c

kg

m

K

J

C

×

=

 

Time constant (

τ

) is expressed as follows by using thermal 

resistance (

θ

) between resistive materials and 

surroundings. 

 

onds

K

J

C

W

K

sec

)...

/

(

)

/

(

×

=

θ

τ

 

Temperature rising value per time change 

 Tt during the 

resistive material heated by electric power P(W) is 
expressed as bellow. 

C

e

W

P

W

K

Tt

t

deg

...

|

1

|

)

(

)

/

(

/

τ

θ

×

×

=

Δ

 

Temperature falling value per time change 

 Tt during 

cooling resistive material by releasing electric power is 
expressed as bellow, 

C

e

W

P

W

K

Tt

t

deg

...

|

|

)

(

)

/

(

/

τ

θ

×

×

=

Δ

 

and which shows exponential function-like change. 
To obtain the thermal capacity C of both power film 
resistor and metal clad wire wound resistor which power 
ratings is 100W and resistance is 10 OHM in each, wire 
wound thermal capacity is 65 times higher than that of 
power film resistor as shown in Table4. 

 
 
 
 
 
 
 
 
 
 
 
 

Therefore it is desirable to adopt wire wound resistor to 
brake resistors for large sized motor, and to surge current 
control resistors for large power supply unit.    In the case 
of applying pulse shorter than 100 micro second width to 
resistor, power film resistor has a capability to apply surge 
peak pulse which is exceeding Rating Power.    Regarding 
pulse overload characteristics, there is rough expression 

which is not related with the above but based on the 
examination result.  The examination is executed by 
setting a criteria of pulse destruction of threshold as ±1% 
resistance change which is followed the pulse applying 
with specific constant period by using pulse generator 
shown in Fig 8.  The result of pulse destruction 
examination is shown by dotted line and rough pulse 
rigidness is shown by solid line in Fig 9.  Since the 
aspect of resistor destruction are different in each case of 
applying electric power either the constant current case or 
the constant current case, peak electric power needs to 
be limited lower than the rating power, or recommended to 
proceed enough reliability examination with confirmation 
before the equipment on circuit board. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.  Impedance frequency characteristics of power film 

resistor  

Since power film resistor has a superior high frequency 
characteristics compare to the other resistors, power film 
resistor shows excellent characteristics in the pulse 
application circuit or high frequency circuit board which 
realizes wide frequency band and fast pulse rising time.  
In the case of alternating voltage application, there is a 
phase shift on sinusoidal wave in the relation of voltage 
and current from strict viewpoint, so impedance of resistor 
needs to be treated by both real number R and complex 
number Z.  Impedance of power film resistor can be 
expressed by LCR equivalent circuit approximately, and 
which can express high frequency characteristics in 
specific band from DC to 1GHz.  Both the equivalent 
parallel capacitance and equivalent series inductance of 

 
 
 
 
 
 
 
 

Fig 8. Voltage Pulse Power Generator 

Type Power 

Film 

Wire 

wound

P/N RNP-50S 

IRV100 

Rated Power 

100W 

100W 

Resistance (ohm) 

10 

10 

Material Ni-Cr 

Ni-Cr 

Specific Heat(J/kgK) 

418 

418 

Mass (kg) 

0.082x10^(-6)  5.3x10(^-3)

Heat Capacity (J/K) 

0.034 

2.2 

Table 4. Heat capacity of   

power film and wire wound resistors 

Pulse width

Repetition

Peak power

DUT 

 
 
 
 
 
 
 
 

Fig 9. Criterion of Pulse Power Operation 

10

-8

    10

-7

    10

-6

    10

-5   

10

-4   

10

-3   

10

-2   

10

-1   

10

-0

 

 

100kW

10kW 

1kW 

100W 

10W 

RNP-50S C 100 F, 100W rated power

Pulse Peak W 

Nikkohm_Capability-Brochure-Power-Resistors-html.html
background image

power film resistor are shown in Table5. 

 

(

)

2

2

2

2

2

3

2

2

2

2

1

1

C

R

L

C

R

C

R

L

j

C

R

R

Z

ω

ω

ω

ω

ω

+

+

+

+

=

 

(

)

ohm

C

R

L

C

R

C

R

L

R

Z

...

)

1

(

|

|

2

2

2

2

2

2

3

2

2

ω

ω

ω

ω

+

+

+

=

 

radian

R

L

C

R

CR

L

.....

tan

2

2

3

2

1

⎟⎟

⎜⎜

+

=

ω

ω

ω

θ

 

The measurement result of TO220 power film resistor 
impedance characteristics is shown in Fig11.  The 
characteristics show flat level from DC to 600MHz in the 
case of resistor 50 OHM through 200 OHM, and LC series 
resonance frequency can be observed at 700MHz.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.  Implementation method of flange resistor 
Implementation method of power film resistor which types 
are TO126, TO263, TO220, TO247 and SOT227 is 
explained as follows.  Since metal flange for heat 
radiation of these all resistors which is isolated from 
resistive material and lead, there is no requirement for 
considering isolation (isolated heat radiation sheet) differs 
from transistor which equips exposed collector. 

 

Resistors TO126, TO220 and TO247 are connected with 
heat radiation plate or metal plate by clip or screw.  
Recommended torque of the screw is shown in Table6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here are some implementation method of flange power 
film resistor shown in Fig.12.                                               

// 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig 10. Equivalent Circuit of   

Power Film Resistor 

R(resistance) 

C(capacitance) 

L(inductance) 

Type Package 

C(pF) 

L(nH) 

RNP-20D/E/F TO263 

1.44 

8.38 

RNP-10S TO126 

1.00  8.22 

RNP-10 TO220 

1.15 8.38 

RNP-20S TO220 

1.44  8.38 

RNP-50U TO220 

1.69  9.65 

RNP-50S TO247 

2.35  11.72 

RNP-80S TO247 

2.35  11.72 

RNP-100S TO247 

3.68  12.52 

RPM-200 SOT227  13.10 13.67 
RPM-300 SOT227  13.10 13.67 
RPL 300/310 

--- 

13.10 

13.67 

RPM-600 SOT227  13.10 13.67 
RPK-900 SOT227  13.10 13.67 
RPL1200 --- 

--- 

--- 

 

Table 5. Equivalent Capacitance and Inductance   

of Power Film Resistor 

 
 
 
 
 
 
 
 

 
 

Fig 11. Frequency Characteristics,   

Impedance of RNP-20S 

10k      100k      1M      10M     100M      1G

Frequency (Hz) 

Impedance |Z| (ohm) 

10k 
 
 
 
 1k 
 
 
 
100 
 
 
 
 10 

RNP-20SC1K0F 

RNP-20SC101F 

RNP-20SC220F 

RNP-20SC10KF 

Type Screw 

(mm) 

Screw

 

(inch) 

Torque 

(Nxm) 

RNP-10S 

3 No.4 0.6Nm 

RNP-10 

3 No.4 0.6Nm 

RNP-20S 

3 No.4 0.6Nm 

RNP-50U 

3 No.4 0.6Nm 

RNP-50S 

3 No.5 0.6Nm 

RNP-80S 

3 No.5 0.6Nm 

RNP-100S 

3 No.5 0.6Nm 

RPM-200 M4 

No.8 

1.2Nm 

RPM-300 M4 

No.8 

1.2Nm 

RPL 300/310 

M4 

No.8 

1.2Nm 

RPM-600 M4 

No.8 

1.2Nm 

RPK-900 M4 

No.8 

1.2Nm 

RPL1200 M4 

No.8 

1.2Nm 

Table 5. Equivalent Capacitance and Inductance    of 

Power Film Resistor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 12    Installation, Power Film Resistors 

Via hole thermal 

connection to heat-sink, 

RNP-20D/E/F, RNP-50F

Insertion cylinder thermal 

connection to heat-sink, 

RNP-20D/E/F, RNP-50F