background image

Selection Guide

Thermal Interface Materials

TIM SG_0115_WEB-html.html
background image

Table of Contents

Introduction   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2

Thermal Properties and Testing 

4

Interface Material Selection Guide 

5

GAP PAD Thermally Conductive Materials   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6

GAP PAD Comparison Data 

7

Frequently Asked Questions 

8

GAP PAD VO 

9

GAP PAD VO Soft 

10

GAP PAD VO Ultra Soft 

11

GAP PAD HC 3.0 

12

GAP PAD 1000HD 

13

GAP PAD 1000SF 

14

GAP PAD HC1000 

15

GAP PAD 1450 

16

GAP PAD 1500 

17

GAP PAD 1500R 

18

GAP PAD 1500S30 

19

GAP PAD A2000 

20

GAP PAD 2000S40 

21

GAP PAD 2200SF 

22

GAP PAD A3000 

23

GAP PAD 3500ULM 

24

GAP PAD 5000S35 

25

Gap Filler Liquid Dispensed Materials and Comparison Data   .  .  .  .  .  26

Frequently Asked Questions 

27

Gap Filler 1000 (Two-Part) 

28

Gap Filler 1000SR (Two-Part) 

29

Gap Filler 1100SF (Two-Part) 

30

Gap Filler 1500 (Two-Part) 

31

Gap Filler 1500LV (Two-Part) 

32

Gap Filler 2000 (Two-Part) 

33

Gap Filler 3500S35 (Two-Part)  

34

Gap Filler 4000 (Two-Part) 

35

Thermal Interface Compounds Comparison and FAQs  .  .  .  .  .  .  .  .  .  .  .  36

TIC 1000A 

37

TIC 4000 

38

LIQUI-FORM 2000 

39

HI-FLOW Phase Change Interface Materials  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  40

HI-FLOW Comparison Data 

41

Frequently Asked Questions 

42

HI-FLOW 105 

43

HI-FLOW 225F-AC 

44

HI-FLOW 225UT 

45

HI-FLOW 300P 

46

HI-FLOW 565UT 

47

HI-FLOW 625 

48

HI-FLOW  650P 

49  

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

 

 | 

1

 

Thermally Conductive Insulators 

50

Frequently Asked Questions 

51

Choosing SIL PAD Thermally Conductive Insulators 

52

SIL PAD Comparison Data 

53

Mechanical, Electrical and Thermal Properties 

54

SIL PAD Applications 

56

SIL PAD Selection Table 

56

SIL PAD 400 

58

SIL PAD 800 

59

SIL PAD 900S 

60

SIL PAD 980 

61

SIL PAD 1100ST 

62

SIL PAD 1200 

63

SIL PAD A1500 

64

SIL PAD 1500ST 

65

SIL PAD 2000 

66

SIL PAD A2000 

67

SIL PAD K-4 

68

SIL PAD K-6 

69

SIL PAD K-10 

70

Q-PAD II 

71

Q-PAD 3 

72

POLY-PAD 400 

73

POLY-PAD 1000 

74

POLY-PAD K-4 

75

POLY-PAD K-10 

76

SIL PAD Tubes 

77

BOND-PLY and LIQUI-BOND Adhesives   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  78

BOND-PLY and LIQUI-BOND Comparison Data and FAQs 

79

BOND-PLY 100 

80

BOND-PLY 400 

81

BOND-PLY 660P 

82

BOND-PLY 800 

83

BOND-PLY LMS 500P 

84

BOND-PLY LMS-HD 

85

LIQUI-BOND EA 1805 (Two-Part) 

86

LIQUI-BOND SA 1000 (One-Part) 

87

LIQUI-BOND SA 1800 (One-Part) 

88

LIQUI-BOND SA 2000 (One-Part) 

89

LIQUI-BOND SA 3505 (Two-Part) 

90

Ordering   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  91

SIL PAD Configurations 

91

HI-FLOW Configurations 

97

Solutions for Surface Mount Applications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  98
Ordering Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  100

TIM SG_0115_WEB-html.html
background image

| Thermal Interface Selection Guide 

— INTRODUCTION

Henkel. Developing solutions 
for the electronics industry.

Proven thermal management solutions and 
problem-solving partnership . 

We make it our business to know your business. We understand your problems. We 
also know that there will always be a better way to help you reach your goals and 
objectives. To that end, our company continually invests considerable time and money 
into research and development.

Henkel is in the business of solving problems. 

With our history and experience in the 

electronics industry, our experts can help find ways to improve your process, control 
and manage heat, and back it all with exceptional service.

Let us show you the value Henkel offers.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— INTRODUCTION

 | 

3

 

THERMAL 

MANAGEMENT LEADER

Our solutions to control and 

manage heat in electronic 

assemblies and printed circuit 

boards are used by many of the 

world’s largest OEMs in a wide 

range of industries

WHY Henkel?

Henkel, the leading solution provider 

for adhesives, sealants and functional 
coatings worldwide, uses high-quality 

BERGQUIST thermal management 

products—like BERGQUIST TCLAD, 

BERGQUIST SIL PAD and BERGQUIST 

LIQUI-BOND—to offer technological 

solutions for electronics. Beyond that, 

we work closely with our customers to 

understand your problems and deliver 

technologically advanced solutions  

backed by exceptional service.

GLOBAL SUPPLY CHAIN

to maintain a reliable supply of 

products to our customers 

BROAD PRODUCT 

PORTFOLIO 

that includes LOCTITE, 

TECHNOMELT and 

BERGQUIST products

R&D

Over 10 R&D Centers around the 

world staffed by 3,000 design and 

application professionals

GLOBAL SUPPORT 

with locations in North America, 

Asia and Europe, and sales staff in 

30 countries

INNOVATION

Henkel’s BERGQUIST thermal 

solutions were often developed for 

specific customer requests

TIM SG_0115_WEB-html.html
background image

| Thermal Interface Selection Guide 

— INTRODUCTION

Thermal Properties and Testing

Thermal Conductivity

The time rate of heat flow through a unit area producing a unit 
temperature difference across a unit thickness.

Thermal conductivity is an inherent or absolute property of 
the material.

Thermal Impedance

A property of a particular assembly measured by the ratio of the 
temperature difference between two surfaces to the steady-state 
heat flow through them.

Factors affecting thermal impedance include:

Area:

  Increasing the area of thermal contact decreases 

thermal impedance.

Thickness:

  Increasing the insulator thickness increases 

thermal impedance.

Pressure:

  Increasing mounting pressure under ideal  

conditions decreases thermal impedance.

Time:

  Thermal impedance decreases over time.

Measurement:

  Thermal impedance is affected by the  

method of temperature measurement.

Thermal Impedance Per BERGQUIST TO-220 
Thermal Performance (25°C Cold Plate Testing)

Thermal Resistance

The opposition to the flow of heat through a unit area of material 
across an undefined thickness.

Thermal resistance varies with thickness.

Test Methods – ASTM D5470

2 in. diameter stack (ref. 3.14 in.

2

) – 10-500 psi, 1 hour per layer

i

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— INTRODUCTION

 | 

5

 

Interface Material Selection Guide

PRODUCT OVERVIEW

INTERFACE APPLICATIONS

MOUNTING METHODS

TYPICAL CONVERTED OPTIONS

MARKET APPLICATIONS

PRODUCTS

DISCRETE

 PO

WER

 DEVICES

 F

OR

 

PO

WER

 SUPPLIES

, C

O

MPUTERS

TELEC

O

M

 (

THR

U

-HOLE

)

A

CTIVE

 PO

WER

 C

O

MPONENTS

CAP

A

CIT

ORS

, INDUCT

ORS

RESIST

ORS

ELECTR

ONIC

 M

ODULES

 F

OR

 

A

UT

O

M

O

TIVE

: M

O

TOR

 AND

 WIPER

 

CONTR

OLS

, ANTI

-L

OCK

, ET

C

.

ELECTR

ONIC

 M

ODULES

 F

OR

 

TELEC

O

M

 AND

 PO

WER

 SUPPLIES

CO

MPUTER

 APPLICA

TIONS

: CPU

GPU

, ASICS

, HARD

 DRIVES

 (

I)

ELECTRICAL

 INSULA

TOR

CLIP

, L

O

W

 PRESSURE

SCREW

/RIVETS

, HIGH

 PRESSURE

NO

T APPLICABLE

SHEET

 ST

OCK

R

OLL

 F

ORM

, C

ONTINUOUS

ST

AND

ARD

 C

ONFIGURA

TIONS

CUST

O

M

 EXTERNAL

 SHAPES

CUST

O

M

 INTERNAL

 FEA

TURES

ST

AND

ARD

 PSA

 OFFERINGS

Grease Replacement Materials 

Q-PAD II

T

T

T

T

T

T

A

A

A

A

A

A

Q-PAD 3

T

T

T

T

T

T

A

A

A

A

A

A

HI-FLOW 105

T

AS

AS

T

A

A

A

A

A

A

HI-FLOW 300G

T

T

T

T

AS

A

A

A

A

A

A

HI-FLOW 225F-AC

T

T

T

A

A

A

AS

HI-FLOW 225UT

T

T

AS

A

A

AS

HI-FLOW 565UT

T

T

T

AS

A

A

AS

Grease Replacement 
Materials - Insulated

HI-FLOW 625

T

T

T

A

A

A

A

A

A

HI-FLOW 300P

T

T

T

A

A

A

A

A

A

HI-FLOW 650P

T

T

T

A

A

A

A

A

Bonding - Thin Film

BOND-PLY 660P

T

T

T

T

T

A

A

A

A

A

Bonding - Fiberglass

BOND-PLY 100

T

T

T

T

T

A

A

A

A

A

BOND-PLY 800

T

T

T

T

A

A

A

A

A

Bonding - Unreinforced

BOND-PLY 400

T

T

T

T

T

A

A

A

A

Bonding - Laminates

BOND-PLY LMS 500P

T

AS

T

A

A

A

A

A

BOND-PLY LMS-HD

T

AS

T

A

A

A

A

A

SIL PAD - Fiberglass

SIL PAD 400

T

T

T

T

T

T

A

A

A

A

A

A

SIL PAD 800

T

T

T

T

T

A

A

A

A

A

A

SIL PAD 900S

T

T

T

T

T

T

A

A

A

A

A

A

SIL PAD 980

T

T

T

T

T

A

A

A

A

A

A

SIL PAD 1100ST

T

T

T

T

T

T

A

A

A

A

A

SIL PAD 1200

T

T

T

T

T

T

A

A

A

A

A

A

SIL PAD A1500

T

T

T

T

T

T

A

A

A

A

A

A

SIL PAD I 500ST

T

T

T

T

T

T

A

A

A

A

A

SIL PAD 2000

T

T

T

T

AS

A

A

A

A

A

A

SIL PAD A2000

T

T

T

T

AS

T

A

A

A

A

A

A

SIL PAD - Thin Film Polyimide

SIL PAD K-4

T

T

T

T

T

T

A

A

A

A

A

A

SIL PAD K-6

T

T

T

T

T

T

A

A

A

A

A

A

SIL PAD K-10

T

T

T

T

T

T

A

A

A

A

A

A

GAP PAD

GAP PAD VO

T

T

T

T

T

T

T

A

A*

A

A

AS

A

GAP PAD VO Soft

T

T

T

T

T

T

T

A

A*

A

A

AS

A

GAP PAD VO Ultra Soft

T

T

T

T

T

T

T

A

A*

A

A

AS

A

GAP PAD HC 3.0

T

T

T

T

T

T

T

A

A*

A

A

AS

A

GAP PAD 1000HD

T

T

T

T

T

T

T

A

A*

A

A

AS

A

GAP PAD 1000SF

T

T

T

T

T

T

T

A

A

A

AS

GAP PAD HC 1000

T

T

T

T

T

A

A*

A

A

A

GAP PAD 1450

T

T

T

T

T

A

A*

A

A

A

GAP PAD 1500

T

T

T

T

T

A

A*

A

A

AS

GAP PAD 1500R

T

T

T

T

T

T

A

A*

A

A

A

GAP PAD 15000S30

T

T

T

T

AS

T

T

A

A

A

A

GAP PAD A2000

T

T

T

AS

T

T

A

A*

A

A

A

GAP PAD 2000S40

T

T

T

AS

T

T

A

A

A

A

GAP PAD 2200SF

T

T

T

T

T

T

T

A

A

A

AS

GAP PAD A3000

T

T

T

T

AS

T

T

A

A*

A

A

A

GAP PAD 3500ULM

T

T

T

T

AS

T

T

A

A*

A

A

A

GAP PAD 5000S35

T

T

T

T

AS

T

T

A

A

A

Gap Filler

Gap Filler 1000

T

T

T

AS

T

NA

Gap Filler 1000SR

T

T

T

AS

T

NA

Gap Filler 1100SF

T

T

T

T

AS

T

NA

Gap Filler 1500

T

T

T

AS

T

NA

Gap Filler 1500LV

T

T

T

AS

T

NA

Gap Filler 2000

T

T

T

AS

T

NA

Gap Filler 3500S35

T

T

T

AS

T

NA

Gap Filler 4000

T

T

T

AS

T

NA

Liquid Adhesive

LIQUI-BOND EA 1805

T

T

AS

T

NA

LIQUI-BOND SA 1000

T

T

AS

T

NA

LIQUI-BOND SA 1800

T

T

AS

T

NA

LIQUI-BOND SA 2000

T

T

AS

T

NA

LIQUI-BOND SA 3505

T

T

AS

T

NA

T = Typical; AS = Application-Specific (contact Henkel Sales); A = Available; * = Roll stock configurations are limited — contact your Henkel Sales Representative for more information. Note: For HI-FLOW 225UT, 225F-AC and HI-FLOW 565UT, the adhesive is not a 
pressure sensitive adhesive (PSA).

TIM SG_0115_WEB-html.html
background image

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD Thermally Conductive Materials

Solution-Driven Thermal Management Products for Electronic Devices

A Complete Range of Choices for Filling Air Gaps and Enhancing Thermal Conductivity

The BERGQUIST brand is a world leader in thermal interface 
materials. The GAP PAD family of products was developed 
to meet the electronic industry’s growing need for interface 
materials with greater conformability, higher thermal 
performance and easier application.

The extensive GAP PAD family provides an effective thermal 
interface between heat sinks and electronic devices where 
uneven surface topography, air gaps and rough surface textures 
are present. Henkel application specialists work closely with 
customers to specify the proper GAP PAD material for each 
unique thermal management requirement.

Features

Each of the many products 
within the GAP PAD family 
is unique in its construction, 
properties and performance. 
Following is an overview of the 
important features offered by 
the GAP PAD family.

• 

 Low-modulus 

polymer material

• 

 Available with fiberglass/ 

rubber carriers or in a non-

reinforced version 

• 

 Special fillers to achieve 

specific thermal 

and conformability 

characteristics

• 

 Highly conformable to 

uneven and rough surfaces

• 

Electrically isolating

• 

 Natural tack on one or both 

sides with protective liner

• 

 Variety of thicknesses  

and hardnesses

• 

 Range of thermal 

conductivities 

• 

 Available in sheets and 

die-cut parts

Benefits

GAP PAD thermal products 
are designed to improve 
an assembly’s thermal 
performance and reliability 
while saving time and money.

• 

 Eliminate air gaps to reduce 

thermal resistance

• 

 High conformability reduces 

interfacial resistance

• 

 Low-stress  vibration 

dampening

• 

Shock absorbing

• 

Easy material handling

• 

 Simplified  application

• 

 Puncture, shear and  

tear resistance

• 

 Improved performance for 

high-heat assemblies

• 

 Compatible with automated 

dispensing equipment

Options

Some GAP PAD products have 
special features for particular 
applications, including:

• 

 Available with or  

without adhesive

• 

 Rubber-coated  fiberglass 

reinforcement

• 

 Thicknesses from 0.010 in. 

to 0.250 in.

• 

 Available in custom die-

cut parts, sheets and rolls 

(converted or unconverted)

• 

 Custom thicknesses and 

constructions

• 

 Adhesive or natural inherent 

tack

• 

 Silicone-free  GAP PAD 

available in thicknesses of 

0.010 in. - 0.125 in.

We produce thousands of 
specials. Tooling charges vary 
depending on tolerance and 
complexity of the part.

Applications

GAP PAD products are well-
suited to a wide variety of 
electronics, automotive, 
medical, aerospace and 
military applications such as:

• 

 Between an IC and a heat 

sink or chassis. Typical 

packages include BGAs, QFP, 

SMT power components and 

magnetics

• 

 Between a semiconductor 

and heat sink

• 

CD-ROM/DVD cooling

• 

Heat pipe assemblies

• 

Memory modules

• 

DDR SDRAM

• 

Hard drive cooling

• 

Power supply

• 

IGBT modules

• 

Signal amplifiers

• 

 Between other heat-

generating devices  

and chassis

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

7

 

GAP PAD Comparison Data

Conductivity, Hardness and General Overview

2.0

3.0

4.0

5.0

6.0

1.0

2.0

3.0

4.0

5.0

6.0

1.0

GAP PAD Thermal Interface Materials

Specialty GAP PAD Thermal Interface Materials

Ultra Low Modulus

(ULM)

High Performance

GAP PAD

3500ULM

VO Series

Extended Performance

GAP PAD

VO Ultra Soft

Value GAP PAD

Value Performance

GAP PAD

1450

Silicone-Free

GAP PAD

2202SF

GAP PAD

3004SF

GAP PAD

1000SF

GAP PAD

2200SF

GAP PAD

1500

GAP PAD

1500R

GAP PAD

VO Soft

GAP PAD

VO

High Compliance

(HC)

GAP PAD

HC 1000

High Durability

(HD)

GAP PAD

1000HD

Electromagnetic

(EMI)

GAP PAD

EMI 1.0

GAP PAD

HC 3.0

GAP PAD

HC 5.0

Soft Class

(S-Class)

GAP PAD

1500S30

GAP PAD

2000S40

GAP PAD

5000S35

Lo

w

est Modulus

Lo

w

est Modulus

Lo

w

est Modulus

TIM SG_0115_WEB-html.html
background image

| Thermal Interface Selection Guide 

— GAP PAD

Frequently Asked Questions

Q:   What thermal conductivity test method was used to 

achieve the values given on the data sheets?

A: 

 A test fixture is utilized that meets the specifications outlined 
in ASTM D5470.

Q: Is GAP PAD offered with an adhesive?
A: 

 Currently,  GAP PAD VO, GAP PAD VO Soft, and GAP PAD VO 
Ultra Soft are offered with or without an adhesive on the  
SIL PAD 800/900 carrier-side of the material. The remaining 
surface has natural inherent tack. All other GAP PAD 
Materials have inherent tack.

Q:  Is the adhesive repositionable?
A: 

 Depending on the surface being applied to, if care is taken, 
the pad may be repositioned. Special care should be taken 
when removing the pad from aluminum or anodized surfaces 
to avoid tearing or delamination.

Q:  What is meant by “natural tack”?
A: 

 The characteristic of the rubber itself has a natural inherent 
tack, with the addition of an adhesive. As with adhesive-
backed products, the surfaces with natural tack may help in 
the assembly process to temporarily hold the pad in place 
while the application is being assembled. Unlike adhesive-
backed products, inherent tack does not have a thermal 
penalty since the rubber itself has the tack. Tack strength 
varies from one GAP PAD product to the next.

Q:   Can  GAP PAD with natural tack be repositioned?
A: 

 Depending on the material that the pad is applied to, in  
most cases they are repositionable. Care should be taken 
when removing the pad from aluminum or anodized  
surfaces to avoid tearing or delaminating the pad. The  
side with the natural tack is always easier to reposition  
than an adhesive side.

Q: Is GAP PAD reworkable?
A: 

 Depending on the application and the pad being used,  
GAP PAD has been reworked in the past. Some of our 
customers are currently using the same pad for reassembling 
their applications after burn-in processes and after fieldwork 
repairs. However, this is left up to the design engineer’s 
judgment as to whether or not the GAP PAD  
will withstand reuse.

Q:  Will heat make the material softer?
A: 

 From -60°C to 200°C, there is no significant variance in 
hardness for silicone GAP PAD Materials and Gap Fillers.

Q:  What is the shelf life of GAP PAD?
A: 

 Shelf life for most GAP PAD Materials is one (1) year after the 
date of manufacture. For GAP PAD with adhesive, the shelf 
life is six (6) months from the date of manufacture. After 
these dates, inherent tack and adhesive properties should be 
recharacterized. The GAP PAD material’s long-term stability is 
not the limiter on the shelf life; it is related to the adhesion or 
“age up” of the GAP PAD to the liner. Or in the case of a  
GAP PAD with adhesive, the shelf life is determined by how 
the adhesive ages up to the removable liner.

Q:  How is extraction testing performed?
A: 

 The test method used is the Soxhlet Extraction Method; 
please refer to GAP PAD S-Class White Paper.

Q:   What is the thickness tolerance of your pads?
A: 

 The thickness tolerance is ±10% on materials >10 mil and ±1 
mil on materials £10 mil.

Q:   What are the upper processing temperature limits for GAP 

PAD and for how long can GAP PAD be exposed to them?

A: 

 GAP PAD in general can be exposed to temporary processing 
temperatures of 250°C for five minutes and 300°C for 
one minute.

Q: Is GAP PAD electrically isolating?
A: 

 Yes,  all  GAP PAD materials are electrically isolating. However, 
keep in mind that GAP PAD is designed to fill  
gaps and it is not recommended for applications where  
high mounting pressure is exerted on the GAP PAD.

Q:  How much force will the pad place on my device?
A: 

 Refer to the Pressure vs. Deflection charts in BERGQUIST 
Application Note #116 at our website’s Technical Library. 
In addition, there are other helpful resources online at 
www.henkel-adhesives.com/thermal.

Q:   Why are “wet out,” “compliance” or “conformability” 

characteristics of GAP PAD important?

A: 

 The better a GAP PAD lays smooth “wets out” or conforms to 
a rough or stepped surface, giving less interfacial resistance 
caused by air voids and air gaps. GAP PAD Materials are 
conformable or compliant as they adhere very well to the 
surface. The GAP PAD Materials can act similarly to a “suction 
cup” on the surface. This leads to a lower overall thermal 
resistance of the pad between the two interfaces.

Q:   Is anything given off by the material (e.g., extractables, 

outgassing)?

A: 

1)   Silicone  GAP PAD and Gap Fillers, like all soft silicone 

materials, can extract low molecular weight silicone (refer 
to White Paper on GAP PAD S-Class). Also note that GAP 
PAD and Gap Filler have some of the lowest extraction 
values for silicone-based gap filling products on the 
market and if your application requires minimal silicone, 
see our line of silicone-free material. The White Paper on 
GAP PAD S-Class and information about our silicone-free 
materials are available on our website.

 

 2)   Primarily for aerospace applications, outgassing data is 

tested per ASTM E595.

Q:   Why does the Technical Data Sheet (on the website) 

describe the Shore hardness rating as a bulk rubber 
hardness?

A: 

 A reinforcement carrier is generally used in BERGQUIST 
GAP PAD Materials for ease of handling. When testing 
hardness, the reinforcement carrier can alter the test results 
and incorrectly depict thinner materials as being harder. To 
eliminate this error, a 250 mil rubber puck is molded with no 
reinforcement carrier. The puck is then tested for hardness. 
The Shore hardness is recorded after a 30-second delay.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

9

 

GAP PAD VO

Features and Benefits

• 

Thermal conductivity: 0.8 W/m-K

• 

 Enhanced puncture, shear and  

tear resistance

• 

Conformable gap filling material

• 

Electrically isolating

GAP PAD VO is a cost-effective, thermally 
conductive interface material. The 
material is a filled, thermally conductive 
polymer supplied on a rubber-coated 
fiberglass carrier allowing for easy 
material handling. The conformable 
nature of GAP PAD VO allows the pad to 
fill in air gaps between PC boards and 
heat sinks or a metal chassis.

Note: Resultant thickness is defined as the 

final gap thickness of the application.

1

3

5

7

9

11

13

250

200

150

100

50

0

Thickness vs. Thermal Resistance

GAP PAD VO

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Conformable, Thermally Conductive Material for Filling Air Gaps

Typical Applications Include:

• 

Telecommunications

• 

Computer and peripherals

• 

Power conversion

• 

Between heat-generating semiconductors and a heat sink

• 

 Area where heat needs to be transferred to a frame, chassis, or other type of 

heat spreader

• 

Between heat-generating magnetic components and a heat sink

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GPVO = GAP PAD VO Material

GPVO

0.040

AC

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.020", 0.040", 0.060",

0.080", 0.100", 0.125", 0.160", 0.200", 0.250"

AC = Adhesive on SIL PAD side, natural tack on one side

01 = No pressure sensitive adhesive, natural tack on one side

0816 = Standard sheet size 8" x 16" or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD VO

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Gold/Pink

Gold/Pink

Visual

Reinforcement Carrier

SIL PAD

SIL PAD

Thickness (in.) / (mm)

0.020 to 0.250

0.508 to 6.350

ASTM D374

Inherent Surface Tack (1-sided)

1

1

Density (Bulk Rubber) (g/cc)

1.6

1.6

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

40

40

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

100

689

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>6,000

>6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.8

0.8

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

2.47

2.37

2.24

1)  Thirty-second delay value Shore 00 hardness scale.
2)  Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

10 

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD VO Soft

Highly Conformable, Thermally Conductive Material for Filling Air Gaps

Features and Benefits

• 

Thermal conductivity: 0.8 W/m-K

• 

Conformable, low hardness

• 

 Enhanced puncture, shear and  

tear resistance

• 

Electrically isolating

GAP PAD VO Soft is recommended for 
applications that require a minimum 
amount of pressure on components. 
GAP PAD VO Soft is a highly conformable, 
low-modulus, filled-silicone polymer on 
a rubber-coated fiberglass carrier. The 
material can be used as an interface 
where one side is in contact with a  
leaded device.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

1

2

3

4

8

7

6

5

9

10

200

180

160

140

120

100

80

60

40

20

Thickness vs. Thermal Resistance

GAP PAD VO Soft

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Telecommunications

• 

Computer and peripherals

• 

Power conversion

• 

Between heat-generating semiconductors or magnetic components and a heat sink

• 

Area where heat needs to be transferred to a frame, chassis, or other type of 

heat spreader

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GPVOS = GAP PAD VO Soft Material

GPVOS

0.060

AC

00

ACME10256 Rev. a

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.020", 0.040", 0.060",

0.080", 0.100", 0.125", 0.160", 0.200"

AC = Adhesive on SIL-PAD side, natural tack on one side

01 = No pressure sensitive adhesive, natural tack on one side

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD VO SOFT

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Mauve/Pink

Mauve/Pink

Visual

Reinforcement Carrier

SIL PAD

SIL PAD

Thickness (in.) / (mm)

0.020 to 0.200

0.508 to 5.080

ASTM D374

Inherent Surface Tack (1-sided)

1

1

Density (Bulk Rubber) (g/cc)

1.6

1.6

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

25

25

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

40

275

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>6,000

>6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.8

0.8

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

2.48

2.29

2.11

1)   Thirty-second delay value Shore 00 hardness scale.
2)  Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

11

 

GAP PAD VO Ultra Soft

Ultra Conformable, Thermally Conductive Material for Filling Air Gaps

Features and Benefits

• 

Thermal conductivity: 1.0 W/m-K

• 

Highly conformable, low hardness

• 

“Gel-like” modulus

• 

Decreased strain

• 

Puncture-, shear- and tear-resistant

• 

Electrically isolating

GAP PAD VO Ultra Soft is recommended 
for applications that require a minimum 
amount of pressure on components. 
The viscoelastic nature of the material 
also gives excellent low-stress vibration 
dampening and shock absorbing 
characteristics. GAP PAD VO Ultra Soft is 
an electrically isolating material, which 
allows its use in applications requiring 
isolation between heat sinks and high-
voltage, bare-leaded devices.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

1

2

3

5

8

4

6

9

7

10

250

200

150

100

50

0

Thickness vs. Thermal Resistance

GAP PAD VO Ultra Soft

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Telecommunications

• 

Computer and peripherals

• 

Power conversion

• 

Between heat-generating semiconductors or magnetic components and a heat sink

• 

Area where heat needs to be transferred to a frame, chassis, or other type of 

heat spreader

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GPVOUS = GAP PAD VO Ultra Soft Material

GPVOUS

0.100

AC

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.020", 0.040", 0.060",

0.080", 0.100", 0.125", 0.160", 0.200", 0.250"

AC = Adhesive on SIL-PAD side, natural tack on one side

01 = No pressure sensitive adhesive, natural tack on one side

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD VO ULTRA SOFT

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Mauve/Pink

Mauve/Pink

Visual

Reinforcement Carrier

SIL PAD

SIL PAD

Thickness (in.) / (mm)

0.020 to 0.250

0.508 to 6.350

ASTM D374

Inherent Surface Tack (1-sided)

1

1

Density (Bulk Rubber) (g/cc)

1.6

1.6

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

5

5

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

8

55

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

6,000

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-0

V-0

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.0

1.0

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

 

 

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

1.97

1.87

1.68

1)  Thirty-second delay value Shore 00 hardness scale.
2)  Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

12 

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD HC 3.0

High-Compliance, Thermally Conductive, Low Modulus Material

Features and Benefits

• 

 Thermal conductivity: 3.0 W/m-K

• 

 High-compliance,  low   

compression stress

• 

 Fiberglass-reinforced for shear and tear 

resistance

GAP PAD HC 3.0 is a soft and compliant 
gap filling material with a thermal 
conductivity of 3.0 W/m-K. The material 
offers exceptional thermal performance at 
low pressures due to a unique 3.0 W/m-K 
filler package and low-modulus resin 
formulation. The enhanced material 
is ideal for applications requiring low 
stress on components and boards during 
assembly. GAP PAD HC 3.0 maintains 
a conformable nature that allows for 
quick recovery and excellent wet-out 
characteristics, even to surfaces with high 
roughness and/or topography.

GAP PAD HC 3.0 is offered with natural 
inherent tack on both sides of the 
material, eliminating the need for 
thermally impeding adhesive layers. The 
top side has minimal tack for ease of 
handling. GAP PAD HC 3.0 is supplied 
with protective liners on both sides. 

.25

.50

.75

1.00

1.25

1.50  1.75 2.00

140

120

100

80
60
40
20

0

Thickness vs. Thermal Resistance

GAP PAD HC 3.0

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Telecommunications

• 

ASICs and DSPs

• 

Consumer electronics

• 

Thermal modules to heat sinks

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GPHC3.0 = GAP PAD HC 3.0 Material with fiberglass

GPHC3.0

0.020

02

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.020", 0.040", 0.060", 

0.080", 0.100", 0.125"

02 = Natural tack, both sides (With fiberglass)

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD HC 3 .0

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Blue

Blue

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.020 to 0.125

0.508 to 3.175

ASTM D374

Inherent Surface Tack 

2

2

Density (Bulk Rubber) (g/cc)

3.1

3.1

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(4)

15

15

ASTM D2240 

Young’s Modulus (psi) / (kPa)

(1)

16

110

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

(3)

>5,000

>5,000

ASTM D149

Dielectric Constant (1,000 Hz) 

6.5

6.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(2)

3.0

3.0

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(2)

0.57

0.49

0.44

1)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

 after 5 minutes of compression at 10% strain on a 1 mm 

thickness material.

2)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied. 

3)  Minimum value at 20 mil. 
4)  Thirty-second delay value on Shore 00 hardness scale.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

13

 

GAP PAD 1000HD

Highly Durable, Conformable, Thermally Conductive, Gap Filling Material

Features and Benefits

• 

 Thermal conductivity: 1.0 W/m-K

• 

 Designed for high 

durability applications

• 

 Robust polyimide carrier provides 

excellent voltage breakdown, puncture 

and tear resistance

• 

Highly conformable

• 

 Ease of handling and rework 

in applications

GAP PAD 1000HD

GAP PAD 1000HD was designed to 
withstand applications requiring 
high durability. 

The coated polyimide carrier on one 
side of the material allows easy rework, 
excellent handling characteristics and 
puncture resistance. 

The conformable and elastic nature 
of GAP PAD 1000HD allows excellent 
interfacing and wet-out characteristics, 
even to surfaces with a high degree of 
roughness or uneven topography.

The asymmetric construction of  
GAP PAD 1000HD provides minimal  
tack on the polyimide side, with high 
inherent tack on the upcoated side.  
GAP PAD 1000HD can be assembled  
with manual or automated processes.

1.00

2.00

4.00

3.00

5.00

125

100

75

50

25

0

Thickness vs. Thermal Resistance

GAP PAD 1000HD

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

High durability applications

• 

Automotive energy storage: ultra capacitors, batteries, power transmissions, 

power inverters

• 

Industrial automotive applications such as trucks, buses and trains

• 

Computer and peripherals

• 

Telecommunications

• 

Between any heat-generating device and a heat sink

Configurations Available:

• 

Sheet form 

• 

Die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GP1000HD = GAP PAD 1000HD Material

GP1000HD

0.100

01

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.020", 0.040", 0.060",

0.080", 0.100", 0.125"

01 = Natural tack on one side

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD 1000HD

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey/Black

Grey/Black

Visual

Reinforcement Carrier

Polyimide

Polyimide

Thickness (in.) / (mm)

0.020 to 0.125

0.508 to 3.175

ASTM D374

Inherent Surface Tack (1- or 2-sided)

1

1

Density (g/cc)

2.1

2.1

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness, Bulk Rubber (Shore 00)

(1)

40

40

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

60

414

ASTM D575

Continuous Use Temp. (°C)

-76 to 358

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>10,000

>10,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.0

1.0

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

 

 

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3) 

1.70

1.59

1.47

1)  Thirty-second delay value Shore 00 hardness scale.
2)  Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded values includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

14 

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD 1000SF

Thermally Conductive, Silicone-Free Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 0.9 W/m-K

• 

No silicone outgassing

• 

No silicone extraction

• 

 Reduced tack on one side to aid in 

application assembly

• 

Electrically isolating

GAP PAD 1000SF is a thermally 
conductive, electrically insulating, 
silicone-free polymer specially designed 
for silicone-sensitive applications. The 
material is ideal for applications with high 
standoff and flatness tolerances.  
GAP PAD 1000SF is reinforced for easy 
material handling and added durability 
during assembly. The material is available 
with a protective liner on both sides of 
the material. The top side has reduced 
tack for ease of handling.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

0

1

2

4

3

5

125

100

75

50

25

0

Thickness vs. Thermal Resistance

GAP PAD 1000SF

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Digital disk drives / CD-ROM

• 

Automotive modules

• 

Fiber optics modules

Configurations Available:

• 

Sheet form

• 

Die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GP1000SF = GAP PAD 1000SF Material

GP1000SF

0.010

02

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available: 0.010", 0.015", 0.020",

0.040", 0.060", 0.080", 0.100", 0.125"

02 = Natural tack, both sides

0806: = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD 1000SF

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Green

Green

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.010 to 0.125

0.254 to 3.175

ASTM D374

Inherent Surface Tack (1- or 2-sided)

2

2

Density (g/cc)

2.0

2.0

ASTM D792

Heat Capacity ( J/g-K)

1.1

1.1

ASTM E1269

Hardness, Bulk Rubber (Shore 00)

(1)

40

40

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

34

234

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 257

-60 to 125

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>6,000

>6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.0

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-1

V-1

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.9

0.9

ASTM D5470

1)  Thirty-second delay value Shore 00 hardness scale.
2)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

. For more information on GAP PAD modulus, refer to 

BERGQUIST Application Note #116 at our website’s Technical Library.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

15

 

GAP PAD HC1000

“Gel-Like” Modulus Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 1.0 W/m-K

• 

Highly conformable, low hardness

• 

“Gel-like” modulus

• 

 Fiberglass-reinforced for puncture, 

shear and tear resistance

GAP PAD HC1000 is an extremely 
conformable, low-modulus polymer that 
acts as a thermal interface and electrical 
insulator between electronic components 
and heat sinks. The “gel-like” modulus 
allows this material to fill air gaps to 
enhance the thermal performance of 
electronic systems. GAP PAD HC1000 is 
offered with removable protective liners 
on both sides of the material.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

0.25

0.30

0.40

0.35

0.50

0.45

0.55

20

18
16

14

12

10

Thickness vs. Thermal Resistance

GAP PAD HC1000

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Computer and peripherals

• 

Telecommunications

• 

Heat interfaces to frames, chassis, or other heat spreading devices

• 

Memory modules / chip scale packages

• 

CD-ROM / DVD cooling

• 

Areas where irregular surfaces need to make a thermal interface to a heat sink

• 

DDR SDRAM memory modules

• 

FB-DIMM modules

Configurations Available:

• 

Sheet form, die-cut parts, and roll form (converted or unconverted)

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

HC1000 = High Compliance 1000 Material

HC1000

0.015

02

0816

NA

Note:  To build a part number, visit our website at www.bergquistcompany.com.

Standard thicknesses available:  0.010", 0.015", 0.020"

02 = Natural tack, both sides

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

 

example

TYPICAL PROPERTIES OF GAP PAD HC1000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.010 to 0.020

0.254 to 0.508

ASTM D374

Inherent Surface Tack (1-sided)

2

2

Density (Bulk Rubber) (g/cc)

1.6

1.6

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

25

25

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

40

275

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>5,000

>5,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.0

1.0

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.020 in.

(3)

1.30

1.00

0.96

1)  Thirty-second delay value Shore 00 hardness scale.
2)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

16 

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD 1450

Highly Conformable, Thermally Conductive, Reworkable Gap Filling Material

Features and Benefits

• 

 Thermal conductivity: 1.3 W/m-K 

(bulk rubber)

• 

 PEN film reinforcement allows easy 

rework and resistance to puncture and 

tear resistance

• 

 Highly conformable/low hardness

• 

 Low strain on fragile components

GAP PAD 1450 is a highly compliant  
GAP PAD material that is ideal for fragile 
component leads. The material includes 
a PEN film, which facilitates rework 
and improves puncture resistance and 
handling characteristics. The tacky side of 
GAP PAD 1450 maintains a conformable, 
yet elastic nature that provides excellent 
interfacing and wet-out characteristics, 
even to surfaces with high roughness or 
uneven topography.

GAP PAD 1450 has inherent tack on one 
side of the material, eliminating the need 
for thermally impeding adhesive layers.

It is highly recommended that the PEN 
film be left intact. However, film removal 
will not have a significant impact on 
thermal performance. 

Please contact your local Henkel Sales 
Representative for sample inquiries and 
additional product information.

Thermal Resistance (C-in.

2

/W)

Thickness vs. Thermal Resistance

GAP PAD 1450

Typical Applications:

• 

 Lighting and LED applications

• 

 Low strain is required for fragile component leads

• 

Computer and peripherals

• 

Telecommunications

• 

 Between any heat-generating semiconductor and a heat sink

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

GP1450

01

0816

0.020

||

 

example

Section A

Section B

Section C

Section D

Section E

NA

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

01 = Natural tack, one side

Standard thickness available:  0.020", 0.040", 0.060"

0.080", 0.100", 0.125"

GP1450 = GAP PAD 1450 Material

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

TYPICAL PROPERTIES OF GAP PAD 1450

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Light Pink

Light Pink

Visual

Reinforcement Carrier

PEN film

PEN film

Thickness (in.) / (mm)

0.020 to 0.125

0.508 to 3.175

ASTM D374

Inherent Surface Tack (1-sided)

1

1

Density (Bulk Rubber) (g/cc)

1.8

1.8

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

30

30

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

16

110

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 302

-60 to 150

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>6,000

>6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.0

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

9

10

9

ASTM D257

Flame Rating

V-0

V-0

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.3

1.3

ASTM D5470

1)  Thirty-second delay value Shore 00 hardness scale.
2)  Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

17

 

GAP PAD 1500

Thermally Conductive, Unreinforced Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 1.5 W/m-K

• 

 Unreinforced construction for 

additional compliancy

• 

Conformable, low hardness

• 

Electrically isolating

GAP PAD 1500 has an ideal filler 
blend that gives it a low-modulus 
characteristic which maintains optimal 
thermal performance yet still allows 
for easy handling. The natural tack 
on both sides of the material allows 
for good compliance to adjacent 
surfaces of components, minimizing 
interfacial resistance. 

Note: Resultant thickness is defined as the final 

gap thickness of the application.

0

1

3

2

5

4

6

200

150

100

50

0

Thickness vs. Thermal Resistance

GAP PAD 1500

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Telecommunications

• 

Computer and peripherals

• 

Power conversion

• 

Memory modules / chip scale packages

• 

Areas where heat needs to be transferred to a frame chassis or other type  

of heat spreader

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GP1500 = GAP PAD 1500 Material

GP1500

0.100

02

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.020", 0.040", 0.060",

0.080", 0.100", 0.125", 0.160", 0.200"

02 = Natural tack, both sides

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD 1500

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Reinforcement Carrier

Thickness (in.) / (mm)

0.020 to 0.200

0.508 to 5.080

ASTM D374

Inherent Surface Tack (1-sided)

2

2

Density (Bulk Rubber) (g/cc)

2.1

2.1

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

40

40

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

45

310

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>6,000

>6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.5

1.5

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

1.62

1.50

1.33

1)  Thirty-second delay value Shore 00 hardness scale.
2)  Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

18 

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD 1500R

Features and Benefits

• 

Thermal conductivity: 1.5 W/m-K

• 

 Fiberglass-reinforced for puncture, 

shear and tear resistance

• 

Easy release construction

• 

Electrically isolating

GAP PAD 1500R has the same highly 
conformable, low-modulus polymer as  
the standard GAP PAD 1500. The 
fiberglass reinforcement allows for easy 
material handling and enhances puncture, 
shear and tear resistance. The natural  
tack on both sides of the material allows 
for good compliance to mating surfaces 
of components, further reducing  
thermal resistance.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

0.25

0.30

0.40

0.35

0.50

0.45

0.55

20

18
16

14

12

10

Thickness vs. Thermal Resistance

GAP PAD 1500R

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Thermally Conductive, Reinforced Gap Filling Material

Typical Applications Include:

• 

Telecommunications

• 

Computer and peripherals

• 

Power conversion

• 

Memory modules / chip scale packages

• 

Areas where heat needs to be transferred to a frame chassis or other type  

of heat spreader

Configurations Available:

• 

Sheet form, die-cut parts, and roll form (converted or unconverted)

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GP1500R = GAP PAD 1500R Material

GP1500R

0.020

02

00

ACME10256 Rev. A

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.010", 0.015", 0.020"

02 = Natural tack, both sides

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD 1500R

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.010 to 0.020

0.254 to 0.508

ASTM D374

Inherent Surface Tack (1-sided)

2

2

Density (Bulk Rubber) (g/cc)

2.1

2.1

ASTM D792

Heat Capacity ( J/g-K)

1.3

1.3

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

40

40

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

45

310

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>6,000

>6,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.5

1.5

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.020 in.

(3)

1.07

0.88

0.82

1)  Thirty-second delay value Shore 00 hardness scale.
2)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

19

 

GAP PAD 1500S30

Highly Conformable, Thermally Conductive, Reinforced “S-Class” Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 1.3 W/m-K

• 

Highly conformable/low hardness

• 

Decreased strain on fragile components

• 

 Fiberglass-reinforced for puncture, 

shear and tear resistance

• 

Quick rebound to original shape

GAP PAD 1500S30 is a highly compliant 
GAP PAD material that is ideal for 
fragile component leads. The material 
is fiberglass-reinforced for improved 
puncture resistance and handling 
characteristics. GAP PAD 1500S30 
maintains a conformable, yet elastic 
nature that provides excellent  
interfacing and wet-out characteristics, 
even to surfaces with high roughness  
or uneven topography.

GAP PAD 1500S30 features an inherent 
tack on both sides of the material, 
eliminating the need for thermally 
impeding adhesive layers.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

 0.61

 1.21

 1.82

 2.42  3.03  3.79   4.85  6.06  7.57

250

200

160

125

100

80
60
40
20

0

Thickness vs. Thermal Resistance

GAP PAD 1500S30

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications:

• 

 Any heat-generating component and a heat sink

• 

Computers and peripherals

• 

Telecommunications

• 

Between any heat-generating semiconductor and a heat sink

• 

 Shielding  devices

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

GP1500S30

GP1500S30 = GAP PAD 1500S30 Material

02

0816

0.020

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

02 = Natural tack, both sides

Standard thicknesses available: 0.020", 0.040", 0.060"

0.080", 0.100", 0.125", 0.160", 0.200", 0.250"

Section A

Section B

Section C

Section D

Section E

|| 

example

TYPICAL PROPERTIES OF GAP PAD 1500S30

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Light Pink

Light Pink

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

ASTM D374

Thickness (in.) / (mm)

0.020 to 0.250

0.508 to 6.350

ASTM D374

Inherent Surface Tack (1-sided)

2

2

Density (Bulk Rubber) (g/cc)

1.8

1.8

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

30

30

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

16

110

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>6,000

>6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.0

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.3

1.3

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

1.69

1.41

1.26

1)  Thirty-second delay value Shore 00 hardness scale.
2)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

20 

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD A2000

High Performance, Thermally Conductive Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 2.0 W/m-K

• 

 Fiberglass-reinforced for puncture, 

shear and tear resistance

• 

Electrically isolating

GAP PAD A2000 acts as a thermal 
interface and electrical insulator between 
electronic components and heat sinks. 
In the thickness range of 10 to 40 mil, 
GAP PAD A2000 is supplied with natural 
tack on both sides, allowing for excellent 
compliance to the adjacent surfaces 
of components. The 40 mil material 
thickness is supplied with lower tack on 
one side, allowing for burn-in processes 
and easy rework.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

0.20

0.30

0.50

0.40

0.70

0.60

0.80

40

35

30

25

20

15

10

0

Thickness vs. Thermal Resistance

GAP PAD A2000

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Computer and peripherals; between CPU and heat spreader

• 

Telecommunications

• 

Heat pipe assemblies

• 

Memory modules

• 

CDROM / DVD cooling

• 

Areas where heat needs to be transferred to a frame chassis or other type  

of heat spreader

• 

DDR SDRAM memory modules

Configurations Available:

• 

Sheet form, die-cut parts and roll form (converted or unconverted)

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GPA2000 = GAP PAD A2000 Material

GPA2000

0.010

02

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.010", 0.015", 0.020"

0.040"

02 = Natural tack, both sides

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD A2000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.010 to 0.040

0.254 to 1.016

ASTM D374

Inherent Surface Tack (1-sided)

2

2

Density (Bulk Rubber) (g/cc)

2.9

2.9

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

80

80

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

55

379

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

4,000

4,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

2.0

2.0

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

1.04

1.00

0.95

1)   Thirty-second delay value Shore 00 hardness scale.
2)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

21

 

GAP PAD 2000S40

Highly Conformable, Thermally Conductive, Reinforced “S-Class” Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 2.0 W/m-K

• 

 Low “S-Class” thermal resistance at 

very low pressures

• 

Highly conformable, low hardness

• 

Designed for low-stress applications

• 

 Fiberglass-reinforced for puncture, 

shear and tear resistance

GAP PAD 2000S40 is recommended for 
low-stress applications that require a mid- 
to high-thermally conductive interface 
material. The highly conformable nature 
of the material allows the pad to fill in air 
voids and air gaps between PC boards and 
heat sinks or metal chassis with stepped 
topography, rough surfaces and high 
stack-up tolerances.

GAP PAD 2000S40 is offered with 
inherent natural tack on both sides 
of the material allowing for stick-in-
place characteristics during application 
assembly. The material is supplied 
with protective liners on both sides. 
The top side has reduced tack for ease 
of handling.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

0.20

0.50

1.50

1.00

2.00

2.50

125

100

75

50

25

0

Thickness vs. Thermal Resistance

GAP PAD 2000S40

Thermal Resistance (

°

C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Power electronics DC/DC; 1/4, 1/2, full bricks, etc.

• 

Mass storage devices

• 

Graphics card/processor/ASIC

• 

Wireline/wireless communications hardware

• 

Automotive engine/transmission controls

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GP2000S40 = GAP PAD 2000S40 Material

GP2000S40

0.020

02

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.020", 0.040", 0.060",

0.080", 0.100", 0.125"

02 = Natural tack, both sides

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD 2000S40

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.020 to 0.125

0.508 to 3.175

ASTM D374

Inherent Surface Tack (1-sided)

2

2

Density (Bulk Rubber) (g/cc)

2.9

2.9

ASTM D792

Heat Capacity ( J/g-K)

0.6

0.6

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

30

30

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

45

310

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>5,000

>5,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

2.0

2.0

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

0.97

0.89

0.80

1)  Thirty-second delay value Shore 00 hardness scale.
2)  Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

22 

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD 2200SF

Thermally Conductive, Silicone-Free Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 2.0 W/m-K

• 

 Silicone-free  formulation 

• 

Medium compliance with easy handling

• 

 Electrically  isolating

GAP PAD 2200SF is a thermally 
conductive, electrically isolating, 
silicone-free polymer specially designed 
for silicone-sensitive applications. 
The material is ideal for applications 
with uneven topologies and high 
stack-up tolerances. GAP PAD 2200SF is 
reinforced for easy material handling and 
added durability during assembly. The 
material is available with a protective 
liner on both sides. GAP PAD 2200SF is 
supplied with reduced tack on one side, 
allowing for burn-in processes  
and easy rework.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

GAP PAD 2200SF

140

0

0.5

1.0

1.5

2.0

2.5

0

Thermal Resistance (°C-in.

2

/W)

Typical Applications:

• 

Digital disk drives

• 

Proximity near electrical contacts (e.g., DC brush motors, connectors, relays)

• 

Fiber optics modules

Configurations Available:

• 

Sheet form

• 

Die-cut parts

• 

Standard sheet size is 8 in. x 16 in.

Building a Part Number 

Standard Options

GP2200SF = GAP PAD 2200SF Material

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Section B

Section D

Section E

Section A

Section C

GP2200SF

N

02

0.010

0816

NA = Selected standard option. If not selecting a standard
option, insert company name, drawing number, and
revision level.

0816 = Standard sheet size 8" x 16", or
00 = custom configuration

02 = Natural tack, both sides

Standard thicknesses available: 0.010", 0.015", 0.020",
0.040", 0.060", 0.080", 0.100", 0.125"

|| 

example

TYPICAL PROPERTIES OF GAP PAD 2200SF

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Green

Green

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.010 to 0.125

0.254 to 3.175

ASTM D374

Inherent Surface Tack (1- or 2-sided)

2

2

Density (g/cc)

2.8

2.8

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness, Bulk Rubber (Shore 00)

(1)

70

70

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

33

228

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 257

-60 to 125

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>5,000

>5,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

8

10

8

ASTM D257

Flame Rating 

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

2.0

2.0

ASTM D5470

1)  Thirty-second delay value Shore 00 hardness scale.
2)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

. For more information on GAP PAD modulus, refer to 

BERGQUIST Application Note #116 at our website’s Technical Library.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

23

 

GAP PAD A3000

Thermally Conductive, Reinforced Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 2.6 W/m-K

• 

 Fiberglass-reinforced for puncture, 

shear and tear resistance

• 

 Reduced tack on one side to aid in 

application assembly

• 

Electrically isolating

GAP PAD A3000 is a thermally 
conductive, filled-polymer laminate, 
supplied on a reinforcing mesh for added 
electrical isolation, easy material handling 
and enhanced puncture, shear and 
tear resistance. GAP PAD A3000 has a 
reinforcement layer on the dark gold side 
of the material that assists in burn-in and 
rework processes while the light gold  
and soft side of the material allows for  
added compliance.

Note: Resultant thickness is defined as the final 

gap thickness of the application.

0.10 0.30 0.50 0.70

1.10

0.90

1.50

1.30

1.70

125

 

115

 

95

 

75

 

55

 

35

Thickness vs. Thermal Resistance

GAP PAD A3000

Thermal Resistance (C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Computer and peripherals

• 

Heat pipe assemblies

• 

CDROM / DVD cooling

• 

Area where heat needs to be transferred 

to a frame, chassis or other type of 

heat spreader

• 

Telecommunications

• 

Memory modules

• 

Between CPU and heat spreader

Configurations Available:

• 

Sheet form, die-cut parts and roll form (converted or unconverted)

Building a Part Number 

Standard Options 

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GPA3000 = GAP PAD A3000 Material

GPA3000

0.015

01

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.015", 0.020", 0.040",

0.060", 0.080", 0.100", 0.125"

01 = Natural tack, one side

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD A3000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Gold

Gold

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.015 to 0.125

0.381 to 3.175

ASTM D374

Inherent Surface Tack (1-sided)

1

1

Density (Bulk Rubber) (g/cc)

3.2

3.2

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

80

80

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

50

344

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>5,000

>5,000

ASTM D149

Dielectric Constant (1,000 Hz)

7.0

7.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

2.6

2.6

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

0.78

0.73

0.68

1)  Thirty-second delay value Shore 00 hardness scale.
2)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

24 

| Thermal Interface Selection Guide 

— GAP PAD

GAP PAD 3500ULM

Highly Conformable, Thermally Conductive, Ultra-Low Modulus Material

Features and Benefits

• 

 Thermal conductivity: 3.5 W/m-K

• 

Fiberglass-reinforced for shear and tear 

resistance

• 

 Non-fiberglass option for applications 

that require an additional reduction 

in stress

GAP PAD 3500ULM (ultra-low modulus) 
is an extremely soft gap filling material 
with a thermal conductivity of 3.5 W/m-K. 
The material offers exceptional thermal 
performance at low pressures due to 
a unique 3.5 W/m-K filler package and 
ultra-low modulus resin formulation. 
The enhanced material is well-suited for 
high performance applications requiring 
extremely low assembly stress. GAP PAD 
3500ULM maintains a conformable nature 
that allows for excellent interfacing and 
wet-out characteristics, even to surfaces 
with high roughness and/or topography.

GAP PAD 3500ULM is offered with and 
without fiberglass and has higher natural 
inherent tack on one side of the material, 
eliminating the need for thermally 
impeding adhesive layers. The top side 
has minimal tack for ease of handling. 
GAP PAD 3500ULM is supplied with 
protective liners on both sides. 

.25

.50

.75

1.00

1.25

1.50  1.75 2.00

140

120

100

80
60
40
20

0

Thickness vs. Thermal Resistance

GAP PAD 3500ULM

Thermal Resistance (°C-in.

2

/W)

Resultant Thickness (

mils

)

Typical Applications Include:

• 

Consumer electronics

• 

Telecommunications

• 

ASICs and DSPs

• 

PC applications

Configurations Available:

• 

Sheet form and die-cut parts

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GP3500ULM = GAP PAD 3500ULM Material without fiberglass

GP3500ULM-G = GAP PAD 3500ULM Material with fiberglass

(GP3500ULM and GP3500ULM-G are also offered in a NT, 

non-tack, version)

GP3500ULM

0.020

02

0816

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.020"(fiberglass only), 0.040",  

0.060", 0.080", 0.100", 0.125"

02 = Natural tack, both sides (without fiberglass)

12 = Natural tack, both sides (with fiberglass)

05 = Non-tack, one side (without fiberglass), 7.87" x 15.75"

15 = Non-tack, one side (with fiberglass), 7.87" x 15.75"

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF GAP PAD 3500ULM

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Reinforcement Carrier

Fiberglass or 
no fiberglass

Fiberglass or 
no fiberglass

Thickness (in.) / (mm)

0.020 to 0.125

0.508 to 3.175

ASTM D374

Inherent Surface Tack 

2

2

Density (Bulk Rubber) (g/cc)

3.1

3.1

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Young’s Modulus (psi) / (kPa)

(1)(2)

4

27.5

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>5,000

>5,000

ASTM D149

Dielectric Constant (1,000 Hz)

(3)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

3.5

3.5

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(4)

0.50

0.44

0.39

1)   Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

 after 5 minutes of compression at 10% strain on a 1mm 

thickness material.

2)   Thirty-second delay value Shore 000 hardness scale is 70 for 125 mil.
3)   Minimum value at 20 mil.
4)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied. 

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP PAD

 | 

25

 

GAP PAD 5000S35

High Thermal Conductivity Plus “S-Class” Softness and Conformability

Features and Benefits

• 

High thermal conductivity: 5.0 W/m-K

• 

 Highly conformable, “S-Class” softness

• 

Natural inherent tack reduces 

interfacial thermal resistance

• 

 Conforms to demanding contours and 

maintains structural integrity with 

little or no stress applied to fragile 

component leads

• 

 Fiberglass-reinforced for puncture, 

shear and tear resistance

• 

Excellent thermal performance at 

low pressures

GAP PAD 5000S35 is a fiberglass-
reinforced filler and polymer featuring a 
high thermal conductivity. The material 
yields extremely soft characteristics while 
maintaining elasticity and conformability. 
The fiberglass reinforcement provides 
easy handling and converting, added 
electrical isolation and tear resistance. 
The inherent natural tack on both 
sides assists in application and allows 
the product to effectively fill air 
gaps, enhancing the overall thermal 
performance. The top side has reduced 
tack for ease of handling. GAP PAD 
5000S35 is ideal for high-performance 
applications at low mounting pressures. 

Note: Resultant thickness is defined as the final 

gap thickness of the application.

Thermal Resistance (°C-in.

2

/W)

Thickness vs. Thermal Resistance

GAP PAD 5000S35

Typical Applications

• 

CDROM / DVD ROM

• 

Voltage Regulator Modules (VRMs) and POLs

• 

Thermally enhanced BGAs

• 

Memory packages / modules

• 

PC board to chassis

• 

ASICs and DSPs

Configurations Available:

• 

Die-cut parts are available in any shape or size, separated or in sheet form

Building a Part Number 

Standard Options

|| 

example

Section A

Section B

Section C

Section D

Section E

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

GP5000S35

0.020

02

0816

NA

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GPA5000S35 = GAP PAD 5000S35 Material

Standard thicknesses available:  0.020", 0.040", 0.060"

0.080", 0.100", 0.125"

02 = Natural tack, both sides

0816 = Standard sheet size 8" x 16", or

00 = custom configuration

TYPICAL PROPERTIES OF GAP PAD 5000S35

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Light Green

Light Green

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.020 to 0.125

0.508 to 3.175

ASTM D374

Inherent Surface Tack (1-sided)

2

2

Density (Bulk Rubber) (g/cc)

3.6

3.6

ASTM D792

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Hardness (Bulk Rubber) (Shore 00)

(1)

35

35

ASTM D2240

Young’s Modulus (psi) / (kPa)

(2)

17.5

121

ASTM D575

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

>5,000

>5,000

ASTM D149

Dielectric Constant (1,000 Hz)

7.5

7.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

9

10

9

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

5.0

5.0

ASTM D5470

THERMAL PERFORMANCE VS. STRAIN

Deflection (% strain)

10

20

30

Thermal Impedance (°C-in.

2

/W) 0.040 in.

(3)

0.41

0.34

0.30

1)  Thirty-second delay value Shore 00 hardness scale.
2)  Young’s Modulus, calculated using 0.01 in./min. step rate of strain with a sample size of 0.79 in.

2

.

3)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

26 

| Thermal Interface Selection Guide 

— GAP FILLER

Gap Filler Liquid Dispensed Materials

Introduction

Effective thermal management is key to ensuring consistent 
performance and long-term reliability of many electronic 
devices. With the wide variety of applications requiring thermal 
management, the need for alternative thermal material solutions 
and innovative material placement methods continues to grow. 
Henkel’s family of dispensable liquid polymer materials with 
unique characteristics is especially designed for ultimate thermal 
management design and component assembly flexibility. 

Two-Part Gap Fillers

BERGQUIST two-part, cure-in-place materials are dispensed as a 
liquid onto the target surface. As the components are assembled, 
the material will wet-out to the adjacent surfaces, filling even the 
smallest gaps and air voids. Once cured, the material remains 
a flexible and soft elastomer, designed to assist in relieving 
coefficient of thermal expansion (CTE) mismatch stresses during 
thermal cycling. Gap Filler is ideally suited for applications where 
pads cannot perform adequately, can be used to replace grease 
or potting compounds, and is currently used in power supply, 
telecom, digital, and automotive applications. 

Liquid Gap Filler  
Key Performance Benefits

Ultra Low Modulus: Minimal Stress During Assembly

Because Gap Filler is dispensed and wet-out in its liquid state, 
the material will create virtually zero stress on components 
during the assembly process. Gap Filler can be used to interface 
even the most fragile and delicate devices.

Excellent Conformability to Intricate Geometries

Liquid Gap Filler materials are able to conform to intricate 
topographies, including multi-level surfaces. Due to its increased 
mobility prior to cure, Gap Filler can fill small air voids, crevices, 
and holes, reducing overall thermal resistance to the heat 
generating device.

GAP FILLER

1000

0

0.5

1.5

1.0

2.0

2.5

3.5

3.0

4.0

GAP FILLER

1000SR

Liquid Dispensable Gap Filler Thermal Conductivity

GAP FILLER

4000

GAP FILLER

3500S35

GAP FILLER

2000

GAP FILLER

1100SF

GAP FILLER

1500LV

GAP FILLER

1500

Gap Filler solutions provide easy 

dispensing and efficient heat transfer 

in electronic applications.

Single Solution for Multiple Applications

Unlike pre-cured gap filling materials, the liquid approach offers 
infinite thickness options and eliminates the need for specific 
pad thicknesses or die-cut shapes for individual applications.

Efficient Material Usage 

Manual or semiautomatic dispensing tools can be used to apply 
material directly to the target surface, resulting in effective use 
of material with minimal waste. Further maximization of material 
usage can be achieved with implementation of automated 
dispensing equipment, which allows for precise material 
placement and reduces the application time of the material.

Customizable Flow Characteristics

Although Gap Fillers are designed to flow easily under minimal 
pressure, they are thixotropic in nature which helps the material 
remain in place after dispensing and prior to cure. BERGQUIST 
Gap Filler offerings include a range of rheological characteristics 
and can be tailored to meet customer-specific flow requirements 
from self-leveling to highly thixotropic materials that maintain 
their form as dispensed.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP FILLER

 | 

27

 

Frequently Asked Questions

Q:   How is viscosity measured?
A: 

 Due to the thixotropic characteristics of most Gap Fillers, 
special consideration should be given to the test method(s) 
used to determine viscosity of these materials. Because 
the material viscosity is dependent on shear rate, different 
measurement equipment testing under varying shear rates 
will produce varied viscosity readings. When comparing 
apparent viscosities of multiple materials, it is important 
to ensure that the data was generated using the same test 
method and test conditions (therefore the same shear rate). 
Test methods and conditions for BERGQUIST products are 
noted in the individual Technical Data Sheets.

Q:  How are pot life and cure time defined? 
A: 

 Two-part Gap Filler systems begin curing once the two 
components are mixed together. Henkel defines the pot 
life (working life) of a two-part system as the time for the 
viscosity to double after parts A and B are mixed. Henkel 
defines the cure time of a two-part material as the time to 
reach 90 percent cure after mixing. Two-part Gap Fillers 
will cure at room temperature (25°C), or cure time can be 
accelerated with exposure to elevated temperatures. 

Q:  Can I use my Gap Filler after the shelf life has expired?
A: 

 Henkel does not advocate using Gap Filler beyond 
the recommended shelf life and is unable to recertify 
material that has expired. In order to ensure timely use 
of product, Henkel recommends a first-in-first-out (FIFO) 
inventory system.

Q:  How should I store my Gap Filler?
A: 

 Unless otherwise indicated on Technical Data Sheets, 
two-part Gap Fillers should be stored in the original 
sealed container in a climate-controlled environment 
at or below 25°C and 50% relative humidity. If stored at 
reduced temperatures, materials should be placed at room 
temperature and allowed to stabilize prior to use. Unless 
otherwise noted, all cartridges and tubes should be stored in 
Henkel-defined packaging with the nozzle end down.

Q:   Do temperature excursions above 25°C affect the 

shelf life?

A: 

 Short periods of time above the recommended storage 
temperature, such as during shipping, have not been shown 
to affect the material characteristics.

Q:  Does Gap Filler have adhesive characteristics?
A: 

 Although Gap Fillers are not designed as structural adhesives, 
when cured, they have a low level of natural tack, which will 
allow the material to adhere mildly to adjacent components. 
This aids in keeping the material in the interface throughout 
repeated temperature cycling and eliminates pump-out from 
the interface. 

Q:  Is Gap Filler reworkable?
A: 

 In many cases, Gap Filler can be reworked. The ease of 
rework is highly dependent on the topography of the 
application as well as the coverage area. 

Q:  What container sizes are available for Gap Fillers?
A: 

 Two-part materials are available in several standard dual 
cartridge sizes including 50 cc (25 cc each of parts A and 
B) and 400 cc (200 cc each of parts A and B). Gap Fillers 
are also available in kits of 1200 cc (two stand-alone 600 
cc containers, one of each part) and 10-gallon (two 5-gallon 
pails, one of each part) sizes for higher volume production. 
Other special and custom container sizes are available 
upon request. 

Q:  How do I mix the two-part Gap Fillers?
A: 

 Disposable plastic static mixing nozzles are used to mix parts 
A and B together at the desired ratio. Static mixers can be 
attached to the ends of cartridges or mounted on automated 
dispensing equipment. They are reliable, accurate and 
inexpensive to replace after extended down times. Unless 
otherwise indicated, mixing nozzles with a minimum of 21 
mixing elements are recommended to achieve proper mixing.

Q:   What is the tolerance on the mix ratio?
A: 

 Two-part materials should be mixed to the stated mix  
ratio by volume within a +/-5% tolerance to ensure  
proper material characteristics. If light-colored streaks 
or marbling are present in the material, there has been 
inadequate mixing. Henkel recommends purging newly 
tapped containers through the static mixer until a  
uniform color is achieved. In order to ensure consistent 
material characteristics and performance, BERGQUIST  
two-part systems are to be used with matching  
part A and B lot numbers.

Q:   What options are available for dispensing material  

onto my application?

A: 

 Henkel can provide manual or pneumatic applicator guns for 
product supplied in dual cartridge form. Gap Filler supplied in 
high volume container kits can be dispensed via automated 
dispensing equipment for high-speed in-line manufacturing. 
Henkel and our other experienced automated dispensing 
equipment partners can further assist our customers in 
creating an optimized dispensing process. For information 
regarding dispensing equipment, contact your local Henkel 
representative. For some materials, screen or stencil 
application may be an option and should be evaluated on a 
case by case basis.

Q:   Should I be concerned about Gap Filler compatibility  

with other materials in my application?

A: 

 Although not common, it is possible to encounter materials 
that can affect the cure of two-part Gap Fillers. A list of 
general categories of compounds that may inhibit the rate  
of cure or poison the curing catalyst in Gap Filler products  
is available to help assist with material compatibility  
evaluation. Please contact your local Henkel representative 
for more details.

TIM SG_0115_WEB-html.html
background image

28 

| Thermal Interface Selection Guide 

— GAP FILLER

Gap Filler 1000 (Two-Part)

Thermally Conductive, Liquid Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 1.0 W/m-K

• 

 Ultra-conforming, designed for fragile 

and low-stress applications 

• 

Ambient and accelerated 

cure schedules

• 

100% solids – no cure by-products

• 

 Excellent low and high temperature 

mechanical and chemical stability

Gap Filler 1000 is a thermally conductive, 
liquid gap filling material. It is supplied 
as a two-component, room or elevated 
temperature curing system. The material 
is formulated to provide a balance of 
cured material properties highlighted by 
a low modulus and good compression set 
(memory). The result is a soft, thermally 
conductive, form-in-place elastomer ideal 
for coupling “hot” electronic components 
mounted on PC boards with an adjacent 
metal case or heat sink. Before cure, 
Gap Filler 1000 flows under pressure like 
a grease. After cure, it does not pump 
from the interface as a result of thermal 
cycling. Unlike thermal grease, the cured 
product is dry to the touch. Unlike cured 
gap filling materials, the liquid approach 
offers infinite thickness with little or no 
stress during displacement and eliminates 
the need for specific pad thickness and 
die-cut shapes for individual applications. 
Gap Filler 1000 is intended for use in 
thermal interface applications when a 
strong structural bond is not required. 

Typical Applications Include:

• 

Automotive electronics

• 

Computer and peripherals

• 

Between any heat-generating semiconductor and a heat sink

• 

Telecommunications

• 

Thermally conductive vibration dampening

Configurations Available:

• 

Supplied in cartridge and kit form

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GF1000 = GAP FILLER 1000 Material

GF1000

00

15

50cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

Pot Life:  15 = 15 minutes

Cartridges:  50cc = 50.0cc, 400cc = 400.0cc

Kits:  1200cc = 1200.0cc, or 10G = 10 gallon

|| 

example

TYPICAL PROPERTIES OF GAP FILLER 1000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Grey

Grey

Visual

Color / Part B

White

White

Visual

Viscosity as Mixed (cPs)

(1)

100,000

100,000

ASTM D2196

Density (g/cc)

1.6

1.6

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

6

6

PROPERTY AS CURED

Color

Grey

Grey

Visual

Hardness (Shore 00)

(2)

30

30

ASTM D2240

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Continuous Use Temp. (°F) / (°C)

-76 to 347

-60 to 175

ELECTRICAL AS CURED

Dielectric Strength (V/mil)

500

500

ASTM D149

Dielectric Constant (1,000 Hz)

5.0

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

1.0

1.0

ASTM D5470

CURE SCHEDULE

Pot Life @ 25°C (mins.)

(3)

15

15

Cure @ 25°C (mins.)

(4)

60 - 120

60 - 120

Cure @ 100°C (mins.)

(4)

5

5

1)  Brookfield RV, Heli-Path, Spindle TF @ 20 rpm, 25°C.
2)  Thirty-second delay value Shore 00 hardness scale.
3)   Time for viscosity to double.
4)  Cure schedule (rheometer - time to read 90% cure)

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP FILLER

 | 

29

 

Gap Filler 1000SR (Two-Part)

Thermally Conductive, Liquid Gap Filler Material

Features and Benefits

• 

 Thermal conductivity: 1.0 W/m-K 

• 

 Excellent slump resistance (stays  

in place)

• 

 Ultra-conforming, with excellent wet-

out for low stress interface applications

• 

 100% solids – no cure by-products

• 

 Excellent low and high temperature 

mechanical and chemical stability

Gap Filler 1000SR is a two-part, thermally 
conductive, liquid gap filling material that 
features exceptional slump resistance. 
The mixed system will cure at room 
temperature and can be accelerated with 
the addition of heat. 

Unlike cured thermal pad materials, a 
liquid approach offers infinite thickness 
variations with little or no stress to 
sensitive components during assembly. 
As cured, Gap Filler 1000SR provides 
a soft, thermally conductive, form-in-
place elastomer that is ideal for fragile 
assemblies or for filling unique and 
intricate air voids and gaps.  

Gap Filler 1000SR exhibits low level 
natural tack characteristics and is 
intended for use in applications where a 
strong structural bond is not required.

Typical Applications:

• 

Automotive electronics

• 

Computer and peripherals

• 

 Between any heat-generating semiconductor and a heat sink

• 

Telecommunications

Configurations Available:

• 

Supplied in cartridge or kit form

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GF1000SR = GAP FILLER 1000SR Material

GF1000SR

00

60

50cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

Pot Life:  60 = 60 minutes

Cartridges:  50cc = 50.0cc, 400cc = 400.0cc

Kits:  1200cc = 1200.0cc, or 10G = 10 gallon

|| 

example

TYPICAL PROPERTIES OF GAP FILLER 1000SR

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Violet

Violet

Visual

Color / Part B

White

White

Visual

Viscosity, High Shear (Pa·s)

(1)

20

20

ASTM D5099

Density (g/cc)

2.0

2.0

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

6

6

PROPERTY AS CURED

Color

Violet

Violet

Visual

Hardness (Shore 00)

(2)

75

75

ASTM D2240

Heat Capacity ( J/g-K)

1.0

1.0

ASTM D1269

Continuous Use Temp. (°F) / (°C)

-76 to 347

-60 to 175

ELECTRICAL AS CURED

Dielectric Strength (V/mil)

500

500

ASTM D149

Dielectric Constant (1,000 Hz)

5.1

5.1

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

1.0

1.0

ASTM D5470

CURE SCHEDULE

Pot Life @ 25°C (mins.)

(3)

60

60

Cure @ 25°C (hrs.)

(4)

20

20

Cure @ 100°C (mins.)

(4)

10

10

  1)  Capillary Viscosity, Initial, 4,500 sec-1. Part A and B measured separately.
2)  Thirty-second delay value Shore 00 hardness scale.
3)   ARES Parallel Plate Rheometer - Working life as liquid, time for modulus to double.
4)  ARES Parallel Plate Rheometer - Estimated time to read 90% cure.

TIM SG_0115_WEB-html.html
background image

30 

| Thermal Interface Selection Guide 

— GAP FILLER

Gap Filler 1100SF (Two-Part)

Thermally Conductive, Silicone-Free, Liquid Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 1.1 W/m-K

• 

No silicone outgassing or extraction 

• 

 Ultra-conforming, designed for fragile 

and low-stress applications

• 

Ambient and accelerated 

cure schedules

• 

100% solids – no cure by-products

Gap Filler 1100SF is the thermal solution for 
silicone-sensitive applications. The material is 
supplied as a two-part component, curing at 
room or elevated temperatures. The material 
exhibits low modulus properties, then cures 
to a soft, flexible elastomer, helping reduce 
thermal cycling stresses during operation and 
virtually eliminating stress during assembly of 
low-stress applications.

The two components are colored to assist as a 
mix indicator (1:1 by volume). The mixed system 
will cure at ambient temperature. Unlike cured 
thermal pad materials, the liquid approach 
offers infinite thickness variations with little or 
no stress during assembly displacement. Gap 
Filler 1100SF, although exhibiting some natural 
tack characteristics, is not intended for use 
in thermal interface applications requiring a 
mechanical structural bond.

Application

Gap Filler 1100SF can be mixed and dispensed 
using dual-tube cartridge packs with static mixers 
and manual or pneumatic gun or high volume 
mixing and dispensing equipment (application of 
heat may be used to reduce viscosity).

TEMPERATURE DEPENDENCE OF VISCOSITY

The viscosity of the Gap Filler 1100SF material is 
temperature dependent. The table below provides 
the multiplication factor to obtain viscosity at various 
temperatures. To obtain the viscosity at a given 
temperature, look up the multiplication factor at that 
temperature and multiply the corresponding viscosity 
at 25°C.

Temperature

Multiplication Factor

°C

Part A

Part B

20

1.43

1.57

25

1.00

1.00

35

0.58

0.50

45

0.39

0.30

50

0.32

0.24

Example - Viscosity of Part A @ 45°:

Viscosity of Part A @ 25°C is 450,000 cPs. 

The multiplication factor for Part A @ 45°C is 0.39. 

Therefore: (450,000) x (0.39) = 175,500 cPs.

Typical Applications Include:

• 

Silicone-sensitive optic components

• 

Silicone-sensitive electronics

• 

 Filling various gaps between heat-generating devices to heat sinks and housings

• 

Mechanical switching relay

• 

Hard disk assemblies

• 

Dielectric for bare-leaded devices

Configurations Available:

• 

Supplied in cartridge or kit form

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GF1100SF = GAP FILLER 1100SF Material

GF1100SF

00

240

400cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

Pot Life:  240 = 240 minutes

Cartridges:  400cc = 400.0cc

Kits:  1200cc = 1200.0cc, or 10G = 10 gallon

|| 

example

TYPICAL PROPERTIES OF GAP FILLER 1100SF

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Yellow

Yellow

Visual

Color / Part B

Red

Red

Visual

Viscosity as Mixed (cPs)

(1)

450,000

450,000

ASTM D2196

Density (g/cc)

2.0

2.0

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

6

6

PROPERTY AS CURED

Color

Orange

Orange

Visual

Hardness (Shore 00)

(2)

60

60

ASTM D2240

Heat Capacity ( J/g-K)

0.9

0.9

ASTM E1269

Continuous Use Temp. (°F) / (°C)

-76 to 257

-60 to 125

ELECTRICAL AS CURED

Dielectric Strength (V/mil)

400

400

ASTM D149

Dielectric Constant (1,000 Hz)

5.0

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

1.1

1.1

ASTM D5470

CURE SCHEDULE

Pot Life @ 25°C

(3)

240 mins. (4 hrs.)

240 mins. (4 hrs.)

Cure @ 25°C (hrs.)

(4)

24

24

Cure @ 100°C (mins.)

(4)

10

10

1)  Brookfield RV, Heli-Path, Spindle TF @ 2 rpm, 25°C.
2)  Thirty-second delay value Shore 00 hardness scale.
3)  Time for viscosity to double.
4)  Cure schedule (rheometer - time to read 90% cure).

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP FILLER

 | 

31

 

Gap Filler 1500 (Two-Part)

Thermally Conductive Liquid Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 1.8 W/mK

• 

 Optimized shear thinning 

characteristics for ease of dispensing

• 

Excellent slump resistance 

(stays in place)

• 

 Ultra-conforming with excellent wet-

out for low stress interface applications

• 

100% solids – no cure by-products

• 

 Excellent low and high temperature 

mechanical and chemical stability

Gap Filler 1500 is a two-part, high 
performance, thermally conductive, 
liquid gap filling material, which 
features exceptional slump resistance 
and high shear thinning characteristics 
for optimized consistency and control 
during dispensing. The mixed system 
will cure at room temperature and can 
be accelerated with the addition of heat. 
Unlike cured thermal pad materials, a 
liquid approach offers infinite thickness 
variations with little or no stress to the 
sensitive components during assembly. 
Gap Filler 1500 exhibits low level natural 
tack characteristics and is intended 
for use in applications where a strong 
structural bond is not required. As cured, 
Gap Filler 1500 provides a soft, thermally 
conductive, form-in-place elastomer that 
is ideal for fragile assemblies and filling 
unique and intricate air voids and gaps. 

Typical Applications Include:

• 

Automotive electronics

• 

Computer and peripherals

• 

Between any heat generating semiconductor and a heat sink

• 

Telecommunications

Configurations Available: 

• 

Supplied in cartridge or kit form

• 

With or without glass beads

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GF1500 = GAP FILLER 1500 (Two-Part) Material

GF1500

00

60

10G

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads, 07 = 0.007" spacer beads,

10 = 0.010" spacer beads 

Pot Life:  60 = 60 min, 480 = 480 min

Cartridges:  50cc = 50.0cc, 400cc = 400.0cc

Kits:  1200cc = 1200.00cc, 10G = 10 gallon

|| 

example

TYPICAL PROPERTIES OF GAP FILLER 1500

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Yellow

Yellow

Visual

Color / Part B

White

White

Visual

Viscosity, High Shear (Pa·s)

(1)

25

25

ASTM D5099

Density (g/cc)

2.7

2.7

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

6

6

PROPERTY AS CURED

Color

Yellow

Yellow

Visual

Hardness (Shore 00)

(2)

50

50

ASTM D2240

Heat Capacity ( J/g-K)

1.0

1.0

ASTM D1269

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL AS CURED

Dielectric Strength (V/mil)

400

400

ASTM D149

Dielectric Constant (1,000 Hz)

6.4

6.4

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

1.8

1.8

ASTM D5470

CURE SCHEDULE

SCHEDULE 1

SCHEDULE 2

Pot Life @ 25°C

(3)

60 mins.

480 mins. (8 hrs.)

Cure @ 25°C

(4)

5 hrs.

3 days

Cure @ 100°C

(4)

10 mins.

30 mins.

1)  Capillary viscosity, initial, 3000 sec-1. Part A and B measured separately.
2)  Thirty-second delay value Shore 00 hardness scale.
3)  Parallel Plate Rheometer - Working life as liquid.
4)  Parallel Plate Rheometer - Estimated time to read 90% cure.

TIM SG_0115_WEB-html.html
background image

32 

| Thermal Interface Selection Guide 

— GAP FILLER

Gap Filler 1500LV (Two-Part)

Thermally Conductive, Liquid Gap Filler Material

Features and Benefits

• 

 Thermal conductivity: 1.8 W/m-K

• 

 Low volatility for silicone-sensitive 

applications

• 

 Ultra-conforming, with excellent 

wet-out

• 

 100% solids — no cure by-products

• 

 Excellent low and high temperature 

chemical and mechanical stability 

Gap Filler 1500LV is a two-part,  
high performance, thermally conductive, 
liquid gap filling material. This material 
offers the high temperature resistance 
and low modulus of a silicone material 
with significantly lower levels of silicone 
outgassing for use in silicone-sensitive 
applications. 

The mixed material will cure at room 
temperature and can be accelerated  
with the addition of heat. As cured,  
Gap Filler 1500LV provides a soft, 
thermally conductive, form-in-place 
elastomer that is ideal for fragile 
assemblies or for filling unique and 
intricate air voids and gaps.

Liquid dispensed thermal materials 
offer infinite thickness variations and 
impart little to no stress on sensitive 
components during assembly. Gap Filler 
1500LV exhibits low level natural tack 
characteristics and is intended for use 
in applications where a strong structural 
bond is not required.

Typical Applications:

• 

Lighting

• 

Automotive electronics

• 

Silicone sensitive applications

Configurations Available:

• 

Supplied in cartridge or kit form

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GF1500LV = GAP FILLER 1500LV Material

GF1500LV

00

120

50cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

10 = 0.010" spacer beads

Pot Life:  120 = 120 minutes

Cartridges:  50cc = 50.0cc, 400cc = 400.0cc

Kits:  1200cc = 1200.0cc, or 10G = 10 gallon

|| 

example

TYPICAL PROPERTIES OF GAP FILLER 1500LV

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Yellow

Yellow

Visual

Color / Part B

White

White

Visual

Viscosity, High Shear (Pa·s)

(1)

20

20

ASTM D5099

Density (g/cc)

2.7

2.7

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

6

6

PROPERTY AS CURED

Color

Yellow

Yellow

Visual

Hardness (Shore 00)

(2)

80

80

ASTM D2240

Heat Capacity ( J/g-K)

1.0

1.0

ASTM D1269

Siloxane Content, SD4-D10 (ppm)

<100

<100

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL AS CURED

Dielectric Strength (V/mil)

400

400

ASTM D149

Dielectric Constant (1,000 Hz)

6.2

6.2

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

1.8

1.8

ASTM D5470

CURE SCHEDULE

Working Time @ 25°C

(3)

120 mins. (2 hrs.)

120 mins. (2 hrs.)

Cure @ 25°C (hrs.)

(3)

8

8

Cure @ 100°C (mins.)

(3)

10

10

1)  Capillary Viscosity, 3000/sec, Part A and B measured separately.
2)  Thirty-second delay value Shore 00 hardness scale.
3)  Parallel plate rheometer, see reactivity application note.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP FILLER

 | 

33

 

Gap Filler 2000 (Two-Part)

Thermally Conductive, Liquid Gap Filling Material

Features and Benefits

• 

Thermal conductivity: 2.0 W/m-K

• 

 Ultra-conforming, designed for fragile 

and low-stress applications

• 

Ambient and accelerated 

cure schedules

• 

100% solids – no cure by-products

• 

 Excellent low and high temperature 

mechanical and chemical stability

Gap Filler 2000 is a high performance, 
thermally conductive, liquid gap-filling 
material supplied as a two-component, 
room or elevated temperature curing 
system. The material provides a balance 
of cured material properties and good 
compression set (memory). The result is 
a soft, form-in-place elastomer ideal for 
coupling “hot” electronic components 
mounted on PC boards with an adjacent 
metal case or heat sink. Before cure, it 
flows under pressure like grease. After 
cure, it won’t pump from the interface  
as a result of thermal cycling and is dry to 
the touch. 

Unlike cured gap filling materials, 
the liquid approach offers infinite 
thickness with little or no stress 
during displacement and assembly. It 
also eliminates the need for specific 
pad thickness and die-cut shapes for 
individual applications.

Gap Filler 2000 is intended for use in 
thermal interface applications when a 
strong structural bond is not required. 

Typical Applications Include:

• 

Automotive electronics

• 

Computer and peripherals

• 

Between any heat-generating semiconductor and a heat sink

• 

Telecommunications

• 

Thermally conductive vibration dampening

Configurations Available:

• 

Supplied in cartridge or kit form

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GF2000 = GAP FILLER 2000 Material

GF2000

00

60

10G

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

Pot Life:  15 = 15 minutes, 60 = 60 minutes

600 = 600 minutes

Cartridges:  50cc = 50.0cc, 400cc = 400.0cc

Kits:  1200cc = 1200.0cc, or 10G = 10 gallon

|| 

example

TYPICAL PROPERTIES OF GAP FILLER 2000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Pink

Pink

Visual

Color / Part B

White

White

Viscosity as Mixed (cPs)

(1)

300,000

300,000

ASTM D2196

Density (g/cc)

2.9

2.9

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

6

6

PROPERTY AS CURED

Color

Pink

Pink

Visual

Hardness (Shore 00)

(2)

70

70

ASTM D2240

Heat Capacity ( J/g-K)

1.0

1.0

ASTM D1269

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL AS CURED

Dielectric Strength (V/mil)

500

500

ASTM D149

Dielectric Constant (1,000 Hz)

7

7

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

2.0

2.0

ASTM D5470

CURE SCHEDULE

SCHEDULE 1

SCHEDULE 2

SCHEDULE 3

Pot Life @ 25°C

(3)

15 mins.

60 mins.

600 mins. (10 hr)

Cure @ 25°C

(4)

1-2 hrs.

3-4 hrs.

3 days

Cure @ 100°C

(4)

5 mins.

15 mins.

1 hr

  1)  Brookfield RV, Heli-Path, Spindle TF @ 20 rpm, 25°C.
2)  Thirty-second delay value Shore 00 hardness scale.
3)  Time for viscosity to double.
4)  Cure schedule (rheometer - time to read 90% cure).

TIM SG_0115_WEB-html.html
background image

34 

| Thermal Interface Selection Guide 

— GAP FILLER

Gap Filler 3500S35 (Two-Part)

Thermally Conductive Liquid Gap Filling Material

Features and Benefits

• 

 Thermal conductivity: 3.6 W/m-K

• 

 Thixotropic nature makes it easy 

to dispense

• 

 Two-part formulation for easy storage

• 

 Ultra-conforming – designed for fragile 

and low stress applications

• 

Ambient or accelerated cure schedules

Gap Filler 3500S35 is a two-component, 
liquid gap-filling material, cured at either 
room or elevated temperature, featuring 
ultra-high thermal performance and 
outstanding softness. Prior to curing, 
the material maintains good thixotropic 
characteristics as well as low viscosity. 
The result is a gel-like liquid material 
designed to fill air gaps and voids yet flow 
when acted upon by an external force 
(e.g., dispensing or assembly process). 
The material is an excellent solution for 
interfacing fragile components with high 
topography and/or stack-up tolerances 
to a universal heat sink or housing. 
Once cured, it remains a low modulus 
elastomer designed to assist in relieving 
CTE stresses during thermal cycling yet 
maintain enough modulus to prevent 
pump-out from the interface.  
Gap Filler 3500S35 will lightly adhere 
to surfaces, thus improving surface 
area contact. Gap Filler 3500S35 is not 
designed to be a structural adhesive.

Typical Applications Include:

• 

Automotive electronics

• 

Discrete components to housing

• 

PCBA to housing

• 

Fiber optic telecommunications equipment

Configurations Available:

• 

Supplied in cartridge or kit form

Building a Part Number 

Standard Options

|| 

example

Section A

Section B

Section C

Section D

Section E

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

GF3500S35

00

60

400cc

NA

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GP3500S35 = GAP PAD 3500S35 Material

00 = No spacer beads

07 = 0.007" spacer beads

Pot Life: 60 = 60 minutes

Cartridges: 50cc = 50.0cc, 400cc = 400.0cc

Kits: 1200cc = 1200.0cc, or 6G = 6 gallon

TYPICAL PROPERTIES OF GAP FILLER 3500S35

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

White

White

Visual

Color / Part B

Blue

Blue

Visual

Viscosity as Mixed (cPs)

(1)

150,000

150,000

ASTM D2196

Density (g/cc)

3.0

3.0

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

5

5

PROPERTY AS CURED

Color

Blue

Blue

Visual

Hardness (Shore 00)

(2)

35

35

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL AS CURED

Dielectric Strength (V/mil)

275

275

ASTM D149

Dielectric Constant (1,000 Hz)

8.0

8.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

9

10

9

 

ASTM D257

Flame Rating

V-O

   V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

3.6

3.6

ASTM D5470

CURE SCHEDULE

Pot Life @ 25°C (mins.)

(3)

60

60

Cure @ 25°C (hrs.)

(4)

15

15

Cure @ 100°C (mins.)

(4)

30

30

1)   Brookfield RV, Heli-Path, Spindle TF @ 20 rpm, 25°C.
2)  Thirty-second delay value Shore 00 hardness scale.
3)  Time for viscosity to double.
4)  Cure schedule (rheometer - time to read 90% cure).

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— GAP FILLER

 | 

35

 

Gap Filler 4000 (Two-Part)

Thermally Conductive, Liquid Gap Filler Material

Features and Benefits

• 

 Thermal conductivity: 4.0 W/m-K

• 

 Extended working time for 

manufacturing flexibility

• 

 Ultra-conforming with excellent 

wet-out

• 

100% solids – no cure by-products

• 

 Excellent low and high temperature 

chemical and mechanical stability 

Gap Filler 4000 is a two-part, high 
performance, thermally conductive, liquid 
gap-filling material. The mixed material 
will cure at room temperature and can be 
accelerated with the addition of heat.  
Gap Filler 4000 offers an extended 
working time to allow greater flexibility  
in the customer’s assembly process.

Liquid dispensed thermal materials offer 
infinite thickness variations and impart 
little to no stress on sensitive components 
during assembly. Gap Filler 4000 exhibits 
low level natural tack characteristics and 
is intended for use in applications where  
a strong structural bond is not required. 

As cured, Gap Filler 4000 provides a 
soft, thermally conductive, form-in-
place elastomer that is ideal for fragile 
assemblies or for filling unique and 
intricate air voids and gaps.

Typical Applications:

• 

Automotive electronics

• 

Computer and peripherals

• 

 Between any heat-generating semiconductor and a heat sink

• 

Telecommunications

Configurations Available:

• 

Supplied in cartridge or kit form

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

GF4000 = GAP FILLER 4000 Material

GF4000

00

240

50cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

10 = 0.010" spacer beads

Pot Life:  240 = 240 minutes

Cartridges:  50cc = 50.0cc, 400cc = 400.0cc

Kits:  1200cc = 1200.0cc, or 6G = 6 gallon

|| 

example

TYPICAL PROPERTIES OF GAP FILLER 4000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Blue

Blue

Visual

Color / Part B

White

White

Visual

Viscosity, High Shear (Pa·s)

(1)

50

50

ASTM D5099

Density (g/cc)

3.1

3.1

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

5

5

PROPERTY AS CURED

Color

Blue

Blue

Visual

Hardness (Shore 00)

(2)

75

75

ASTM D2240

Heat Capacity ( J/g-K)

0.8

0.8

ASTM D1269

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL AS CURED

Dielectric Strength (V/mil)

450

450

ASTM D149

Dielectric Constant (1,000 Hz)

7.9

7.9

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

4.0

4.0

ASTM D5470

CURE SCHEDULE

Working Time @ 25°C

(3)

240 mins. (4 hrs.)

240 mins. (4 hrs.)

Cure @ 25°C (hrs.)

(3)

24

24

Cure @ 100°C (mins.)

(3)

30

30

1)  Capillary Viscosity, 1,500/sec., Part A and B measured separately.
2)  Thirty-second delay value Shore 00 hardness scale.
3)  Parallel plate rheometer, see reactivity application note.

TIM SG_0115_WEB-html.html
background image

36 

| Thermal Interface Selection Guide 

— 

TIC

Thermal Interface Compounds (One-Part)

Thermally Conductive Grease Compounds

The BERGQUIST line of thermally conductive thermal interface 
compounds (TIC) will flow under assembly pressure to wet-out 
the thermal interface surfaces and produce very low thermal 

impedance. TIC products are designed for use between a  
high-end computer processor and a heat sink or other high 
watt density applications. 

Features

The TIC portfolio has  
diverse thermal and  
electrical characteristics.  
Key criteria when selecting 
TIC products include:

 Viscosity

Volume resistivity

Thermal conductivity

Thermal performance

Filler size

Benefits

TIC products are ideal for high 
watt density applications. 
Primary benefits include:

 Low interfacial resistance

Low thermal impedance

Resist dripping

 Ideally suited to screen

printing applications

 No post “cure”

conditioning required

Options

TIC products can be obtained 
with application-specific 
options such as:

Containers

Applications

TICs have a variety of 
applications such as:

 CPU

GPU

IGBT

High power density

applications

Comparison Data and FAQs

Q:  What is the best fastening method for a TIC interface?
A: 

 A constant-pressure fastener is preferred when using TIC for 
high performance applications. The constant pressure from a 
clip or spring washer will ensure adequate pressure is being 
applied with varying bond line thickness.

Q:  How should the TIC be applied?
A: 

 Screenprinting the TIC is a fast, low-cost method that 
delivers a consistent and accurate amount of material on 
each application. Alternate methods include stenciling, pin 
transfer and needle dispensing.

Q:  Will the grease stay in the interface?
A: 

 All the TIC materials were specifically designed to resist 
pump-out of the interface, even after many hours of thermal 
and power cycling. 

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— 

TIC

 | 

37

 

TIC 1000A

High Performance, Value Compound for High-End Computer Processors

Features and Benefits

 High thermal performance:

0.32°C/W (@ 50 psi)

Good screenability

Room temperature storage

No post “cure” required

Exceptional value

TIC 1000A is a high performance, 
thermally conductive compound  
intended for use as a thermal interface 
material between a high-end computer 
processor and a heat sink. Other high 
watt density applications will also 
benefit from the extremely low thermal 
impedance of TIC 1000A.

TIC 1000A compound wets-out the 
thermal interface surfaces and flows to 
produce the lowest thermal impedance. 
The compound requires pressure of the 
assembly to cause flow. The TIC 1000A 
compound will resist dripping.

For microprocessor applications, 
traditional screw fastening or spring 
clamping methods will provide 
adequate force to optimize the thermal 
performance of TIC 1000A.

An optimized application would utilize 
the minimum volume of TIC 1000A 
material necessary to ensure complete 
wet-out of both mechanical interfaces.

Assembly – No Post-Screen Cure

TIC 1000A has good screenability. No solvent is used to reduce the viscosity, 
so no post “cure” conditioning is required.

Application Cleanliness

1.  Pre-clean heat sink and component interface with isopropyl alcohol prior

to assembly or repair. Ensure heat sink is dry before applying TIC 1000A.

Application Methods

1.  Dispense and/or screenprint TIC 1000A compound onto the processor or heat sink

surface like thermal grease (see a Henkel Representative for application information).

2.  Assemble the processor and heat sink with spring clips or

constant-pressure fasteners.

Typical Applications Include:

High performance CPUs

High performance GPUs

Building a Part Number 

Standard Options

 

example

Note:  To build a part number, visit our website at www.bergquistcompany.com.

Section A

Section B

Section C

Section D

Section E

TIC1000A

00

00

25cc

NA

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

TIC1000A = Thermal Interface Compound 1000A

00 = No options

00 = No options

Containers: 5cc = 5.0cc, 25cc = 25.0cc, 200cc = 200.0cc

Cartridge: 600cc = 600.0cc

TYPICAL PROPERTIES OF TIC 1000A

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Density (g/cc)

2.1

2.1

ASTM D792

Continuous Use Temp. (°F) / (°C)

302

150

ELECTRICAL

Electrical Resistivity (Ohmmeter)

(1)

N/A

N/A

ASTM D257

THERMAL

Thermal Conductivity (W/m-K)

1.5

1.5

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

(2)

0.32

0.32

0.32

0.31

0.28

1) The compound contains an electrically conductive filler surrounded by electrically nonconductive resin.
2) TO-220 performance data is provided as a reference to compare material thermal performance.

TIM SG_0115_WEB-html.html
background image

38 

| Thermal Interface Selection Guide 

— TIC

TIC 4000

High Performance Thermal Interface Compound for Copper-Based Heat Sinks

Features and Benefits

Thermal conductivity: 4.0 W/m-K

 Exceptional thermal performance:

0.19°C/W (@ 50 psi)

TIC 4000 is a thermally conductive grease 
compound designed for use as a thermal 
interface material between a computer 
processor and a copper-based heat sink. 
Other high watt density applications will 
benefit from the extremely low thermal 
impedance of TIC 4000.

TIC 4000 compound wets-out the thermal 
interface surfaces and flows to produce 
low thermal impedance. The compound 
requires pressure of the assembly to cause 
flow. TIC 4000 compound will not drip.

For a typical 0.5 in. x 0.5 in. application 
at 0.005 in. thick, Henkel estimates 
approximately 0.02 ml (cc) of TIC 4000.

Although Henkel estimates a 0.02 
ml (cc) volumetric requirement for a 
0.5 in. x 0.5 in. component interface, 
dispensed at a thickness of 0.005 in., 
Henkel also recognizes that an optimized 
application would use the minimum 
volume of TIC 4000 material necessary 
to ensure complete wet-out of both 
mechanical interfaces.

Application Methods

1.  Pre-clean heat sink and component interface with isopropyl alcohol prior to

assembly or repair. Ensure heat sink is dry before applying TIC 4000.

2.  Dispense TIC 4000 compound onto the processor or heat sink surface like

thermal grease.

3. Assemble the processor and heat sink with clip or constant-pressure fasteners.

Typical Applications Include:

 High performance computer processors (traditional screw fastening or clamping

methods will provide adequate force to optimize the thermal performance of

TIC 4000)

High watt density applications where the lowest thermal resistance interface

is required

Building a Part Number 

Standard Options

|| 

example

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Section A

Section B

Section C

Section D

Section E

TIC4000

00

00

200cc

NA

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

TIC4000 = Thermal Interface Compound 4000

00 = No options

00 = No options

Containers: 5cc = 5.0cc, 25cc = 25.0cc, 200cc = 200.0cc

TYPICAL PROPERTIES OF TIC 4000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Density (g/cc)

4.0

4.0

ASTM D792

Continuous Use Temp. (°F) / (°C)

302

150

ELECTRICAL

Electrical Resistivity (Ohmmeter)

(1)

N/A

N/A

ASTM D257

THERMAL

Thermal Conductivity (W/m-K)

4.0

4.0

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

(2)

0.21

0.20

0.19

0.19

0.18

1) The compound contains an electrically conductive filler surrounded by electrically nonconductive resin.
2) TO-220 performance data is provided as a reference to compare material thermal performance.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— TIC

 | 

39

 

LIQUI-FORM 2000

Thermally Conductive, One-Part, Liquid Formable Material

Features and Benefits

 Thermal conductivity: 2.0 W/m-K

 Applies very low force on

components during assembly

Low volumetric expansion

 Excellent chemical and mechanical

stability even at higher temperatures

 No curing required

 Stable viscosity in storage and in

the application

LIQUI-FORM 2000 is a high thermal 
conductivit y liquid formable material 
designed for demanding applications 
requiring a balance between 
dispensability, low component stresses 
during assembly and ease of rework. 

LIQUI-FORM 2000 is a highly 
conformable, shear-thinning material 
which requires no curing, mixing or 
refrigeration. Its unique formulation 
assures excellent thermal performance, 
low applied stress and reliable long-term 
performance. LIQUI-FORM 2000 is 
thixotropic and has a natural tack, 
ensuring it forms around the component 
and stays in place in the application.

Typical Applications Include:

Bare die to heat spreader lid

Filling various gaps between heat-generating devices to heat sinks and housings

Devices requiring low assembly pressure

BGA, PGA, PPGA

Configurations Available:

Supplied in 30 cc or 600 cc cartridges or 5 gallon pails

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

LF2000 = LIQUI-FORM 2000 Material

LF2000

00

00

5G

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

00: No options

Cartridges:  30cc = 30.0cc, 600cc = 600.0cc

Pails:  5G = 5 gallon

|| 

example

TYPICAL PROPERTIES OF LIQUI-FORM 2000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Low Shear Viscosity (Pa·s) @ 0.01 sec-1

(1)

20,000

20,000

ASTM D4473

High Shear Viscosity (Pa·s) @ 300 sec-1

(2)

110

110

ASTM D2196

Volumetric Expansion 
(25 to 275°C), ppm/K

600

600

ASTM E228 modified

Outgassing, % Total Mass Loss

0.53

0.53

ASTM E595

Density (g/cc)

2.8

2.8

ASTM D792

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

Shelf Life at 25°C (Months)

6

6

ELECTRICAL

Dielectric Strength (V/mil)/(V/mm)

250

10,000

ASTM D149

Dielectric Constant (1,000 Hz)

8.0

8.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

9

10

9

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

2.0

2.0

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (PSI)

10

25

50

Thermal Impedance (°C-in.

2

/W)

(3)

 

0.13

0.12

0.12

1) Parallel Plate Rheometer, See Product Management Liqui-Form Application Note on our website under Liquid Thermal Interface Materials.
2) Capillary Rheometer, See Product Management for Viscosity and Dispensing Application Note.
3)  The ASTM D5470 test fixture was used. The recorded values include the interfacial thermal resistance. The values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

40 

| Thermal Interface Selection Guide 

— HI-FLOW

HI-FLOW Phase Change Interface Materials

Solutions-Driven Thermal Management Products for Electronic Devices

Use phase change materials for excellent thermal performance without the mess of grease.

HI-FLOW phase change materials are an excellent replacement 
for grease as a thermal interface between a CPU or power device 
and a heat sink. The materials change from a solid at specific 
phase change temperatures and flow to assure a total wet-out of 
the interface without overflow. The result is a thermal interface 
comparable to grease, without the mess, contamination  
and hassle.

The HI-FLOW family of phase change thermal interface materials 
covers a wide range of applications. Henkel’s BERGQUIST brand 
offers leading thermal management solutions and we work 
closely with customers to ensure that the proper HI-FLOW 
material is specified.

Features

HI-FLOW handles like 
BERGQUIST SIL PAD materials 
at room temperature, but flows 
like grease at its designed 
phase change temperature. 
The following is an overview of 
the important features shared 
by the HI-FLOW family:

• 

 Comparable  thermal 

performance to grease in 

most applications

• 

 Thermally conductive phase 

change compound

• 

 Aluminum, film or fiberglass 

carriers and non-reinforced 

versions

• 

Low volatility

• 

 Easy to handle and apply 

in the manufacturing 

environment

• 

 Tackified or tack-free at 

room temperature

Benefits

Using HI-FLOW materials 
instead of grease can 
save time and money 
without sacrificing thermal 
performance. Here are some 
other benefits:

• 

 No mess – thixotropic 

characteristics of the 

materials keep it from 

flowing out of the interface

• 

 Easier handling –  

tackified or tack-free at 

room temperature

• 

 No protective liner required

• 

 High thermal performance 

helps ensure CPU reliability

• 

Do not attract contaminants

• 

 Easier material handling and 

shipping

• 

 Simplified  application 

process

Options

The broad HI-FLOW family 
offers a variety of choices 
to meet the customer’s 
performance, handling and 
process needs. Some of the 
choices include:

• 

 Some HI-FLOW materials are 

available with or  

without adhesive

• 

 Aluminum carrier for 

applications not requiring 

electrical isolation

• 

 Film or fiberglass carrier for 

electrical isolation

• 

Dry, non-reinforced material

• 

 Tackified or tack-free at 

room temperature

• 

 Tabbed parts, die-cut parts, 

sheets or bulk rolls

• 

 Adhesive specifically for 

cold application without 

preheating heat sink

We produce thousands of 
specials. Tooling charges vary 
depending on the complexity 
of the part.

Applications

HI-FLOW materials are suited 
for consumer and industrial 
electronics, automotive, 
medical, aerospace and 
telecommunications 
applications such as:

• 

 UPS and SMPS AC/DC, DC/

DC or linear power supplies

• 

Between a CPU and 

heat sink

• 

Power conversion devices

• 

 Fractional and integral 

motor control

• 

 Leaded, surface mount and 

power module assemblies

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— HI-FLOW

 | 

41

 

HI-FLOW Comparison Data

TO-220 Thermal Performance

0

50

100

150

200

0.50

0.70

0.90

1.10

1.30

1.50

HI-FLOW 105

Non-Isolating HI-FLOW Series 105 Grease Replacement Materials

Interface Pressure (psi)

Thermal P

erformance (°C/

W)

Isolating HI-FLOW Series 300p to 650P Grease Replacement Materials

HI-FLOW 625

HI-FLOW 300P2.0

HI-FLOW 300P1.5

HI-FLOW 300P1.0

HI-FLOW 650P2.0

HI-FLOW 650P1.5

HI-FLOW 650P1.0

Interface Pressure (psi)

Thermal P

erformance (°C/

W)

0

50

100

150

200

0.50

0.70

0.90

1.10

1.30

1.50

1.70

1.90

2.10

2.30

2.50

HI-FLOW 225FT
HI-FLOW 225F-AC
HI-FLOW 225UT
HI-FLOW 565UT

0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Non-Isolating HI-FLOW 225 to 565 Grease Replacement Materials

Thermal P

erformance (°C/

W)

Interface Pressure (psi)

0

50

100

150

200

TIM SG_0115_WEB-html.html
background image

42 

| Thermal Interface Selection Guide 

— HI-FLOW

Frequently Asked Questions

Q:   How is the ASTM D5470 test modified to characterize 

phase change thermal performance? 

A: 

 ASTM classifies a phase change as a Type 1, viscous liquid 
that exhibits unlimited deformation when a stress is applied. 
Henkel uses test equipment that is designed to meet ASTM 
D5470 specifications for Type 1, which requires a shim or 
mechanical stop to precisely control the thickness. The 
phase change material is conditioned at 5°C over the stated 
phase change temperature. Understanding that time is 
also a key variable for material flow, the over-temperature 
condition is limited to 10 minutes and then allowed to cool, 
prior to initiating the actual test at the given pressure. The 
10-minute time has been demonstrated to be an acceptable 
time period for the thermal mass inherent in the test setup. 
Note: Actual application testing may require more or less 
time to condition, depending upon the heat transfer and 
associated thermal mass. The performance values are 
recorded and published at 10, 25, 50, 100 and 200 psi to 
give the designer a broad-based understanding of HI-FLOW 
material’s performance.

Q:   What is the minimum pressure required to optimize the 

thermal performance of the HI-FLOW material?

A: 

 Upon achieving phase change temperature (e.g., pre-
conditioning), Henkel has demonstrated that 10 psi 
provides adequate pressure to achieve exceptional thermal 
performance. Henkel continues to research lower pressure 
wet-out characteristics in an effort to minimize interfacial 
losses associated with ultra-thin material interfaces.

Q:   Will  the  HI-FLOW replace a mechanical fastener?
A: 

 Mechanical fasteners are required. Henkel recommends the 
use of spring clips to maintain consistent pressure over time.

Q:   Can I use screw-mount devices with HI-FLOW material?
A: 

 HI-FLOW works best with a clip or spring washer-mounted 
assembly. The continuous force applied by these devices 
allows the HI-FLOW material to flow and reduce the cross 
sectional gap. Henkel suggests that design engineers evaluate 
whether a screw-mount assembly will have acceptable 
performance. See TO-220 Technical Note.

Q:   Is the adhesive in HI-FLOW 225F-AC repositionable?
A: 

 The adhesive in the current construction does adhere more 
to the heat sink aluminum than to the HI-FLOW material. 
There is the potential that the adhesive will be removed by 
the heat sink surface when it is removed to reposition on 
the heat sink. Time and/or pressure will increase the bond to 
the aluminum, increasing the potential for the adhesive to 
adhere to the heat sink. 

Q:    Is there any surface preparation required before applying 

the adhesive-backed HI-FLOW to the heat sink? 

A: 

 Standard electronics industry cleaning procedures apply. 
Remove dirt or other debris. Best results are attained when the 
HI-FLOW material is applied to a heat sink at a temperature 
of 25° +/- 10°C. If the heat sink has been surface treated (e.g., 
anodized or chromated), it is typically ready for assembly. For 

bare aluminum, mild soap and water wash cleaning processes 
are typically used to eliminate machine oils and debris. 

Q:   Is  HI-FLOW material reworkable?
A: 

 If the material has not gone through phase change, the 
material will readily release from the device surface. For  
this situation, the HI-FLOW material will not likely have  
to be replaced. 

 

 If the material has gone through the phase change, it will 
adhere very well to both surfaces. In this case, Henkel 
suggests warming the heat sink to soften the HI-FLOW 
compound for easier removal from the processor. Replace 
with a new piece of HI-FLOW material.

Q:   What is meant by “easy to handle” in manufacturing?
A: 

 Insulated  HI-FLOW products are manufactured with inner 
film support. This film stiffens the material, allowing parts to 
be more readily die-cut as well as making the material easier 
to handle in manual or automated assembly.

Q:   What is meant by “tack-free” and why is this important?
A: 

 Many  HI-FLOW materials have no surface tack at room 
temperature. The softer materials will pick up dirt more 
readily. Softer resins are more difficult to clean if any dirt 
is on the surface. If you try to rub the dirt away, the dirt is 
easily pushed into the soft phase change materials. HI-FLOW 
coatings are typically hard at room temperature rendering 
them easier to clean off without embedding dirt.

Q:   What does “more scratch resistance” mean on 

HI-FLOW 625?

A: 

 HI-FLOW 625 does not require a protective film during 
shipment. HI-FLOW has a higher phase change temperature 
and remains hard to a higher temperature. The HI-FLOW 
material is harder and is not as easy to scratch or dent in 
shipping and handling.

Q:  Why is HI-FLOW phase change temperature 65°C?
A: 

 The 65°C phase change temperature was selected for two 
reasons. First, it was a low enough temperature for the phase 
change to occur in applications. Second, it would not phase 
change in transport. Studies show that shipping containers 
can reach 60°C in domestic and international shipments. The 
higher phase change temperature eliminates the possibility 
of a product being ruined in shipment. We offer a standard 
line of HI-FLOW 225 and 300 series products with 55°C phase 
change for those customers wanting the lower phase change 
temperature.

Q:  In which applications should I avoid using HI-FLOW?
A: 

 Avoid  using  HI-FLOW in applications in which the device will 
not reach operation at or above phase change temperature. 
Also avoid applications in which the operating temperature 
exceeds the maximum recommended operating temperature 
of the compound.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— HI-FLOW

 | 

43

 

HI-FLOW 105

Phase Change Coated Aluminum

Features and Benefits

• 

 Thermal  impedance: 

0.37°C-in.

2

/W (@ 25 psi)

• 

 Used where electrical isolation  

is not required

• 

Low volatility – less than 1%

• 

 Easy to handle in the  

manufacturing environment

• 

Flows but doesn’t run like grease

HI-FLOW 105 is a phase change material 
coated on both sides of an aluminum 
substrate. It is designed specifically to 
replace grease as a thermal interface, 
eliminating the mess, contamination and 
difficult handling associated with grease. 
HI-FLOW 105 is tack-free and scratch-
resistant at room temperature, and does 
not require a protective liner in shipment 
when attached to a heat sink.

At 65°C (phase change temperature), 
HI-FLOW 105 changes from a solid 
and flows, thereby assuring total wet-
out of the interface. The thixotropic 
characteristics of HI-FLOW 105 reduce the 
pump-out from the interface.

HI-FLOW 105 has thermal performance 
equal to grease with 0.10°C-in.

2

/W  

contact thermal resistance.

Heat Sink

HI-FLOW 105
Power Device

Typical Applications Include:

• 

Power semiconductors

• 

Microprocessors mounted on a heat sink

• 

Power conversion modules

• 

Spring or clip-mount applications where thermal grease is used

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

HF105 = HI-FLOW 105 Phase Change Material

HF105

0.0055

AC

12/250

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.0055"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number,

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF HI-FLOW 105

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Dark Grey

Dark Grey

Visual

Reinforcement Carrier

Aluminum

Aluminum

Thickness (in.) / (mm)

0.0055

0.139

ASTM D374

Continuous Use Temp. (°F) / (°C)

266

130

Phase Change Temp. (°F) / (°C)

149

65

ASTM D3418

ELECTRICAL

Dielectric Constant (1,000 (Hz)

3.2

3.2

ASTM D150

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(1)

0.9

0.9

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

0.95

0.80

0.74

0.69

0.64

Thermal Impedance (°C-in.

2

/W)

(2)

0.39

0.37

0.36

0.33

0.30

1)   This is the measured thermal conductivity of the HI-FLOW coating. It represents one conducting layer in a three-layer laminate. The HI-FLOW coatings are 

phase change compounds. These layers will respond to heat and pressure induced stresses. The overall conductivity of the material in post-phase change, 
thin film products is highly dependent upon the heat and pressure applied. This characteristic is not accounted for in ASTM D5470. Please contact Henkel if 
additional specifications are required.

2)   The ASTM D5470 test fixture was used and the test sample was conditioned at 70°C prior to test. The recorded value includes interfacial thermal resistance. 

These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

44 

| Thermal Interface Selection Guide 

— HI-FLOW

HI-FLOW 225F-AC

Reinforced, Phase Change Thermal Interface Material

Features and Benefits

• 

 Thermal impedance: 0.10°C-in.

2

/W  

(@ 25 psi)

• 

 Can be manually or automatically 

applied to the surfaces of 

room-temperature heat sinks

• 

Foil-reinforced, adhesive-coated

• 

 Soft, thermally conductive 55°C 

phase change compound 

HI-FLOW 225F-AC is a high performance, 
thermal interface material for use 
between a computer processor and a heat 
sink. HI-FLOW 225F-AC consists of a soft, 
thermally conductive 55°C phase change 
compound coated to the top surface of an 
aluminum carrier with a soft, thermally 
conductive adhesive compound coated to 
the bottom surface to improve adhesion 
to the heat sink.

Above the 55°C phase change 
temperature, HI-FLOW 225F-AC wets-out 
the thermal interface surfaces and flows 
to produce low thermal impedance.

HI-FLOW 225F-AC requires pressure from 
the assembly to cause material flow. 
The HI-FLOW coatings resist dripping in 
vertical orientation.

The material includes a base carrier liner 
with differential release properties to 
facilitate simplicity in roll form packaging 
and application assembly. Please 
contact Henkel Product Management 
for applications that are less than 0.07 
inch squared.

Heat Sink

AC (Tackified HI-FLOW)
Aluminum Foil
HI-FLOW 225F-AC
Microprocessor

Typical Applications Include:

• 

Computer and peripherals

• 

Power conversion

• 

High performance computer processors

• 

Power semiconductors

• 

Power modules

Configurations Available:

• 

Roll form, kiss-cut parts, and sheet form

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

HF225FAC = HI-FLOW 225F-AC Phase Change Material

HF225FAC

0.004

AC

11/250

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.004"

AC = Adhesive, one side

_ _ _ = Standard configuration dash number,

1112 = 11" x 12" sheets, 11/250 = 11" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF HI-FLOW 225F-AC

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Reinforcement Carrier

Aluminum

Aluminum

Thickness (in.) / (mm)

0.004

0.102

ASTM D374

Carrier Thickness (in.) / (mm)

0.0015

0.038

ASTM D374

Continuous Use Temp. (°F) / (°C)

248

120

Phase Change Temp. (°F) / (°C)

131

55

ASTM D3418

ELECTRICAL

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(1)

1.0

1.0

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

0.87

0.68

0.57

0.50

0.45

Thermal Impedance (°C-in.

2

/W)

(2)

0.12

0.10

0.09

0.08

0.07

1)   This is the measured thermal conductivity of the HI-FLOW coating. It represents one conducting layer in a three-layer laminate. The HI-FLOW coatings are 

phase change compounds. These layers will respond to heat and pressure induced stresses. The overall conductivity of the material in post-phase change, 
thin film products is highly dependent upon the heat and pressure applied. This characteristic is not accounted for in ASTM D5470. Please contact Henkel 
Product Management if additional specifications are required.

2)   The ASTM D5470 test fixture was used and the test sample was conditioned at 70°C prior to test. The recorded value includes interfacial thermal resistance. 

These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— HI-FLOW

 | 

45

 

HI-FLOW 225UT

Unreinforced, Pressure Sensitive Phase Change Thermal Interface Material

Features and Benefits

• 

 Thermal impedance: 0.08°C-in.

2

/W 

(@ 25 psi)

• 

 55°C phase change composite with 

inherent tack characteristics

• 

High-visibility protective tabs

• 

 Pressure sensitive phase change 

thermal interface material

HI-FLOW 225UT is designed as a  
pressure sensitive thermal interface 
material for use between a high 
performance processor and a heat sink.  
HI-FLOW 225UT is a thermally conductive 
55°C phase change composite with 
inherent tack. The material is supplied on 
a polyester carrier liner and is available 
with high-visibility protective tabs. 

Above its phase change temperature, 
HI-FLOW 225UT wets-out the thermal 
interface surfaces and flows to produce 
the lowest thermal impedance. The 
material requires pressure of the 
assembly to cause flow. 

Application Methods:

Hand-apply HI-FLOW 225UT to a  
room- temperature heat sink. The 
HI-FLOW 225UT pad exhibits inherent 
tack and can be hand-applied similar to 
an adhesive pad. The tab liner can remain 
on the heat sink and pad throughout 
shipping and handling until it is ready  
for final assembly.

Clear Polyester

Carrier Liner

HF 225UT

Roll Form,

Kiss-Cut Parts

Clear/Colored

Protective Tab

Adhesive Strip

"Quick-Snap" High Visibility

Tab for Removal

Typical Applications Include:

• 

Computer and peripherals

• 

High performance computer processors

• 

Graphic cards

• 

Power modules

Configurations Available:

• 

Roll form with tabs, kiss-cut parts – no holes

HI-FLOW 225UT is limited to a square or rectangular part design. Dimensional tolerance 
is +/- 0.020 in. (0.5 mm). 

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

HF22UT = HI-FLOW 225UT Phase Change Material

Standard thicknesses available:  0.003"

00 = Pressure sensitive adhesive, one side

_ _ _ = Standard HI-FLOW 225UT configuration,

10/250 = 10" x 250-foot rolls, or 00 = custom

configuration

HF225UT

0.003

01

10/250

NA

TYPICAL PROPERTIES OF HI-FLOW 225UT

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Reinforcement Carrier

None

None

Thickness (in.) / (mm)

0.003

0.077

ASTM D374

Continuous Use Temp. (°F) / (°C)

248

120

Phase Change Temp. (°F) / (°C)

131

55

ASTM D3418

ELECTRICAL

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(1)

0.7

0.7

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

0.60

0.53

0.46

0.40

0.35

Thermal Impedance (°C-in.

2

/W)

(2)

0.09

0.08

0.07

0.06

0.05

1)   This is the measured thermal conductivity of the HI-FLOW coating. It represents one conducting layer in a three-layer laminate. The HI-FLOW coatings are 

phase change compounds. These layers will respond to heat and pressure induced stresses. The overall conductivity of the material in post-phase change, 
thin film products is highly dependent upon the heat and pressure applied. This characteristic is not accounted for in ASTM D5470. Please contact Henkel 
Product Management if additional specifications are required.

2)   The ASTM D5470 test fixture was used and the test sample was conditioned at 70°C prior to test. The recorded value includes interfacial thermal resistance. 

These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

46 

| Thermal Interface Selection Guide 

— HI-FLOW

HI-FLOW 300P

Electrically Insulating, Thermally Conductive Phase Change Material

Features and Benefits

• 

 Thermal impedance: 0.13°C-in.

2

/W 

(@ 25 psi)

• 

 Field-proven polyimide film: excellent 

dielectric performance; excellent cut-

through resistance

• 

 Outstanding thermal performance in an 

insulated pad

HI-FLOW 300P consists of a thermally 
conductive 55°C phase change 
compound coated on a thermally 
conductive polyimide film. The polyimide 
reinforcement makes the material easy 
to handle and the 55°C phase change 
temperature minimizes shipping and 
handling problems.

HI-FLOW 300P achieves outstanding 
values in voltage breakdown and thermal 
performance. The product is supplied 
on an easy release liner for exceptional 
handling in high volume manual 
assemblies. HI-FLOW 300P is designed 
for use as a thermal interface material 
between electronic power devices 
requiring electrical isolation  
to the heat sink.

Henkel suggests the use of spring clips 
to assure constant pressure with the 
interface and power source. Please 
refer to thermal performance data to 
determine nominal spring pressure for 
your application.

Heat Sink

HI-FLOW 300P

Polyimide

HI-FLOW 300P
Power Device

We produce thousands of specials. Tooling 

charges vary depending on tolerances and 

complexity of the part.

Typical Applications Include:

• 

Spring / clip-mounted 

• 

Discrete power semiconductors and modules 

Configurations Available:

• 

Roll form, die-cut parts and sheet form, dry both sides

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

HF300P = HI-FLOW 300P Phase Change Material

HF300P

0.001

00

00

ACME10256 Rev a

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard polyimide thicknesses available:  0.001", 0.0015",

0.002"

00 = No adhesive

10.512 = 10.5" x 12" sheets, 10.5/250 = 10.5" x 250-foot rolls,

or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF HI-FLOW 300P

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Green

Green

Visual

Reinforcement Carrier

Polyimide

Polyimide

Thickness (in.) / (mm)

0.004 - 0.005

0.102 - 0.127

ASTM D374

Film Thickness (in.) / (mm)

0.001 - 0.002

0.025 - 0.050

ASTM D374

Elongation (%)

40

40

ASTM D882A

Tensile Strength (psi) / (mPa)

7,000

48

ASTM D882A

Continuous Use Temp. (°F) / (°C)

302

150

Phase Change Temp. (°F) / (°C)

131

55

ASTM D3418

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

5,000

5,000

ASTM D149

Dielectric Constant (1,000 Hz)

4.5

4.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

12

10

12

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(1)

1.6

1.6

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W) 0.0010 in.

0.95

0.94

0.92

0.91

0.90

TO-220 Thermal Performance (°C/W) 0.0015 in.

1.19

1.17

1.16

1.14

1.12

TO-220 Thermal Performance (°C/W) 0.0020 in.

1.38

1.37

1.35

1.33

1.32

Thermal Impedance (°C-in.

2

/W) 0.0010 in.

(2)

0.13

0.13

0.12

0.12

0.12

Thermal Impedance (°C-in.

2

/W) 0.0015 in.

(2)

0.17

0.16

0.16

0.16

0.15

Thermal Impedance (°C-in.

2

/W) 0.0020 in.

(2)

0.19

0.19

0.19

0.18

0.18

1)   This is the measured thermal conductivity of the HI-FLOW coating. It represents one conducting layer in a three-layer laminate. The HI-FLOW coatings are 

phase change compounds. These layers will respond to heat and pressure induced stresses. The overall conductivity of the material in post-phase change, 
thin film products is highly dependent upon the heat and pressure applied. This characteristic is not accounted for in ASTM D5470. Please contact Henkel 
Product Management if additional specifications are required.

2)   The ASTM D5470 test fixture was used and the test sample was conditioned at 70°C prior to test. The recorded value includes interfacial thermal resistance. 

These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— HI-FLOW

 | 

47

 

HI-FLOW 565UT

Tacky, High Performance, Phase Change TIM

Features and Benefits

• 

 Thermal impedance: 0.05°C-in.

2

/W 

(@ 25 psi)

• 

 High thermal conductivity: 3.0 W/mk

• 

 Phase change softening temp. 52°C

• 

 Naturally  tacky

• 

 Tabulated for ease of assembly

HI-FLOW 565UT is a naturally tacky, 
thermally conductive phase change 
material which is supplied in an easy 
to use tabulated pad form. In the 
application the material undergoes a 
phase change softening, starting near 
52°C. The phase change softening feature 
improves handling characteristics prior 
to a facilitated assembly. At application 
temperatures and pressures, HI-FLOW 
565UT wets out the thermal interfaces 
producing a very low thermal impedance.

The thermal performance of  
HI-FLOW 565UT is comparable to the  
best thermal greases. HI-FLOW 565UT  
is provided at a consistent thickness  
to ensure reliable performance.  
HI-FLOW 565UT can be applied in 
high volumes to the target surface via 
low pressure from a roller or manual 
application. 

 Typical Applications Include:

• 

Processor lid to heat sink

• 

Processor die to lid or heat sink

• 

FBDIMM to heat spreader

Configurations Available:

• 

Tabulated in roll form, kiss-cut parts – no holes

• 

 HI-FLOW 565UT is limited to a square or rectangular part design. Dimensional 

tolerance is +/- 0.020 in. (0.5 mm)

Building a Part Number 

Standard Options

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Section A

Section B

Section C

Section D

Section E

HF56UT

0.005

02

00

ACME10256 Rev a

|| 

example

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

HF565UT = HI-FLOW 565UT Phase Change Material

Standard thicknesses available:  0.005", 0.010", 0.016"

02 = Natural Tack

_ _ _ = Standard HI-FLOW 225UT configuration,

10/250 = 10" x 250-foot rolls, or 00 = custom

configuration

TYPICAL PROPERTIES OF HI-FLOW 565UT

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Blue

Blue

Visual

Reinforcement Carrier

None

None

Thickness (in.) / (mm)

0.005, 0.010

0.127, 0.254

ASTM D374

Continuous Use Temp. (°F) / (°C)

257

125

Phase Change Softening Temp. (°F) / (°C)

126

52

ASTM D3418

ELECTRICAL

Flame Rating 

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(1)

3.0

3.0

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

0.37

0.35

0.34

0.30

0.26

Thermal Impedance (°C-in.

2

/W)

(2)

0.09

0.05

0.03

0.02

0.02

1)   This is the measured thermal conductivity of the HI-FLOW coating. It represents one conducting layer in a three-layer laminate. The HI-FLOW coatings are 

phase change compounds. These layers will respond to heat and pressure induced stresses. The overall conductivity of the material in post-phase change, 
thin film products is highly dependent upon the heat and pressure applied. This characteristic is not accounted for in ASTM D5470. Please contact Henkel 
Product Management if additional specifications are required.

2)   The ASTM D5470 test fixture was used and the test sample was conditioned at 70°C prior to test. The recorded value includes interfacial thermal resistance. 

These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

48 

| Thermal Interface Selection Guide 

— HI-FLOW

HI-FLOW 625

Reinforced Phase Change Thermal Interface Material

Features and Benefits

• 

 Thermal impedance: 0.71°C-in.

2

/W 

(@ 25 psi)

• 

Electrically isolating

• 

 65°C phase change compound coated 

on PEN film

• 

Tack-free and scratch-resistant

HI-FLOW 625 is a film-reinforced phase 
change material. The product consists 
of a thermally conductive 65°C phase 
change compound coated on PEN film. 
HI-FLOW 625 is designed to be used as 
a thermal interface material between 
electronic power devices that require 
electrical isolation and a heat sink. The 
reinforcement makes HI-FLOW 625 easy 
to handle, and the 65°C phase change 
temperature of the coating material 
eliminates shipping and handling 
problems. The PEN film has a continuous 
use temperature of 150°C.

HI-FLOW 625 is tack-free and scratch-
resistant at production temperature and 
does not require a protective liner in most 
shipping situations. The material has the 
thermal performance of 2-3 mil mica and 
grease assemblies.

Typical Applications Include:

• 

Spring / clip-mounted

• 

Power semiconductors

• 

Power modules

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

HF625 = HI-FLOW 625 Phase Change Material

HF625

0.005

AC

1212

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.005"

AC = Adhesive, one side

00 = No adhesive

1212 = 12" x 12" sheets, 12/200 = 12" x 200-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF HI-FLOW 625

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Green

Green

Visual

Reinforcement Carrier

PEN Film

PEN Film

Thickness (in.) / (mm)

0.005

0.127

ASTM D374

Elongation (% 45° to Warp and Fill)

60

60

ASTM D882A

Tensile Strength (psi) / (mPa)

30,000

206

ASTM D882A

Continuous Use Temp. (°F) / (°C)

302

150

Phase Change Temp. (°F) / (°C)

149

65

ASTM D3418

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

4,000

4,000

ASTM D149

Dielectric Constant (1,000 Hz)

3.5

3.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(1)

0.5

0.5

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

2.26

2.10

2.00

1.93

1.87

Thermal Impedance (°C-in.

2

/W)

(2)

0.79

0.71

0.70

0.67

0.61

1)   This is the measured thermal conductivity of the HI-FLOW coating. It represents one conducting layer in a three-layer laminate. The HI-FLOW coatings are 

phase change compounds. These layers will respond to heat and pressure induced stresses. The overall conductivity of the material in post-phase change, 
thin film products is highly dependent upon the heat and pressure applied. This characteristic is not accounted for in ASTM D5470. Please contact Henkel 
Product Management if additional specifications are required.

2)   The ASTM D5470 test fixture was used and the test sample was conditioned at 70°C prior to test. The recorded value includes interfacial thermal resistance. 

These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— HI-FLOW

 | 

49

 

HI-FLOW 650P

Electrically Insulating, High Performance, Thermally Conductive Phase Change Material

Features and Benefits

• 

 Thermal Impedance: 0.20°C-in.

2

/W 

(@ 25 psi)

• 

150°C high temperature reliability

• 

Natural tack on one side for ease of 

assembly

• 

 Exceptional thermal peformance in  

an insulated pad

HI-FLOW 650P is a thermally conductive 
phase change material, reinforced with 
a polyimide film that is naturally tacky 
on one side. The polyimide film provides 
a high dielectric strength and high cut 
through resistance. HI-FLOW 650P offers 
high temperature reliability ideal for 
automotive applications.

HI-FLOW 650P is designed for use 
between a high-power electrical device 
requiring electrical isolation from the heat 
sink and is ideal for automated dispensing 
systems.

Henkel recommends the use of spring 
clips to assure constant pressure with 
the component interface and the 
heat sink. Please refer to the TO-220 
thermal performance data to determine 
the nominal spring pressure for 
your application.

Typical Applications

• 

Spring / clip-mounted devices

• 

 Discrete power semiconductors and modules

Configurations Available

• 

Roll form, die-cut parts, sheet form

• 

 Available with 1.0, 1.5 or 2.0 mil polyimide reinforcement carrier

Building a Part Number 

Standard Options

|| 

example

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Section A

Section B

Section C

Section D

Section E

HF650P

0.001

01

00

ACME10256 Rev a

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

HF650P = HI-FLOW 650P Phase Change Material

Standard Polymide Thicknesses available:  0.001", 0.0015", 0.002"

01 = Natural tack

1112 = 11" x 12" sheets, 11/250 = 11/250 = 11" x 250" rolls,

or 00 = custom configuration

TYPICAL PROPERTIES OF HI-FLOW 650P

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Gold

Gold

Visual

Reinforcement Carrier

Polyimide

Polyimide

Thickness (in.) / (mm)

0.0045 - 0.0055

0.114 - 0.140

ASTM D374

Film Thickness (in.) / (mm)

0.001 - 0.002

0.025 - 0.050

ASTM D374

Inherent Surface Tack (1- or 2-sided)

1

1

Elongation (%)

40

40

ASTM D882A

Tensile Strength (psi)

7,000

7,000

ASTM D882A

Continuous Use Temp. (°F / °C)

-40 to 302

-40 to 150

Phase Change Softening Temp. (°F / °C)

126

52

ASTM D3418

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

5,000

5,000

ASTM D149

Dielectric Constant (1,000 Hz)

4.5

4.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

12

10

12

ASTM D257

 Flame  Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(1)

1.5

1.5

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W) 0.0010 in.

1.20

1.15

1.11

1.06

1.00

TO-220 Thermal Performance (°C/W) 0.0015 in.

1.47

1.41

1.37

1.33

1.29

TO-220 Thermal Performance (°C/W) 0.0020 in.

1.59

1.48

1.43

1.38

1.35

Thermal Impedance (°C-in.

2

/W)

(2)

 0.0010 in.

0.21

0.20

0.19

0.18

0.17

Thermal Impedance (°C-in.

2

/W)

(2)

 0.0015 in.

0.23

0.22

0.21

0.20

0.20

Thermal Impedance (°C-in.

2

/W)

(2)

 0.0020 in.

0.27

0.27

0.26

0.25

0.24

1)   This is the measured thermal conductivity of the HI-FLOW wax coating. It represents one conducting layer in a three-layer laminate. The HI-FLOW coatings 

are phase change compounds. These layers will respond to heat and pressure induced stresses. The overall conductivity of the material in post-phase 
change, thin film products is highly dependent upon the heat and pressure applied. This characteristic is not accounted for in ASTM D5470. Please contact 
Henkel Product Management if additional specifications are required.

2)   The ASTM D5470 test fixture was used and the test sample was conditioned at 70°C for 5 minutes prior to test. The recorded value includes interfacial 

thermal resistance. These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and 
pressure applied.

TIM SG_0115_WEB-html.html
background image

50 

| Thermal Interface Selection Guide 

— SIL PAD

SIL PAD Thermally Conductive Insulators

Solutions-Driven Thermal Management Products for Electronic Devices

Comprehensive choices for a cleaner and more efficient thermal interface

SIL PAD elastomeric thermal interface material was introduced 
more than 25 years ago. Today, a complete family of SIL PAD 
materials is available to meet the needs of a rapidly changing 
electronics industry.

SIL PAD thermally conductive insulators, in their many forms, 
continue to be a clean and efficient alternative to mica, ceramics 
or grease for a wide range of electronic applications. BERGQUIST 
brand application specialists work closely with customers to 
specify the proper SIL PAD material for each unique thermal 
management requirement.

Features

The SIL PAD family 
encompasses dozens of 
products, each with its 
own unique construction, 
properties and performance. 
Here are some of the 
important features offered by 
the SIL PAD family:

• 

Proven silicone  

rubber binders

• 

 Fiberglass, dielectric film  

or polyester film carriers

• 

 Special fillers to achieve 

specific performance 

characteristics

• 

Flexible and conformable

• 

 Reinforcements to resist  

cut-through

• 

Variety of thicknesses

• 

 Wide range of thermal 

conductivities and  

dielectric strengths

Benefits

Choosing SIL PAD thermal 
products saves time and 
money while maximizing an 
assembly’s performance and 
reliability. Specifically:

• 

Excellent thermal 

performance

• 

 Eliminates the mess  

of grease 

• 

More durable than mica

• 

Less costly than ceramic

• 

 Resistant to electrical 

shorting

• 

Easier and cleaner to apply

• 

 Under time and pressure, 

thermal resistance will 

decrease

• 

 Better performance for 

today’s high-heat  

compacted assemblies

• 

 A specific interfacial 

performance that  

matches the need

• 

 Efficient “total applied cost” 

Options

Some SIL PAD products have 
special features for particular 
applications. Options include:

• 

 Available with or 

without adhesive

• 

 Some  configurations   

are well-suited for 

automated dispensing  

and/or placement

• 

 Aluminum foil or embedded 

graphite construction for 

applications not requiring 

electrical insulation

• 

Copper shield layer

• 

 Polyester binder material 

for silicone-sensitive 

applications

• 

 Polyimide film carrier 

for increased voltage 

breakdown

• 

 Materials with reduced 

moisture sensitivity

• 

    Available  in  rolls,  sheets, 

tubes and custom 

die-cut parts

• 

 Custom  thicknesses   

and constructions

We produce thousands of 
specials. Tooling charges vary 
depending on the complexity 
of the part.

Applications

The large family of 
SIL PAD thermally conductive 
insulators is extremely 
versatile. In today’s 
marketplace, SIL PAD materials 
are used in virtually every 
component of the electronics 
industry, including:

• 

 Interface between a power 

transistor, CPU or other 

heat-generating component 

and a heat sink or rail

• 

 To isolate electrical 

components and power 

sources from heat sink and/

or mounting bracket

• 

As an interface for  

discrete semiconductors 

requiring low-pressure 

spring-clamp mounting

• 

Consumer electronics

• 

Automotive systems

• 

Telecommunications

• 

Aerospace

• 

Military

• 

Medical devices

• 

Industrial controls

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

51

 

Frequently Asked Questions

Q:   What is the primary difference between SIL PAD A2000 

and SIL PAD 2000 products? 

A: 

 SIL PAD A2000 uses a different filler package than 
SIL PAD 2000. This change results in a more compliant 
SIL PAD A2000 material that inherently lowers interfacial 
resistance losses. This reduction in interfacial resistance 
results in improved overall thermal performance when 
measured at lower pressures in standard ASTM D5470 and 
TO-220 testing.

Q:   When should I choose SIL PAD A2000 versus  

SIL PAD 2000 for my application? 

A: 

 The answer is based on the assumption that the primary 
design intent is to increase thermal performance. If your 
application uses lower clamping pressures (e.g., 10 to 75 psi), 
you will find the SIL PAD A2000 to provide excellent thermal 
performance. In contrast, if you are designing for higher 
clamping pressures (e.g., 100 psi or greater), it is likely that 
you will require the thermal performance characteristics of 
the SIL PAD 2000.

Q:   Are there differences in electrical characteristics between 

SIL PAD A2000 and SIL PAD 2000? 

A: 

 Yes. Henkel evaluates and publishes voltage breakdown, 
dielectric constant and volume resistivity data per ASTM 
standards for these materials. Due to differences between 
ASTM lab testing and actual application performance, for best 
results, these characteristics should be evaluated within the 
actual customer system.

Q:   Can I get SIL PAD A2000 in roll form?
A: 

 Yes. With the environmentally responsible process 
improvements added with the introduction of SIL PAD 
A2000 products, the materials are now available in roll form. 
The original SIL PAD 2000 material cannot be produced in 
continuous roll form.

Q:   When should I choose SIL PAD 800 versus SIL PAD 900S 

for my application? 

A: 

 SIL PAD 800 is specifically formulated to provide excellent 
thermal performance for discrete semiconductor applications 
that use low clamping pressures (e.g., spring clips at 10 to 
50 psi.). In contrast, if you are designing for higher clamping 
pressure applications using discrete semi-conductors (e.g., 50 
to 100 psi.), it is likely that you will prefer the combination 
of high thermal performance and cut-through resistance 
inherent in SIL PAD 900S material.

Q:   When should I choose SIL PAD 980 versus SIL PAD 900S 

for my application? 

A: 

 SIL PAD 980 is specifically formulated to provide  
exceptional cut-through and crush resistance in combination 
with excellent heat transfer and dielectric properties.  
SIL PAD 980 has a proven history of reliability in high-
pressure applications where surface imperfections such as 
burrs and dents are inherently common. These applications 
often include heavily machined metal surfaces manufactured 
from extrusions or castings. SIL PAD 900S carries a high level 
of crush resistance and is more likely to be used in burr-free 
or controlled-surface finish applications.

Q:   Is there an adhesive available for SIL PAD 1500ST and 

SIL PAD 1100ST?

A: 

 SIL PAD 1500ST and SIL PAD 1100ST have an inherent tack 
on both sides of the material. This inherent tack is used 
instead of an adhesive. The tack provides sufficient adhesive 
for dispensing from the carrier liner and placement on the 
component. SIL PAD 1500ST and SIL PAD 1100ST can be 
repositioned after the initial placement.

Q:   Why are the thermal performance curves of SIL PAD 

1500ST and SIL PAD 1100ST so flat when compared to 
other SIL PAD materials?

A: 

 SIL PAD 1500ST and SIL PAD 1100ST wet-out the application 
surfaces at a very low pressures. Optimal thermal 
performance is achieved at pressures as low as 50 psi.

Q:   How do I know which SIL PAD is right for my 

specific application?

A: 

 Each application has specific characteristics (e.g., surface 
finish, flatness tolerances, high pressure requirements, 
potential burrs, etc.) that determine which SIL PAD will 
optimize thermal performance. Select a minimum of two 
pads that best fit the application, then conduct testing to 
determine which material performs the best.

Q:   What is IS09001:2008?
A: 

 The ISO certification is the adoption of a quality management 
system that is a strategic decision of the organization. This 
International Standard specifies requirements for a quality 
management system where an organization: a) needs to 
demonstrate its ability to consistently provide product that 
meets customer and applicable regulatory requirements, 
and b) aims to enhance customer satisfaction through the 
effective application of the system, including processes for 
continual improvement of the system and the assurance of 
conformity to customer and regulatory requirements.

TIM SG_0115_WEB-html.html
background image

52 

| Thermal Interface Selection Guide 

— SIL PAD

Choosing SIL PAD Thermally Conductive Insulators

Mica and Grease

Mica insulators have been in use for over 35 years and are 
still commonly used as an insulator. Mica is inexpensive and 
has excellent dielectric strength, but it is brittle and is easily 
cracked or broken. Because mica used by itself has high thermal 
impedance, thermal grease is commonly applied to it. The grease 
flows easily and excludes air from the interface to reduce the 
interfacial thermal resistance. If the mica is also thin (2-3 mils 
[50-80 µm]), a low thermal impedance can be achieved.

However, thermal grease introduces a number of problems to 
the assembly process. It is time-consuming to apply, messy 
and difficult to clean. Once thermal grease has been applied 
to an electronic assembly, solder processes must be avoided to 
prevent contamination of the solder. Cleaning baths must also be 
avoided to prevent wash-out of the interface grease, causing a 
dry joint and contamination of the bath. Assembly, soldering and 
cleaning processes must be performed in one process while the 
greased insulators are installed off-line in a secondary process. 
If the grease is silicone-based, migration of silicone molecules 
occurs over time, drying out the grease and contaminating the 
assembly. 

Polyimide Films

Polyimide films can also be used as insulators and are often 
combined with wax or grease to achieve a low thermal 
impedance. These polyimide films are especially tough and have 
high dielectric strength. SIL PAD K-4, K-6 and K-10 incorporate 
polyimide film as the carrier material.

SIL PAD Materials

SIL PAD thermally conductive insulators are designed to  
be clean, grease-free and flexible. The combination of a  
tough carrier material such as fiberglass and silicone rubber 
which is confirmable provides the engineer with a more versatile 
material than mica or ceramics and grease. SIL PAD products 
minimize the thermal resistance from the case of a power 
semiconductor to the heat sink. SIL PAD materials electrically 
isolate the semiconductor from the heat sink and have suffiicient 
dielectric strength to withstand high voltage. They are also strong 
enough to resist puncture by the facing metal surface. 

Binders 

Most SIL PAD products use silicone rubber as the binder. Silicone 
rubber has a low dielectric constant, high dielectric strength, 
good chemical resistance and high thermal stability.

Silicone rubber also exhibits cold flow, which excludes air from 
the interface as it conforms to the mating surfaces. This flow 
eliminates the need for thermal grease. A rough-surface-textured 
insulator needs to flow more to exclude air than a smooth 
one. The smoother pads also need less pressure to wet-out the 
surfaces and obtain optimum thermal contact.

Carriers 

The carrier provides physical reinforcement and contributes 
to dielectric strength. High dielectric and physical strength are 
obtained by using a heavy, tight mesh, but thermal resistance 
will suffer. A light, open mesh reduces thermal resistance, 
dielectric strength and cut-through resistance. The carrier 
materials used in SIL PAD materials include fiberglass and 
dielectric film.

Fillers 

The thermal conductivity of SIL PAD products is improved by 
filling them with ingredients of high thermal conductivity. 
The fillers change the characteristics of the silicone rubber to 
enhance thermal and/or physical characteristics.

For instance, some fillers make the silicone rubber hard and 
tough while still retaining the ability to flow under pressure. A 
harder silicone helps the material resist cut-through. In other 
applications, a filler is used to make the silicone rubber softer 
and more conformable to rough surfaces. While the range in 
thermal resistance of greased mica is quite large, the average is 
comparable to elastomeric insulators filled with a blend of the 
appropriate ingredients.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

53

 

SIL PAD Comparison Data

TO-220 Thermal Performance

Thermal P

erformance (

C/

W)

Interface Pressure (psi)

SIL PAD High Performance Materials

0

50

100

150

200

3.25

3.05

2.85

2.65

2.45

2.25

2.05

1.85

1.65

1.45

1.25

SIL PAD A1500, 10 mil
SIL PAD 1200, 9 mil
SIL PAD 2000, 10 mil
SIL PAD A2000, 15 mil
SIL PAD 1500ST, 8 mil

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

0

50

100

150

200

Thermal P

erformance (

C/

W)

Interface Pressure (psi)

Q-PAD Materials

Non-Electrically Isolating

Q-PAD 3
Q-PAD II

1.25

2.25

3.25

4.25

5.25

6.25

7.25

8.25

9.25

0

50

100

150

200

Thermal P

erformance (

C/

W)

Interface Pressure (psi)

SIL PAD High Value Materials

SIL PAD 400, 9 mil
SIL PAD 400, 7 mil
SIL PAD 980
SIL PAD 900S
SIL PAD 800
SIL PAD 1100ST

SIL PAD Polyimide-Based Materials

4.25

4.00

3.75

3.50

3.25

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

Thermal P

erformance (

C/

W)

Interface Pressure (psi)

0

50

100

150

200

SIL PAD K-4
SIL PAD K-6
SIL PAD K-10

TIM SG_0115_WEB-html.html
background image

54 

| Thermal Interface Selection Guide 

— SIL PAD

Mechanical and Electrical Properties

Mechanical Properties

Woven fiberglass and films are used in SIL PAD products 
to provide mechanical reinforcement. The most important 
mechanical property in SIL PAD applications is resistance to  
cut-through to avoid electrical shorting from the device to  
the heat sink.

Cut-Through Resistance – The TO-220 cut-through helps customers better 

understand typical application performance.

Mounting Techniques and Mounting Pressure

Typical mounting techniques include:

• 

 A spring clip, which exerts a centralized clamping force on the 

body of the transistor. The greater the mounting force of the 

spring, the lower the thermal resistance of the insulator.

• 

 A screw in the mounting tab. With a screw-mounted TO-220, 

the force on the transistor is determined by the torque applied 

to the fastener.

In extremely low-pressure applications, an insulator with 

pressure sensitive adhesive on each side may give the lowest 
thermal resistance since the adhesive wets-out the interface 
easier than the dry rubber. This decreases the interfacial  
thermal resistance.

Devices with larger surface areas need more pressure to get  
the insulator to conform to the interface than smaller devices.  
In most screw-mount applications, the torque required to  
tighten the fastener is sufficient to generate the pressure  
needed for optimum thermal resistance. There are exceptions 
where the specified torque on the fastener does not yield the 
optimum thermal resistance for the insulator being used and 
either a different insulator or a different mounting scheme 
should be used.

Interfacial thermal resistance decreases as time under pressure 
increases. In applications where high clamping forces cannot 
be used, time can be substituted for pressure to achieve lower 
thermal resistance. The only way to know precisely what the 
thermal resistance of an insulator will be in an application is  
to measure it in that application.

Electrical Properties

If your application does not require electrical insulation,  
Q-PAD II or Q-PAD 3 are ideal grease replacement materials. 
These materials do not provide electrical isolation but have 
excellent thermal properties. HI-FLOW phase change materials 
should also be considered for these applications. (Refer to pages 
40-49 of this guide.)

The most important electrical property in a typical assembly 
where a SIL PAD insulator is used is dielectric strength. In many 
cases, the dielectric strength of a SIL PAD product will be the 
determining factor in the design of the apparatus in which it  
is to be used.

SIL PAD TYPICAL ELECTRICAL PROPERTIES

MATERIAL

BREAKDOWN VOLTAGE

DIELECTRIC STRENGTH

DIELECTRIC CONSTANT

VOLUME RESISTIVITY

(KV)

(VOLTS/MIL)

 (KV/MM)

(1,000 HZ)

(OHMMETER)

SIL PAD 400 - 0.007

3.5

500

20

5.5

10

11

SIL PAD 400 - 0.009

4.5

500

20

5.5

10

11

SIL PAD 900S

5.5

600

24

6.0

10

10

SIL PAD 1200 - 0.009

6.0

667

26

7.0

10

10

SIL PAD A1500

6.0

600

24

7.0

10

11

SIL PAD 2000

4.0

400

16

4.0

10

11

SIL PAD K-4

6.0

1,000

39

5.0

10

12

SIL PAD K-6

6.0

1,000

39

4.0

10

12

SIL PAD K-10

6.0

1,000

39

3.7

10

12

Test Method

ASTM D149*

* Method A, Type 3 Electrodes

ASTM D149*

* Method A, Type 3 Electrodes

ASTM D150

ASTM D257

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

55

 

Thermal Properties

6.0

5.0

4.0

3.0

2.0

1.0

0.0

SIL PAD Thermal Performance Overview (TO-220 Test @ 50 psi)

BERGQUIST Material

Thermal P

erformance (°C/

W)

2.45

2.90

2.21

1.51

2.0

3.13

2.76

1.86

2.01

1.23

1.76

2.68

2.41

SP400

(0.007)

SP800

SP900S

SPA1500

SP1100ST

SP1200

SP1500ST

(0.008)

SP2000

(0.010)

SP2000

(0.015)

SPK-4

SPK-6

SPK-10

QP II

QP 3

Here are some general guidelines regarding electrical properties 
to consider when selecting a SIL PAD material:

• 

 Q-PAD II and Q-PAD 3 are used when electrical isolation is 

not required.

• 

 Dielectric breakdown voltage is the total voltage that a 

dielectric material can withstand. When insulating electrical 

components from each other and ground, it is desirable to use 

an insulator with a high breakdown voltage.

• 

 Breakdown voltage decreases as the area of the electrodes 

increases. This area effect is more pronounced as the thickness 

of the insulator decreases.

• 

Breakdown voltage decreases as temperature increases.

• 

 Breakdown voltage decreases as humidity increases.

• 

Breakdown voltage decreases in the presence of 

partial discharge.

• 

 Breakdown voltage decreases as the size of the voltage source 

(kVA rating) increases.

• 

 Breakdown voltage can be decreased by excessive mechanical 

stress on the insulator.

Dielectric strength, dielectric constant and volume resistivity 
should all be taken into consideration when selecting a 
SIL PAD material. If your application requires specific electrical 
performance, please contact a Henkel Sales Representative for 
more detailed testing information. 

Thermal Properties 

The thermal properties of a SIL PAD material and your 
requirements for thermal performance probably have more to do 
with your selection of a SIL PAD product than any other factor.

Discrete semiconductors, under normal operating conditions, 
dissipate waste power which raises the junction temperature of 
the device. Unless sufficient heat is conducted out of the device, 
its electrical performance and parameters are changed. A 10°C 

rise in junction temperature can reduce the mean-time-to-failure 
of a device by a factor of two. Also, above 25°C, the 
semiconductor’s total power handling capability will be reduced 
by a derating factor inherent to the device.

The thermal properties of SIL PAD products are thermal 
impedance, thermal conductivity and thermal resistance. The 
thermal resistance and conductivity of SIL PAD products are 
inherent to the material and do not change. Thermal resistance 
and thermal conductivity are measured per ASTM D5470 and do 
not include the interfacial thermal resistance effects. Thermal 
impedance applies to the thermal transfer in an application and 
includes the effects of interfacial thermal resistance. As the 
material is applied in different ways, the thermal impedance 
values will vary from application to application.

• 

 The original SIL PAD material, SIL PAD 400, continues to  

be the BERGQUIST brand’s most popular material for  

many applications.

• 

 SIL PAD A1500 is chosen when greater thermal performance 

is required. SIL PAD A2000 is ideal for high performance, 

high reliability applications. 

Beyond these standard materials, many things can contribute to 
the selection of the correct material for a particular application. 
Questions regarding the amount of torque and clamping pressure 
are often asked when selecting a SIL PAD material. Here are 
some guidelines:

• 

 Interfacial thermal resistance decreases as clamping 

pressure increases.

• 

 The clamping pressure required to minimize interfacial thermal 

resistance can vary with each type of insulator.

• 

 SIL PAD products with smooth surface finishes (SIL PAD A1500, 

SIL PAD A2000, SIL PAD K-4, SIL PAD K-6 and SIL PAD K-10) 

are less sensitive to clamping pressure than SIL PAD materials 

with rough surface finishes (SIL PAD 400) or smooth and tacky 

finishes (SIL PAD 1500ST).

TIM SG_0115_WEB-html.html
background image

56 

| Thermal Interface Selection Guide 

— SIL PAD

     SIL PAD Thermally Conductive Insulator Selection Table

SIL PAD 

400 .007 IN.

SIL PAD 

400 .009 IN.

SIL PAD 

800

SIL PAD 

900S

SIL PAD 

980

SIL PAD 

1100ST

SIL PAD 

1200

SIL PAD 

A1500

SIL PAD 

1500ST

SIL PAD 

2000

SIL PAD 

A2000

SIL PAD 

K-4

SIL PAD 

K-6

SIL PAD 

K-10

POLY-PAD 

1000

POLY-PAD 

K-4

POLY-PAD 

K-10

TEST 

METHOD

COLOR

GREY

GREY

 GOLD

PINK

MAUVE

YELLOW

BLACK  

GREEN

BLUE

WHITE

WHITE

GREY

BLUE-GREEN

BEIGE

YELLOW

TAN

YELLOW

VISUAL

Thickness (in./mm)

.007 ± .001 

(.18 ± .025)

.009 ± .001 

(.23 ± .025)

.005 ± .001 

(.13 ± .025)

.009 ± .001 

(.23 ± .025)

.009 ± .001 

(.23 ± .025)

.012 ± .001 

(.30 ± .025)

.009 ± .001 

(.23 ± .025)

.010 ± .001 

(.25 ± .025)

.008 ± .001
(.20 ± .025)

.010 ± .001 

(.25 ± .025)

.015 ± .001 

(.38 ± .025)

.006 ± .001 

(.15 ± .025)

.006 ± .001 

(.15 ± .025)

.006 ± .001 

(.15 ± .025)

.009 ± .001 

(.23 ± .025)

.006 ± .001 

(.15 ± .025)

.006 ± .001 

(.15 ± .025)

ASTM D374

Thermal Performance TO-220 Test 
@ 50 psi °C/W

5.14

6.61

2.45

2.90

4.52

2.68

2.41

2.21

1.51

2.02

1.86

3.13

2.76

2.01

3.74

4.34

2.75

ASTM D5470

Thermal Impedance (°C-in.

2

/W)

1.13

1.45

0.53

0.61

1.07

0.81

0.53

0.42

0.23

0.33

0.32

0.62

0.64

0.41

0.82

0.95

0.60

ASTM D5470

Thermal Conductivity 
  (W/m-K  nominal)

0.9

0.9

1.6

1.6

1.2

1.1

1.8

2.0

1.8

3.5

3.0

0.9

1.1

1.3

1.2

0.9

1.3

ASTM D5470

Voltage Breakdown (Vac.)

3,500

4,500

2,000

5,500

4,000

5,000

6,000

6,000

3,000

4,000

4,000

6,000

6,000

6,000

1,300

5,500

6,000

ASTM D149

Continuous Use Temperature (°C)

-60 to 180

-60 to 180

-60 to 180

-60 to 180

-40 to 150

-60 to 180

-60 to 180

-60 to 180

-60 to 180

-60 to 200

-60 to 200

-60 to 180

-60 to 180

-60 to 180

-20 to 150

-20 to 150

-20 to 150

Construction

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/Film

Silicone/Film

Silicone/Film

Polyester/ 
Fiberglass

Polyester/Film

Polyester/Film

SIL PAD Applications

Here, SIL PAD 900S enhances 
the thermal transfer from this 
FR-4 circuit board with thermal 
vias to the metal base plate.

SIL PAD is available in over 
100 standard configurations 
for common JEDEC 
package outlines.

The circuit board above shows 
punched parts interfacing screw-
mounted transistors to a finned 
heat sink.

This application uses SIL PAD to 
isolate the mounting brackets 
from the assembly frame.

A common SIL PAD application 
includes TO-220 transistors 
mounted in a row on a heat rail.

These SIL PAD applications show 
clip mounting of transistors on 
the left and screw mounting 
to an aluminum bracket on 
the right.

Choose a SIL PAD that optimizes 
thermal performance for your 
mounting method — screw, clip, 
spring, bar, etc.

SIL PAD 980 is used extensively 
in industrial applications having 
excellent cut-through and 
abrasion resistance.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

57

 

SIL PAD 

400 .007 IN.

SIL PAD 

400 .009 IN.

SIL PAD 

800

SIL PAD 

900S

SIL PAD 

980

SIL PAD 

1100ST

SIL PAD 

1200

SIL PAD 

A1500

SIL PAD 

1500ST

SIL PAD 

2000

SIL PAD 

A2000

SIL PAD 

K-4

SIL PAD 

K-6

SIL PAD 

K-10

POLY-PAD 

1000

POLY-PAD 

K-4

POLY-PAD 

K-10

TEST 

METHOD

COLOR

GREY

GREY

 GOLD

PINK

MAUVE

YELLOW

BLACK  

GREEN

BLUE

WHITE

WHITE

GREY

BLUE-GREEN

BEIGE

YELLOW

TAN

YELLOW

VISUAL

Thickness (in./mm)

.007 ± .001 

(.18 ± .025)

.009 ± .001 

(.23 ± .025)

.005 ± .001 

(.13 ± .025)

.009 ± .001 

(.23 ± .025)

.009 ± .001 

(.23 ± .025)

.012 ± .001 

(.30 ± .025)

.009 ± .001 

(.23 ± .025)

.010 ± .001 

(.25 ± .025)

.008 ± .001
(.20 ± .025)

.010 ± .001 

(.25 ± .025)

.015 ± .001 

(.38 ± .025)

.006 ± .001 

(.15 ± .025)

.006 ± .001 

(.15 ± .025)

.006 ± .001 

(.15 ± .025)

.009 ± .001 

(.23 ± .025)

.006 ± .001 

(.15 ± .025)

.006 ± .001 

(.15 ± .025)

ASTM D374

Thermal Performance TO-220 Test 
@ 50 psi °C/W

5.14

6.61

2.45

2.90

4.52

2.68

2.41

2.21

1.51

2.02

1.86

3.13

2.76

2.01

3.74

4.34

2.75

ASTM D5470

Thermal Impedance (°C-in.

2

/W)

1.13

1.45

0.53

0.61

1.07

0.81

0.53

0.42

0.23

0.33

0.32

0.62

0.64

0.41

0.82

0.95

0.60

ASTM D5470

Thermal Conductivity 
  (W/m-K  nominal)

0.9

0.9

1.6

1.6

1.2

1.1

1.8

2.0

1.8

3.5

3.0

0.9

1.1

1.3

1.2

0.9

1.3

ASTM D5470

Voltage Breakdown (Vac.)

3,500

4,500

2,000

5,500

4,000

5,000

6,000

6,000

3,000

4,000

4,000

6,000

6,000

6,000

1,300

5,500

6,000

ASTM D149

Continuous Use Temperature (°C)

-60 to 180

-60 to 180

-60 to 180

-60 to 180

-40 to 150

-60 to 180

-60 to 180

-60 to 180

-60 to 180

-60 to 200

-60 to 200

-60 to 180

-60 to 180

-60 to 180

-20 to 150

-20 to 150

-20 to 150

Construction

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/ 

Fiberglass

Silicone/Film

Silicone/Film

Silicone/Film

Polyester/ 
Fiberglass

Polyester/Film

Polyester/Film

SIL PAD Comparison Made Simple

Comparing thermally conductive 
interface materials has never  
been easier.

Simply go to the “Thermal 
Materials” section of our website 
www.henkel-adhesives.com/thermal and 
select “Compare Material Properties.” 
Then select up to three separate products 
and this handy comparison tool will 
automatically chart thermal resistance 
values and display a material properties 
table of the selected materials.

The materials comparison tool can be 
used for most BERGQUIST thermal 
materials, including SIL PAD, HI-FLOW, 
GAP PAD, Q-PAD, BOND-PLY and 
LIQUI-BOND.

TIM SG_0115_WEB-html.html
background image

58 

| Thermal Interface Selection Guide 

— SIL PAD

SIL PAD 400

The Original SIL PAD Material

Features and Benefits

• 

 Thermal impedance: 1.13°C-in.

2

/W 

(@ 50 psi)

• 

Original SIL PAD material

• 

 Excellent mechanical and 

physical characteristics

• 

Flame retardant

SIL PAD 400 is a composite of silicone 
rubber and fiberglass. The material 
is flame retardant and is specially 
formulated for use as a thermally 
conductive insulator. The primary use 
for SIL PAD 400 is to electrically isolate 
power sources from heat sinks.

SIL PAD 400 has excellent mechanical 
and physical characteristics. Surfaces 
are pliable and allow complete surface 
contact with excellent heat dissipation. 
SIL PAD 400 actually improves its thermal 
resistance with age. The reinforcing 
fiberglass provides excellent cut-through 
resistance. In addition, SIL PAD 400 
is nontoxic and resists damage from 
cleaning agents.

Typical Applications Include:

• 

Power supplies

• 

Power semiconductors

• 

Automotive electronics

• 

Motor controls

Configurations Available:

• 

Sheet form, die-cut parts and roll form; with or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SP400 = SIL-PAD 400 Material

SP400

0.007

AC

12/250

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.007", 0.009"

AC = Adhesive, one side;  or

00 = no adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD 400

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.007, 0.009

0.178, 0.229

ASTM D374

Hardness (Shore A)

85

85

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

30

5

ASTM D1458

Elongation (% at 45º to Warp and Fill)

54

54

ASTM D412

Tensile Strength (psi) / (mPa)

3,000

20

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

3,500, 4,500

3,500, 4,500

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.9

0.9

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W) 0.007 in.

6.62

5.93

5.14

4.38

3.61

TO-220 Thermal Performance (°C/W) 0.009 in.

8.51

7.62

6.61

5.63

4.64

Thermal Impedance (°C-in.

2

/W) 0.007 in.

(1)

1.82

1.42

1.13

0.82

0.54

Thermal Impedance (°C-in.

2

/W) 0.009 in.

(1)

2.34

1.83

1.45

1.05

0.69

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

59

 

SIL PAD 800

Features and Benefits

• 

 Thermal impedance: 0.45°C-in.

2

/W 

(@ 50 psi)

• 

High value material

• 

Smooth and highly compliant surface

• 

Electrically isolating

The SIL PAD 800 family of thermally 
conductive insulation materials is 
designed for applications requiring high 
thermal performance and electrical 
isolation. These applications also typically 
have low mounting pressures for 
component clamping.

SIL PAD 800 material combines a 
smooth and highly compliant surface 
characteristic with high thermal 
conductivity. These features optimize 
the thermal resistance properties at 
low pressure.

Applications requiring low component 
clamping forces include discrete 
semiconductors (TO-220, TO-247 and 
TO-218) mounted with spring clips. 
Spring clips assist with quick assembly 
but apply a limited amount of force to 
the semiconductor. The smooth surface 
texture of SIL PAD 800 minimizes 
interfacial thermal resistance and 
maximizes thermal performance.

High Performance Insulator for Low-Pressure Applications

Typical Applications Include:

• 

Power supplies

• 

Automotive electronics

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SP800 = SIL-PAD 800 Material

SP800

0.005

AC

1212

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.005"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD 800

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Gold

Gold

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.005

0.127

ASTM D374

Hardness (Shore A)

91

91

ASTM D2240

Elongation (% at 45º to Warp and Fill)

20

20

ASTM D412

Tensile Strength (psi) / (mPa)

1,700

12

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

3,000

3,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.6

1.6

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

3.56

3.01

2.45

2.05

1.74

Thermal Impedance (°C-in.

2

/W)

(1)

0.92

0.60

0.45

0.36

0.29

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

60 

| Thermal Interface Selection Guide 

— SIL PAD

SIL PAD 900S

High Performance Insulator for Low-Pressure Applications

Features and Benefits

• 

 Thermal impedance: 0.61°C-in.

2

/W 

(@ 50 psi)

• 

Electrically isolating

• 

Low mounting pressures

• 

Smooth and highly compliant surface

• 

 General-purpose thermal interface 

material solution

The true workhorse of the SIL PAD 
product family, SIL PAD 900S thermally 
conductive insulation material is designed 
for a wide variety of applications 
requiring high thermal performance and 
electrical isolation. These applications 
also typically have low mounting 
pressures for component clamping.

SIL PAD 900S material combines a 
smooth and highly compliant surface 
characteristic with high thermal 
conductivity. These features optimize 
the thermal resistance properties at 
low pressures.

Applications requiring low component 
clamping forces include discrete 
semiconductors (TO-220, TO-247 and 
TO-218) mounted with spring clips. 
Spring clips assist with quick assembly 
and apply a limited amount of force to 
the semiconductor. The smooth surface 
texture of SIL PAD 900S minimizes 
interfacial thermal resistance and 
maximizes thermal performance.

Typical Applications Include:

• 

Power supplies

• 

Automotive electronics

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SP900S = SIL-PAD 900S Material

SP900S

0.009

AC

00

ACME 951753 Rev B

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.009"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD 900S

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Pink

Pink

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.009

0.229

ASTM D374

Hardness (Shore A)

92

92

ASTM D2240

Elongation (% at 45º to Warp and Fill)

20

20

ASTM D412

Tensile Strength (psi) / (mPa)

1,300

9

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

5,500

5,500

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.6

1.6

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

3.96

3.41

2.90

2.53

2.32

Thermal Impedance (°C-in.

2

/W)

(1)

0.95

0.75

0.61

0.47

0.41

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

61

 

SIL PAD 980

Features and Benefits

• 

 Thermal impedance: 1.07°C-in.

2

/W 

(@ 50 psi)

• 

Excellent cut-through resistance

• 

 Use in screw-mounted applications 

with cut-through problems

In addition to excellent heat transfer  
and dielectric properties, SIL PAD 980  
is specially formulated for high  
resistance to crushing and cut-through 
typically found in high-pressure 
applications where surface  
imperfections such as burrs and dents 
are inherently common (e.g., heavily-
machined metal surfaces manufactured 
from extrusions or castings). 

With a field-proven history of reliability, 
SIL PAD 980 is Henkel’s best material  
for cut-through resistance in screw-
mounted and other applications with  
cut-through problems.

High Cut-Through Resistant, Electrically Insulating, Thermally Conductive Material

Typical Applications Include:

• 

Silicone-sensitive assemblies

• 

Telecommunications

• 

Automotive electronics

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SP980 = SIL-PAD 980 Material

SP980

0.009

AC

00

ACME 951753 Rev B

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.009"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD 980

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Mauve

Mauve

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.009

0.229

ASTM D374

Hardness (Shore A)

95

95

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

140

26

ASTM D1458

Elongation (% at 45º to Warp and Fill)

10

10

ASTM D412

Cut-Through (lbs.) / (kg)

750

340

ASTM D412

Continuous Use Temp. (°F) / (°C)

-40 to 302

-40 to 150

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

4,000

4,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.2

1.2

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

5.48

5.07

4.52

4.04

3.56

Thermal Impedance (°C-in.

2

/W)

(1)

1.51

1.22

1.07

0.89

0.53

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

62 

| Thermal Interface Selection Guide 

— SIL PAD

SIL PAD 1100ST

Affordable, Electrically Insulating, Thermally Conductive, Soft Tack Elastomeric Material

Features and Benefits

• 

Inherent tack on both sides for 

exceptional thermal performance and 

easy placement

• 

 Repositionable for higher  

utilization, ease of use and  

assembly error reduction

• 

Lined on both sides for ease of 

handling prior to placement in 

high volume assemblies

• 

Exhibits exceptional thermal 

performance even at a low 

mounting pressure

• 

Fiberglass-reinforced

• 

Value alternative to SIL PAD 1500ST

SIL PAD 1100ST (Soft Tack) is a fiberglass-
reinforced thermal interface material 
featuring inherent tack on both sides. 
The material exhibits excellent thermal 
performance at low mounting pressures. 
The material is supplied on two liners  
for exceptionally easy handling prior 
to auto-placement in high volume 
assemblies. The material is ideal for 
placement between an electronic power 
device and its heat sink.

Typical Applications Include:

• 

Automotive ECMs

• 

Power supplies

• 

Motor controls

• 

Between an electronic power device and its heat sink

Configurations Available:

• 

Sheet form, die-cut parts and roll form 

• 

Top and bottom liners

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

SP1100ST

0.012

02

00

NA

|| 

example

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SP1100ST = SIL-PAD 1100ST Material

Standard thicknesses available:  0.012"

02 = Natural tack, both sides

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls or

00 = custom configuration

TYPICAL PROPERTIES OF SIL PAD 1100ST

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Yellow

Yellow

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.012

0.305

ASTM D374

Inherent Surface Tack (1- or 2-sided)

2

2

Hardness (Shore 00)

(1)

85

85

ASTM D2240

Breaking Strength (lb./in.) / (kN/m)

2.6

0.5

ASTM D1458

Elongation (% at 45º to Warp and Fill)

16

16

ASTM D412

Tensile Strength (psi) / (mPa)

220

1.5

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

5,000

5,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.0

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K) 

1.1

1.1

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (ºC/W)

2.72

2.71

2.68

2.62

2.23

 Thermal Impedance (ºC-in.

2

/W)

 (2)

0.75

0.71

0.66

0.61

0.57

1)  Thirty-second delay value Shore 00 hardness scale.
2)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

63

 

SIL PAD 1200

Exceptional Performance, Thermally Conductive Elastomeric Material

Features and Benefits

• 

 Thermal  Impedance: 0.53°C-in.

2

/W 

(@ 50 psi)

• 

 Exceptional thermal performance at 

lower application pressures

• 

 Smooth and non-tacky on both sides 

for easy repositioning, ease of use and 

assembly error reduction

• 

 Exceptional breakdown voltage and 

surface “wet-out” values

• 

 Designed for applications where 

electrical isolation is critical

• 

 Excellent cut-through resistance, 

designed for screw and clip 

mounted applications

SIL PAD 1200 is a silicone-based, 
fiberglass-reinforced thermal interface 
material featuring a smooth, highly 
compliant surface. The material features 
a non-tacky surface for efficient 
repositioning and ease of use, as well  
as an optional adhesive coating.  
SIL PAD 1200 exhibits exceptional thermal 
performance at low and high application 
pressures. The material is ideal for 
placement between electronic power 
devices and a heat sink for screw and clip 
mounted applications.

Typical Applications Include:

• 

Automotive electronics control modules

• 

Motor controls

• 

Discrete devices

• 

Power supplies

• 

Audio amplifiers

• 

Telecommunications

Configurations Available:

• 

 Sheet form, slit-to-width roll form 

• 

Die-cut parts

• 

9, 12 and 16 mil thicknesses

• 

Adhesive coating

We produce thousands of specials and customs. Tooling charges vary depending on 
tolerances and complexity of the part.

Building a Part Number 

Standard Options

SP1200

AC = Adhesive, one side
00 = No adhesive

SP1200 = SIL-PAD 1200 Material

Standard thicknesses available: 0.009", 0.012", 0.016"

AC

___ = Standard configuration dash number,
1212 = 12" x 12" sheets, 12/250 = 12-foot x 250 in. or 
00 = custom configuration

0.009

|| 

example

Section A

Section B

Section C

Section D

Section E

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00

NA

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

TYPICAL PROPERTIES OF SIL PAD 1200

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.009 to 0.016

0.229 to 0.406

ASTM D374

Hardness Bulk Rubber (Shore 00)

80

80

ASTM D2240

Elongation (% at 45º to warp and fill)

20

20

ASTM D412

Tensile Strength (psi) / (mPa)

1300

9

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

6,000

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

8.0

8.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

9

10

9

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

(1)

1.8

1.8

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (ºC/W)

2.82

2.64

2.41

2.13

1.90

 Thermal Impedance (ºC-in.

2

/W)

(2)

0.71

0.62

0.53

0.47

0.41

1)  This is the measured thermal conductivity of the SIL PAD Compound.
2)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

64 

| Thermal Interface Selection Guide 

— SIL PAD

SIL PAD A1500

Features and Benefits

• 

 Thermal impedance: 0.42°C-in.

2

/W 

(@ 50 psi)

• 

 Elastomeric compound coated on 

both sides

SIL PAD A1500 is a silicone-based, 
thermally conductive and electrically 
insulating material. It consists of a  
cured silicone elastomeric compound 
coated on both sides of a fiberglass 
reinforcement layer. 

SIL PAD A1500 performs well under 
clamping pressure up to 200 psi and is 
an excellent choice for high performance 
applications requiring electrical isolation 
and cut-through resistance.

Electrically Insulating, Thermally Conductive Elastomeric Material

Typical Applications Include:

• 

Power supplies

• 

Automotive electronics

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts, and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SPA1500 = SIL-PAD A1500 Material

SPA1500

0.010

AC

12/250

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.010"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250' rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD A1500

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Green

Green

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.010

0.254

ASTM D374

Hardness (Shore A)

80

80

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

65

12

ASTM D1458

Elongation (% at 45° to Warp and Fill)

40

40

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

6,000

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

7.0

7.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

2.0

2.0

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

3.03

2.62

2.21

1.92

1.78

Thermal Impedance (°C-in.

2

/W)

(1)

0.59

0.50

0.42

0.34

0.31

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

65

 

SIL PAD 1500ST

Features and Benefits

• 

 Thermal impedance: 0.23°C-in.

2

/W 

(@ 50 psi)

• 

Naturally tacky on both sides

• 

Pad is repositionable

• 

Excellent thermal performance

• 

Auto-placement and dispensable

SIL PAD 1500ST (Soft Tack) is a fiberglass-
reinforced thermal interface material  
that is naturally tacky on both sides.  
SIL PAD 1500ST exhibits exceptional 
thermal performance. 

SIL PAD 1500ST is supplied in sheet or 
roll form for outstanding auto-dispensing 
and auto-placement in high volume 
assemblies. SIL PAD 1500ST is intended 
for placement between an electronic 
power device and its heat sink.

Typical Applications Include:

• 

Power supplies

• 

Power semiconductors

• 

Aerospace

• 

Motor controls

Configurations Available:

• 

Sheet form, die-cut parts and slit-to-width roll form

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SP1500ST = SIL-PAD 1500ST Material

SP1500ST

0.008

02

1012

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.008"

02 = Natural tack, both sides

_ _ _ = Standard configuration dash number, 

1012 = 10" x 12" sheets, 10/250 = 10" x 250-foot rolls, 

or 00 = custom configuration

|| 

example

Electrically Insulating, Thermally Conductive, Soft Tack Elastomeric Material

TYPICAL PROPERTIES OF SIL PAD 1500ST

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Blue

Blue

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.008

0.203

ASTM D374

Hardness (Shore 00)

75

75

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

1.9

0.34

ASTM D1458

Elongation (% at 45º to Warp and Fill)

22

22

ASTM D412

Tensile Strength (psi) / (mPa)

238

1.6

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

3,000

3,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.1

6.1

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.8

1.8

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

1.54

1.52

1.51

1.49

1.46

Thermal Impedance (°C-in.

2

/W)

(1)

0.37

0.28

0.23

0.21

0.20

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

66 

| Thermal Interface Selection Guide 

— SIL PAD

SIL PAD 2000

Higher Performance, High Reliability Insulator

Features and Benefits

• 

 Thermal impedance: 0.33°C-in.

2

/W 

(@ 50 psi)

• 

Optimal heat transfer

• 

High thermal conductivity: 3.5 W/m-K

SIL PAD 2000 is a high performance, 
thermally conductive insulator designed 
for demanding aerospace and commercial 
applications. 

SIL PAD 2000 is a silicone elastomer 
formulated to maximize the thermal 
and dielectric performance of the filler/
binder matrix. The result is a grease-free, 
conformable material capable of meeting 
or exceeding the thermal and electrical 
requirements of high-reliability electronic 
packaging applications.

Typical Applications Include:

• 

Power supplies

• 

Motor controls

• 

Power semiconductors

• 

Aerospace

• 

Avionics

Configurations Available:

• 

Sheet form, die-cut parts

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SP2000 = SIL-PAD 2000 Material

SP2000

0.010

AC

00

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.010", 0.015", 0.020"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD 2000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

White

White

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.010 to 0.020

0.254 to 0.508

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

4,000

4,000

ASTM D149

Dielectric Constant (1,000 Hz)

4.0

4.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL94

THERMAL

Thermal Conductivity (W/m-K)

3.5

3.5

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W) 0.010’’

2.61

2.32

2.02

1.65

1.37

Thermal Impedance (°C-in.

2

/W) 0.010’’

(1)

0.57

0.43

0.33

0.25

0.20

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

67

 

SIL PAD A2000

Features and Benefits

• 

 Thermal impedance: 0.32°C-in.

2

/W 

(@ 50 psi)

• 

Optimal heat transfer

• 

High thermal conductivity: 3.0 W/m-K 

SIL PAD A2000 is a conformable 
elastomer with very high thermal 
conductivity that acts as a thermal 
interface between electrical components 
and heat sinks. SIL PAD A2000 is for 
applications where optimal heat transfer 
is a requirement. 

This thermally conductive silicone 
elastomer is formulated to maximize the 
thermal and dielectric performance of  
the filler/binder matrix. The result is a 
grease-free, conformable material capable 
of meeting or exceeding the thermal and 
electrical requirements of high reliability 
electronic packaging applications.

Higher Performance, High Reliability Insulator

Typical Applications Include:

• 

Motor drive controls

• 

Avionics

• 

High-voltage power supplies

• 

Power transistor / heat sink interface

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SPA2000 = SIL-PAD A2000 Material

SPA2000

0.015

00

1012

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.015", 0.020"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1012 = 10" x 12" sheets, 10/250 = 10" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD A2000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

White

White

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.015 to 0.020

0.381 to 0.508

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Heat Capacity ( J/g-K)

1.0

1.0

ASTM E1269

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

4,000

4,000

ASTM D149

Dielectric Constant (1,000 Hz)

7.0

7.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL94

THERMAL

Thermal Conductivity (W/m-K)

3.0

3.0

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W) 0.015 in.

2.05

1.94

1.86

1.79

1.72

Thermal Impedance (°C-in.

2

/W) 0.015 in.

(1)

0.53

0.40

0.32

0.28

0.26

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

68 

| Thermal Interface Selection Guide 

— SIL PAD

SIL PAD K-4

The Polyimide-Based Insulator

Features and Benefits

• 

 Thermal impedance: 0.48°C-in.

2

/W 

(@ 50 psi)

• 

Withstands high voltages

• 

High dielectric strength

• 

Very durable

SIL PAD K-4 uses a specially developed 
film which has high thermal conductivity, 
high dielectric strength and is very 
durable. SIL PAD K-4 combines the 
thermal transfer properties of well-known 
SIL PAD rubber with the physical 
properties of a film.

SIL PAD K-4 is a durable insulator that 
withstands high voltages and requires  
no thermal grease to transfer heat.  
SIL PAD K-4 is available in customized 
shapes and sizes.

Typical Applications Include:

• 

Power supplies

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SPK4 = SIL-PAD K4 Material

SPK4

0.006

00

11.512

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.006"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

11.512 = 11.5" x 12" sheets, 11.5/250 = 11.5" x 250-foot rolls,

or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD K-4

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey

Grey

Visual

Reinforcement Carrier

Polyimide

Polyimide

Thickness (in.) / (mm)

0.006

0.152

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

30

5

ASTM D1458

Elongation (%)

40

40

ASTM D412

Tensile Strength (psi) / (mPa)

5,000

34

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

6,000

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.0

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

12

10

12

ASTM D257

Flame Rating

VTM-O

VTM-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.9

0.9

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

3.66

3.43

3.13

2.74

2.42

Thermal Impedance (°C-in.

2

/W)

(1)

1.07

0.68

0.48

0.42

0.38

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— SIL PAD

 | 

69

 

SIL PAD K-6

Features and Benefits

• 

 Thermal impedance: 0.49°C-in.

2

/W 

(@ 50 psi)

• 

 Physically strong dielectric barrier 

against cut-through

• 

Medium performance film

SIL PAD K-6 is a medium performance, 
film-based thermally conductive insulator. 
The film is coated with a silicone 
elastomer to deliver high performance 
and provide a continuous, physically 
strong dielectric barrier against “cut-
through” and resultant assembly failures.

The Medium Performance Polyimide-Based Insulator

Typical Applications Include:

• 

Power supplies

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SPK6 = SIL-PAD K6 Material

SPK6

0.006

AC

11.512

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.006"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

11.512 = 11.5" x 12" sheets, 11.5/250 = 11.5" x 250-foot rolls,

or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD K-6

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Blue-green

Blue-green

Visual

Reinforcement Carrier

Polyimide

Polyimide

Thickness (in.) / (mm)

0.006

0.152

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

30

5

ASTM D1458

Elongation (%)

40

40

ASTM D412

Tensile Strength (psi) / (mPa)

5,000

34

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

6,000

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

4.0

4.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

12

10

12

ASTM D257

Flame Rating

VTM-O

VTM-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.1

1.1

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

3.24

3.03

2.76

2.45

2.24

Thermal Impedance (°C-in.

2

/W)

(1)

0.82

0.62

0.49

0.41

0.36

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

70 

| Thermal Interface Selection Guide 

— SIL PAD

SIL PAD K-10

   The High Performance Polyimide-Based Insulator

Features and Benefits

• 

 Thermal impedance: 0.41°C-in.

2

/W 

(@ 50 psi)

• 

 Tough dielectric barrier against 

cut-through

• 

High performance film

• 

Designed to replace ceramic insulators

SIL PAD K-10 is a high performance 
insulator. It combines special film with 
a filled silicone rubber. The result is a 
product with good cut-through properties 
and excellent thermal performance.

SIL PAD K-10 is designed to replace 
ceramic insulators such as Beryllium 
Oxide, Boron Nitride and Alumina. 
Ceramic insulators are expensive and 
they break easily. SIL PAD K-10 reduces 
breakage and costs less than ceramics.

Typical Applications Include:

• 

Power supplies

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

SPK10 = SIL-PAD K10 Material

SPK10

0.006

AC

11.512

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.006"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

11.512 = 11.5" x 12" sheets, 11.5/250 = 11.5" x 250-foot rolls,

or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF SIL PAD K-10

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Beige

Beige

Visual

Reinforcement Carrier

Polyimide

Polyimide

Thickness (in.) / (mm)

0.006

0.152

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

30

5

ASTM D1458

Elongation (%)

40

40

ASTM D412

Tensile Strength (psi) / (mPa)

5,000

34

ASTM D412

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

6,000

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

3.7

3.7

ASTM D150

Volume Resistivity (Ohmmeter)

10

12

10

12

ASTM D257

Flame Rating

VTM-O

VTM-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.3

1.3

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

2.35

2.19

2.01

1.87

1.76

Thermal Impedance (°C-in.

2

/W)

(1)

0.86

0.56

0.41

0.38

0.33

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

Q-PAD

 | 

71

 

Q-PAD II

Features and Benefits

• 

 Thermal impedance: 0.22°C-in.

2

/W 

(@ 50 psi)

• 

Maximum heat transfer

• 

Aluminum foil-coated both sides

• 

Designed to replace thermal grease

Q-PAD II is a composite of aluminum 
foil-coated on both sides with thermally/ 
electrically conductive SIL PAD rubber. 
The material is designed for those 
applications in which maximum heat 
transfer is needed and electrical isolation 
is not required. Q-PAD II is the ideal 
thermal interface material to replace 
messy thermal grease compounds.

Q-PAD II eliminates problems associated 
with grease such as contamination of 
reflow solder or cleaning operations. 
Unlike grease, Q-PAD II can be used  
prior to these operations. Q-PAD II  
also eliminates dust collection which  
can cause possible surface shorting  
or heat buildup.

Foil-Format Grease Replacement for Maximum Heat Transfer

Typical Applications Include:

• 

Between a transistor and a heat sink

• 

 Between two large surfaces such as an L-bracket and the chassis of an assembly

• 

Between a heat sink and a chassis

• 

 Under electrically isolated power modules or devices such as resistors,  

transformers and solid state relays

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

|| 

example

Section A

Section B

Section C

Section D

Section E

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

QII

0.006

AC

1212

NA

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

QII = Q-PAD II Material

Standard thicknesses available:  0.006"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

TYPICAL PROPERTIES OF Q-PAD II

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Reinforcement Carrier

Aluminum

Aluminum

Thickness (in.) / (mm)

0.006

0.152

ASTM D374

Hardness (Shore A)

93

93

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

Non-Insulating

Non-Insulating

ASTM D149

Dielectric Constant (1,000 Hz)

N/A

N/A

ASTM D150

Volume Resistivity (Ohmmeter)

10

2

10

2

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

2.5

2.5

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

2.44

1.73

1.23

1.05

0.92

Thermal Impedance (°C-in.

2

/W)

(1)

0.52

0.30

0.22

0.15

0.12

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

72 

| Thermal Interface Selection Guide 

Q-PAD

Q-PAD 3

Glass-Reinforced Grease Replacement Thermal Interface

Features and Benefits

• 

 Thermal impedance: 0.35°C-in.

2

/W 

(@ 50 psi)

• 

Does away with processing constraints 

typically associated with grease

• 

Conforms to surface textures

• 

Easy handling

• 

 May be installed prior to soldering and 

cleaning with confidence

BERGQUIST Q-PAD 3 is a grease-only 
replacement that does away with 
contamination of electronic assemblies 
and reflow solder baths. Q-PAD 3 may be 
installed prior to soldering and cleaning 
with confidence. When clamped between 
two surfaces, the elastomer conforms 
to surface textures, thereby creating 
an air-free interface between heat-
generating components and heat sinks.

Fiberglass reinforcement enables  
Q-PAD 3 to withstand processing  
stresses without losing physical  
integrity. It also provides ease of  
handling during application.

Typical Applications Include:

• 

Between a transistor and a heat sink

• 

Between two large surfaces such as an L-bracket and the chassis of an assembly

• 

Between a heat sink and a chassis

• 

 Under electrically isolated power modules or devices such as resistors, transformers 

and solid state relays

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

Q3 = Q-PAD 3 Material

Q3

0.005

AC

12/250

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.005"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF Q-PAD 3

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.005

0.127

ASTM D374

Hardness (Shore A)

86

86

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

Non-Insulating

Non-Insulating

ASTM D149

Dielectric Constant (1,000 Hz)

N/A

N/A

ASTM D150

Volume Resistivity (Ohmmeter)

10

2

10

2

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

2.0

2.0

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

2.26

1.99

1.76

1.53

1.30

Thermal Impedance (°C-in.

2

/W)

(1)

0.65

0.48

0.35

0.24

0.16

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

Q-PAD

 | 

73

 

POLY-PAD 400

Polyester-Based, Thermally Conductive Insulation Material

Features and Benefits

• 

 Thermal impedance: 1.13°C-in.

2

/W 

(@ 50 psi)

• 

Polyester-based

• 

 For applications requiring conformal 

coatings

• 

 Designed for silicone-sensitive standard 

applications

POLY-PAD 400 is a fiberglass-reinforced 
insulator coated with a filled polyester 
resin. POLY-PAD 400 is economical and 
designed for most standard applications.

Polyester-based, thermally conductive 
BERGQUIST insulators provide a complete 
family of materials for silicone-sensitive 
applications. POLY-PADs are ideally suited 
for applications requiring conformal 
coatings or applications where silicone
 contamination is a concern (telecomm 
and certain aerospace applications). 
POLY-PADs are constructed with 
ceramic-filled polyester resins coating 
either side of a fiberglass carrier 
or a film carrier. The POLY-PAD 
family offers a complete range of 
performance characteristics to match 
individual applications.

Typical Applications Include:

• 

Power supplies

• 

Automotive electronics

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

• 

  We produce thousands of specials. Tooling charges vary depending on tolerances  

and the complexity of the part.

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

PP400 = POLY-PAD 400 Material

PP400

0.009

00

1212

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.009"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF POLY-PAD 400

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Tan

Tan

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.009

0.229

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Breaking Strength (lbs./in.)/(kN/m)

100

18

ASTM D1458

Elongation(% at 45° to Warp and Fill)

10

10

ASTM D412

Tensile Strength (psi) / (mPa)

7,000

48

ASTM D412

Continuous Use Temp. (°F) / (°C)

-4 to 302

-20 to 150

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

2,500

2,500

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

THERMAL

Thermal Conductivity (W/m-K)

0.9

0.9

ASTM D5470

Flame Rating

V-O

V-O

UL  94

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

5.85

5.61

5.13

4.59

4.12

Thermal Impedance (°C-in.

2

/W)

(1)

1.62

1.35

1.13

0.86

0.61

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

74 

| Thermal Interface Selection Guide 

Q-PAD

POLY-PAD 1000

Polyester-Based, Thermally Conductive Insulation Material

Features and Benefits

• 

 Thermal impedance: 0.82°C-in.

2

/W 

(@ 50 psi)

• 

Polyester-based

• 

 For applications requiring non-silicone 

conformal coatings

• 

 Designed for silicone-sensitive 

applications requiring high 

performance

POLY-PAD 1000 is a fiberglass-
reinforced insulator coated with a filled 
polyester resin. The material offers 
exceptional thermal resistance for high 
performance applications.

BERGQUIST polyester-based, thermally 
conductive insulators provide a complete 
family of materials for silicone-sensitive 
applications. POLY-PADs are ideally  
suited for applications requiring 
conformal coatings or applications  
where silicone contamination is a  
concern (telecom and certain  
aerospace applications). POLY-PADs 
are constructed with ceramic-filled 
polyester resins coating either side of 
a fiberglass carrier or a film carrier. The 
POLY-PAD family offers a complete range 
of performance characteristics to match 
individual applications.

Typical Applications Include:

• 

Power supplies

• 

Automotive electronics

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

PP1000 = POLY-PAD 1000 Material

PP1000

0.009

00

1212

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.009"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

1212 = 12" x 12" sheets, 12/250 = 12" x 250-foot rolls, or

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF POLY-PAD 1000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Yellow

Yellow

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.009

0.229

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

100

18

ASTM D1458

Elongation (%)

10

10

ASTM D412

Tensile Strength (psi) / (mPa)

7,000

48

ASTM D412

Continuous Use Temp. (°F) / (°C)

-4 to 302

-20 to 150

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

2,500

2,500

ASTM D149

Dielectric Constant (1,000 Hz)

4.5

4.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

THERMAL

Thermal Conductivity (W/m-K)

1.2

1.2

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

4.70

4.25

3.74

3.27

2.89

Thermal Impedance (°C-in.

2

/W)

(1)

1.30

1.02

0.82

0.61

0.43

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

Q-PAD

 | 

75

 

POLY-PAD K-4

Features and Benefits

• 

 Thermal impedance: 0.95°C-in.

2

/W 

(@ 50 psi)

• 

Polyester-based

• 

 For applications requiring non-silicone 

conformal coatings

• 

Designed for silicone-sensitive 

applications

• 

Excellent dielectric and 

physical strength

POLY-PAD K-4 is a composite of film 
coated with a polyester resin. The 
material is an economical insulator 
and the film carrier provides excellent 
dielectric and physical strength.

BERGQUIST polyester-based, thermally 
conductive insulators provide a complete 
family of materials for silicone-sensitive 
applications. POLY-PADs are ideally  
suited for applications requiring 
conformal coatings or applications  
where silicone contamination is a  
concern (telecom and certain  
aerospace applications). POLY-PADs are 
constructed with ceramic-filled  
polyester resins coating either side of a 
fiberglass carrier or a film carrier. The  
POLY-PAD family offers a complete range 
of performance characteristics to match 
individual applications.

Polyester-Based, Thermally Conductive Insulation Material

Typical Applications Include:

• 

Power supplies

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

PPK4 = POLY-PAD K-4 Material

PPK4

0.006

00

11.512

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.006"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

11.512 = 11.5" x 12" sheets, 11.5/250 = 11.5" x 250-foot rolls,

or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF POLY-PAD K-4

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Tan

Tan

Visual

Reinforcement Carrier

Polyimide

Polyimide

Thickness (in.) / (mm)

0.006

0.152

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

30

5

ASTM D1458

Elongation (%)

40

40

ASTM D412

Tensile Strength (psi) / (mPa)

5,000

34

ASTM D412

Continuous Use Temp. (°F) / (°C)

-4 to 302

-20 to 150

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

6,000

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.0

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

12

10

12

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.9

0.9

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

5.64

5.04

4.34

3.69

3.12

Thermal Impedance (°C-in.

2

/W)

(1)

1.55

1.21

0.95

0.70

0.46

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

76 

| Thermal Interface Selection Guide 

Q-PAD

POLY-PAD K-10

Polyester-Based, Thermally Conductive Insulation Material

Features and Benefits

• 

 Thermal impedance: 0.60°C-in.

2

/W 

(@ 50 psi)

• 

Polyester-based

• 

 For applications requiring non-silicone 

conformal coatings

• 

Designed for silicone-sensitive 

applications

• 

 Excellent dielectric strength and 

thermal performance

POLY-PAD K-10 is a composite of film 
coated with a polyester resin. The 
material offers exceptional thermal 
performance for your most critical 
applications with a thermal resistance of 
0.2°C-in.

2

/W as well as excellent dielectric 

strength.

BERGQUIST polyester-based, thermally 
conductive insulators provide a complete 
family of materials for silicone-sensitive 
applications. POLY-PADs are ideally  
suited for applications requiring 
conformal coatings or applications 
where silicone contamination is a 
concern (telecom and certain aerospace 
applications). POLY-PADs are constructed 
with ceramic-filled polyester resins 
coating either side of a fiberglass 
carrier or a film carrier. The POLY-
PAD family offers a complete range of 
performance characteristics to match 
individual applications.

Typical Applications Include:

• 

Power supplies

• 

Motor controls

• 

Power semiconductors

Configurations Available:

• 

Sheet form, die-cut parts and roll form

• 

With or without pressure sensitive adhesive

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

PPK10 = POLY-PAD K-10 Material

PPK10

0.006

AC

11.512

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.006"

AC = Adhesive, one side

00 = No adhesive

_ _ _ = Standard configuration dash number, 

11.512 = 11.5" x 12" sheets, 11.5/250 = 11.5" x 250-foot rolls,

or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF POLY-PAD K-10

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Yellow

Yellow

Visual

Reinforcement Carrier

Polyimide

Polyimide

Thickness (in.) / (mm)

0.006

0.152

ASTM D374

Hardness (Shore A)

90

90

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

30

5

ASTM D1458

Elongation (%)

40

40

ASTM D412

Tensile Strength (psi) / (mPa)

5,000

34

ASTM D412

Continuous Use Temp. (°F) / (°C)

-4 to 302

-20 to 150

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

6,000

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

3.7

3.7

ASTM D150

Volume Resistivity (Ohmmeter)

10

12

10

12

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.3

1.3

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Pressure (psi)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

3.76

3.35

2.75

2.30

2.03

Thermal Impedance (°C-in.

2

/W)

(1)

1.04

0.80

0.60

0.43

0.30

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

SIL PAD Tubes

 | 

77

 

SIL PAD Tubes

Features and Benefits

• 

 Thermal conductivity: SPT 400 – 0.9 

W/m-K SPT 1000 – 1.2 W/m-K

• 

For clip-mounted plastic 

power packages

SPT 400 and SPT 1000 (SIL PAD Tubes) 
provide thermally conductive insulation 
for clip-mounted plastic power packages. 
SIL PAD Tubes are made of silicone rubber 
with high thermal conductivity.

SIL PAD Tube 1000 is best suited for 
higher thermal performance.  
SIL PAD Tube 400 is ideal for applications 
requiring average thermal conductivity 
and economy.

SIL PAD Tube 400 and SIL PAD Tube 1000 
are designed to meet VDE, UL and TUV 
agency requirements.

Typical Applications 
Include:

• 

Clip-mounted power semiconductors

• 

TO-220, TO-218, TO-247 and TO-3P

Configurations Available:

• 

TO-220, TO-218, TO-247 and TO-3P

Silicone-Based, Thermally Conductive Tubes

Standard Dimensions

A = Wall Thickness: .305 mm (.012 in.) + .10 mm/ -0.0 mm (+.004 in. / -0.0 in.)
B = Inner Diameter: 11 mm (.433 in.) or 13.5 mm (.532 in.) ± 1.0 mm (± .039 in.)
C = Length: 25 mm (.985 in.) or 30 mm (1.18 in.) +3.18 mm / -0.0 mm 
(+ .125 in. / - 0.0 in.)

Special lengths are available. For more information, contact a Henkel Sales 
Representative.

Ordering Procedure:

Sample:   SPT 400 ___ - ___ - ___ 

“A” – “B” – “C”

A

B

C

TYPICAL PROPERTIES OF SIL PAD TUBE 400

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Grey/Green

Grey/Green

Visual

Thickness / Wall (in.) / (mm)

0.012

0.305

ASTM D374

Hardness (Shore A)

80

80

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

6

1

ASTM D1458

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

5,000

5,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.9

0.9

ASTM D5470

Thermal Impedance (°C-in.

2

/W)

(1)

0.6

0.6

ASTM D5470

TYPICAL PROPERTIES OF SIL PAD TUBE 1000

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Brown

Brown

Visual

Thickness / Wall (in.) / (mm)

0.012

0.30

ASTM D374

Hardness (Shore A)

80

80

ASTM D2240

Breaking Strength (lbs./in.) / (kN/m)

6

1

ASTM D1458

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ELECTRICAL

Dielectric Breakdown Voltage (Vac.)

5,000

5,000

ASTM D149

Dielectric Constant (1,000 Hz)

4.5

4.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

1.2

1.2

ASTM D5470

Thermal Impedance (°C-in.

2

/W)

(1)

0.4

0.4

ASTM D5470

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

78 

| Thermal Interface Selection Guide 

— BOND-PLY

BOND-PLY and LIQUI-BOND Adhesives

BOND-PLY Adhesive Tapes

Available in a pressure sensitive adhesive or laminating format, 
the BOND-PLY family of materials is thermally conductive 
and electrically isolating. BOND-PLY facilitates the decoupling 
of bonded materials with mismatched thermal coefficients 
of expansion.

Typical BOND-PLY Applications

Features

• 

High performance, thermally conductive, pressure 

sensitive adhesive

• 

Material immediately bonds to the target surface

• 

 Bond strength increases over time when repeatedly exposed to 

high continuous-use temperatures

Benefits

• 

Provides an excellent dielectric barrier

• 

 Excellent wet-out to most types of component surfaces 

including plastic

• 

 BOND-PLY 400 is unreinforced to increase conformance and 

wet-out on low surface energy materials

• 

Eliminates need for screws, clip mounts or fasteners

Options

• 

Supplied in sheet, die-cut, roll and tabulated forms

• 

Available in thickness range of 3 to 11 mil

• 

Custom coated thickness

Applications

• 

Attach a heat sink to a graphics processing unit

• 

Attach a heat spreader to a motor control PCB

• 

Attach a heat sink to a power converter PCB

• 

Attach a heat sink to a drive processor

LIQUI-BOND Liquid Adhesives

BERGQUIST LIQUI-BOND liquid adhesives are high performance, 
thermally conductive, liquid adhesive materials. These form-
in-place elastomers are ideal for coupling “hot” electronic 
components mounted on PC boards with an  
adjacent metal case or heat sink.

Typical LIQUI-BOND Applications

Features

• 

 Excellent low and high temperature mechanical and 

chemical stability 

Benefits

Before cure, LIQUI-BOND flows under pressure like a grease. 
After cure, it bonds the components, eliminating the need for 
mechanical fasteners. Additional benefits include:

• 

Low modulus provides stress-absorbing flexibility

• 

 Supplied as a one-part material with an elevated temperature 

curing system

• 

 Offers infinite thickness with little or no stress 

during displacement

• 

 Eliminates need for specific pad thickness and die-cut shapes 

for individual applications

Options

The growing LIQUI-BOND family offers a variety of choices to 
meet the customer’s performance, handling and process needs.

Applications

LIQUI-BOND products are intended for use in thermal interface 
applications where a structural bond is a requirement. This 
material is formulated for high cohesive and adhesive strength 
and cures to a low modulus. Typical applications include:

• 

Automotive electronics 

• 

Telecommunications 

• 

Computer and peripherals 

• 

 Between any heat-generating semiconductor and a heat sink

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— BOND-PLY

 | 

79

 

Frequently Asked Questions

Q:   What is the primary difference between the  

BOND-PLY 660B and BOND-PLY 100 products?

A: 

 BOND-PLY 660B uses a dielectric film, replacing the 
fiberglass inherent in our BOND-PLY 100 series products. The 
addition of the film allows for high dielectric performance 
without additional product thickness.

Q:   How should I size my interface dimensions  

for BOND-PLY?

A: 

 BOND-PLY product testing has been completed on various 
interface materials. These tests have demonstrated that 
improper surface wet-out is the single largest variable 
associated with maximizing bond strength and heat transfer. 
We have found that reducing the size of the interface pad 
to roughly 80% of the total interface area actually improves 
the overall bonding performance while offering significant 
improvements in total package cooling. Henkel offers three 
standard thicknesses for BOND-PLY 100, allowing each 
application to be optimized in three dimensions.

Q:   What application pressure is required to optimize bond 

strength with BOND-PLY?

A: 

 The answer to this varies from application to application, 
depending upon surface roughness and flatness. In 
general, pressure, temperature and time are the primary 

variables associated with increasing surface contact or wet-
out. Increasing the application time and/or pressure will 
significantly increase surface contact. Natural wet-out will 
continue to occur with BOND-PLY materials. This inherent 
action often increases bond strength by more than two times 
within the first 24 hours.

Q: Will BOND-PLY adhere to plastic packages?
A: 

 Adhesive performance on plastic packages is primarily 
a function of surface contact or wet-out. If surface 
contaminants such as plastic mold release oils are present, 
this will prevent contact and/or bonding to the surface. Make 
sure all surfaces are clean and dry prior to applying BOND-
PLY materials.

Q:   How are one-part LIQUI-BOND adhesives cured?
A: 

 One-part  LIQUI-BOND requires heat to cure and bond in the 
application. Altering the bond line temperature and time 
can control the cure schedule. Component fixturing may be 
required to maintain placement through cure.

BOND-PLY Comparison Data

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0

50

100

150

200

BOND-PLY 800 (0.008”)

BOND-PLY 800 (0.005”)

BOND-PLY 400

LIQUI-BOND SA 1000
LIQUI-BOND SA 1800
LIQUI-BOND SA 2000
LIQUI-BOND SA 3505

BOND-PLY 660P

BOND-PLY 100 (0.011”)

Thermal P

erformance (°C/

W)

Cur

e Time (

Minutes

)

0

10

20

35

40

55

60

100

125

150

BOND-PLY Thermal Performance

LIQUI-BOND Cure Schedule

Interface Pressure (psi)

Interface Temperature (°C)

TIM SG_0115_WEB-html.html
background image

80 

| Thermal Interface Selection Guide 

— BOND-PLY

BOND-PLY 100

Thermally Conductive, Fiberglass-Reinforced Pressure Sensitive Adhesive Tape

Features and Benefits

• 

 Thermal impedance: 0.52°C-in.

2

/W 

(@ 50 psi)

• 

High bond strength to a variety 

of surfaces

• 

 Double-sided, pressure sensitive 

adhesive tape

• 

 High performance, thermally 

conductive acrylic adhesive

• 

 Can be used instead of heat-cure 

adhesive, screw mounting or 

clip mounting

Typical Applications Include:

• 

 Mount heat sink onto BGA graphic 

processor or drive processor

• 

 Mount heat spreader onto power 

converter PCB or onto motor control PCB

Configurations Available:

• 

Sheet form, roll form and die-cut parts

Shelf Life: The double-sided, pressure 
sensitive adhesive used in BOND-PLY 
products requires the use of dual liners to 
protect the surfaces from contaminants. 
Henkel recommends a 6-month shelf 
life at a maximum continuous storage 
temperature of 35°C or 3-month shelf 
life at a maximum continuous storage 
temperature of 45°C, for maintenance of 
controlled adhesion to the liner. The shelf 
life of the BOND-PLY material, without 
consideration of liner adhesion (which 
is often not critical for manual assembly 
processing), is recommended at 12 months 
from date of manufacture at a maximum 
continuous storage temperature of 60°C.

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

BP100 = BOND-PLY 100 Material

BP100

0.008

00

1112

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.005", 0.008", 0.011"

00 = No adhesive

1112 = 11" x 12" sheets, 11250 = 11" x 250-foot rolls

or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF BOND-PLY 100

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

White

White

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.005, 0.008, 0.011

0.127, 0.203, 0.279

ASTM D374

Temp. Resistance, 30 sec. (°F) / (°C)

392

200

Elongation (% 45° to Warp & Fill)

70

70

ASTM D412

Tensile Strength (psi) / (mPa)

900

6

ASTM D412

CTE (ppm)

325

325

ASTM D3386

Glass Transition (°F) / (°C)

-22

-30

ASTM D1356

Continuous Use Temp. (°F) / (°C)

-22 to 248

-30 to 120

ADHESION

Lap Shear @ RT (psi) / (mPa)

100

0.7

ASTM D1002

Lap Shear after 5 hrs. @ 100°C

200

1.4

ASTM D1002

Lap Shear after 2 mins. @ 200°C

200

1.4

ASTM D1002

Static Dead Weight Shear (°F) / (°C)

302

150

PSTC#7

ELECTRICAL

VALUE

TEST METHOD

Dielectric Breakdown Voltage - 0.005 in. (Vac.)

3,000

ASTM D149

Dielectric Breakdown Voltage - 0.008 in. (Vac.)

6,000

ASTM D149

Dielectric Breakdown Voltage - 0.011 in. (Vac.)

8,500

ASTM D149

Flame Rating

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.8

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Initial Assembly Pressure (psi for 5 seconds)

10

25

50

100

200

TO-220 Thermal Performance (°C/W) 0.005 in.

5.17

4.87

4.49

4.18

4.10

TO-220 Thermal Performance (°C/W) 0.008 in.

5.40

5.35

5.28

5.22

5.20

TO-220 Thermal Performance (°C/W) 0.011 in.

6.59

6.51

6.51

6.50

6.40

Thermal Impedance (°C-in.

2

/W) 0.005 in.

(1)

0.56

0.54

0.52

0.50

0.50

Thermal Impedance (°C-in.

2

/W) 0.008 in.

(1)

0.82

0.80

0.78

0.77

0.75

Thermal Impedance (°C-in.

2

/W) 0.011 in.

(1)

1.03

1.02

1.01

1.00

0.99

1)    The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— BOND-PLY

 | 

81

 

BOND-PLY 400

Features and Benefits

• 

 Thermal impedance: 0.87°C-in.

2

/W 

(@ 50 psi)

• 

Easy application

• 

 Eliminates need for external hardware 

(screws, clips, etc.)

• 

Available with easy release tabs

BERGQUIST BOND-PLY 400 is an 
unreinforced, thermally conductive, 
pressure sensitive adhesive tape. The 
tape is supplied with protective topside 
tabs and a carrier liner. BOND-PLY 400 is 
designed to attain high bond strength to a 
variety of “low energy” surfaces, including 
many plastics, while maintaining high 
bond strength with long-term exposure to 
heat and high humidity.

Typical Applications Include:

Secure:

• 

Heat sink onto BGA graphic processor

• 

Heat sink to computer processor

• 

Heat sink onto drive processor

• 

Heat spreader onto power 

converter PCB 

• 

Heat spreader onto motor control PCB

Configurations Available:

• 

 Die-cut parts (supplied on rolls with 

easy release, protective tabs)

Thermally Conductive, Unreinforced, Pressure Sensitive Adhesive Tape

Shelf Life:

  The double-sided pressure sensitive adhesive used in BOND-PLY products 

requires the use of dual liners to protect the surfaces from contaminants. Henkel 
recommends a 6-month shelf life at a maximum continuous storage temperature of 
35°C, or 3-month shelf life at a maximum continuous storage temperature of 45°C, 
for maintenance of controlled adhesion to the liner. The shelf life of the BOND-PLY 
material, without consideration of liner adhesion (which is often not critical for manual 
assembly processing), is recommended at 12 months from date of manufacture at a 
maximum continuous storage temperature of 60°C.

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

BP400 = BOND-PLY 400 Material

BP400

0.005

00

11/250

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.005", 0.010"

00 = No adhesive

11/250 = 11" x 250-foot rolls or 00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF BOND-PLY 400

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

White

White

Visual

Thickness (in.) / (mm)

0.005 to 0.010

0.127 to 0.254

ASTM D374

Glass Transition (°F) / (°C)

-22

-30

ASTM E1356

Continuous Use Temp. (°F) / (°C)

-22 to 248

-30 to 120

ADHESION

Lap Shear @ RT (psi) / (mPa)

100

0.7

ASTM D1002

Lap Shear after 5 hrs. @ 100°C

200

1.4

ASTM D1002

Lap Shear after 2 mins. @ 200°C

200

1.4

ASTM D1002

ELECTRICAL

VALUE

TEST METHOD

Dielectric Breakdown Voltage (Vac.)

3,000

ASTM D149

Flame Rating

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.4

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Initial Assembly Pressure (psi for 5 seconds)

10

25

50

100

200

TO-220 Thermal Performance (°C/W) 0.005 in.

5.4

5.4

5.4

5.4

5.4

Thermal Impedance (°C-in.

2

/W)

(1)

0.87

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

82 

| Thermal Interface Selection Guide 

— BOND-PLY

BOND-PLY 660P

Features and Benefits

• 

Thermal impedance: 

0.87°C-in.

2

/W (@ 50 psi)

• 

Highly puncture-resistant polyimide 

reinforcement carrier

• 

Double-sided pressure sensitive 

adhesive tape

• 

Provides a mechanical bond, 

eliminating the need for mechanical 

fasteners or screws

BOND-PLY 660P is a thermally 
conductive, electrically insulating, double-
sided pressure sensitive adhesive tape. 
The tape consists of a high performance, 
thermally conductive acrylic adhesive 
coated on both sides of a polyimide film. 
Use BOND-PLY 660P in applications to 
replace mechanical fasteners or screws. 

Typical Applications Include:

• 

Heat sink onto BGA graphic processor

• 

Heat sink onto drive processor

• 

Heat spreader onto power 

converter PCB 

• 

Heat spreader onto motor control PCB

Configurations Available:

• 

Roll form and die-cut parts

The material as delivered will 
include a continuous base liner with 
differential release properties to allow 
for simplicity in roll packaging and 
application assembly.

Thermally Conductive, Film Reinforced, Pressure Sensitive Adhesive Tape

Shelf Life:

  The double-sided pressure sensitive adhesive used in BOND-PLY products 

requires the use of dual liners to protect the surfaces from contaminants. Henkel 
recommends a 6-month shelf life at a maximum continuous storage temperature of 
35°C, or 3-month shelf life at a maximum continuous storage temperature of 45°C, 
for maintenance of controlled adhesion to the liner. The shelf life of the BOND-PLY 
material, without consideration of liner adhesion (which is often not critical for manual 
assembly processing), is recommended at 12 months from date of manufacture at a 
maximum continuous storage temperature of 60°C.

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

BP660P = BOND-PLY 660P Material

BP660P

0.008

00

12/250

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.008"

00 = No adhesive

1212 = 12" x 12" Sheets, 12/250 = 12" x 250' rolls or 

00 = custom configuration

|| 

example

TYPICAL PROPERTIES OF BOND-PLY 660P

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Light Brown

Light Brown

Visual

Reinforcement Carrier

Polyimide Film

Polyimide Film

Thickness (in.) / (mm)

0.008

0.203

ASTM D374

 Glass Transition (°F) / (°C)

-22

-30

ASTM E1356

Continuous Use Temp. (°F) / (°C)

-22 to 248

-30 to 120

ADHESION

Lap Shear @ RT (psi) / (mPa)

100

0.7

ASTM D1002

Lap Shear after 5 hrs. @ 100°C

200

1.4

ASTM D1002

Lap Shear after 2 mins. @ 200°C

200

1.4

ASTM D1002

ELECTRICAL

VALUE

TEST METHOD

Dielectric Breakdown Voltage (VAC)

6,000

ASTM D149

Flame Rating

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.4

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Initial Assembly Pressure (psi for 5 seconds)

10

25

50

100

200

TO-220 Thermal Performance (°C/W)

5.48

5.47

5.15

5.05

5.00

Thermal Impedance (°C-in.

2

/W)

(1)

0.83

0.82

0.81

0.80

0.79

1)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— BOND-PLY

 | 

83

 

BOND-PLY 800

Thermally Conductive, Fiberglass-Reinforced Pressure Sensitive Adhesive Tape

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

BP800 = BOND-PLY 800 Material

BP800

0.005

00

1212

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.005", 0.008"

00 = Standard double-sided adhesive

1212 = 12" x 12" sheets,12250 = 12" x 250' rolls

or 00 = custom configuration

|| 

example

Features and Benefits

• 

Thermal impedance:  

0.60°C-in.

2

/W (@ 50 psi)

• 

High bond strength to most epoxies  

and metals

• 

Double-sided, pressure sensitive 

adhesive tape

• 

High performance, thermally 

conductive acrylic adhesive

• 

More cost-effective than heat-

cure adhesive, screw mounting or 

clip mounting

BOND-PLY 800 is a thermally conductive, 
electrically isolating double-sided tape.

BOND-PLY 800 is used in lighting 
applications that require thermal transfer 
and electric isolation. High bond strengths 
obtained at ambient temperature lead 
to significant processing cost savings in 
labor, materials and throughput due to 
the elimination of mechanical fasteners 
and high temperature curing.

Typical Applications 
Include:

• 

Mount LED assembly to troffer housing

• 

Mount LED assembly to heat sink

• 

Mount heat spreader onto power 

converter PCB or onto motor 

control PCB

• 

Mount heat sink to BGA graphic 

processor or drive processor

Configurations Available:

• 

Sheet form, roll form and die-cut parts

TYPICAL PROPERTIES OF BOND-PLY 800

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Gray

Gray

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.005, 0.008

0.127, 0.203

ASTM D374

Elongation (%, 45° to Warp & Fill)

70

70

ASTM D412

Tensile Strength (psi) / (mPa)

1,500

10

ASTM D412

CTE (um/m-°C), -40°C to +125°C

600

600

ASTM D3386

Continuous Use Temp. (°F) / (°C)

-40 to 257

-40 to 125

ADHESION

Lap Shear @ RT (psi) / (mPa)

(1)

150

1.0

ASTM D1002

ELECTRICAL

VALUE

TEST METHOD

Dielectric Breakdown Voltage (Vac.), 0.005 

4,000

ASTM D149

Dielectric Breakdown Voltage (Vac.), 0.008 

6,000

ASTM D149

Dielectric Constant (1,000 Hz)

4.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

ASTM D257

Flame Rating

V-O

UL 94

THERMAL

Thermal Conductivity (W/m-K)

0.8

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Initial Assembly Pressure (psi for 5 seconds)

10

25

50

100

200

TO-220 Thermal Performance (°C/W), 0.005 

5.0

5.0

4.8

4.3

4.2

TO-220 Thermal Performance (°C/W), 0.008 

6.2

6.0

5.6

5.3

5.2

Thermal Impedance (°C-in.

2

/W), 0.005

(2)

0.63

0.62

0.60

0.58

0.57

Thermal Impedance (°C-n.

2

/W), 0.008

(2)

0.78

0.74

0.72

0.71

0.71

1)  Tested per ASTM D1002 with aluminum lap shear samples, 75 psi applied for 5 seconds then pressure removed. 0.5 square inch Bond-Ply 800 sample.
2)   The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual 

application performance is directly related to the surface roughness, flatness and pressure applied.

TIM SG_0115_WEB-html.html
background image

84 

| Thermal Interface Selection Guide 

— BOND-PLY

BOND-PLY LMS 500P

Features and Benefits

• 

Polyimide film provides high 

dielectric strength

• 

Intended for secondary and primary 

voltage power applications

• 

Reliable lap shear strength at 

temperature extremes

• 

Quick cure rate

• 

Excellent CTE and shock /  

vibration absorption

BOND-PLY LMS 500P is a thermally 
conductive laminate with a polyimide 
film substrate. The product consists of a 
high performance thermally conductive 
low modulus silicone compound coated 
both sides of a polyimide film, and 
double lined with protective films. The 
low modulus silicone design effectively 
absorbs mechanical stresses induced by 
assembly-level CTE mismatch and shock 
and vibration while providing exceptional 
thermal performance and long-term 
adhesion and dielectric integrity.  
BOND-PLY LMS 500P is typically used for 
bonding power components and PCBs 
to a heat sink. See application note for 
lamination recommendations.

Thermally Conductive, Polyimide-Reinforced, Laminate Material – Silicone

Typical Applications Include:

• 

Discrete semiconductor packages bonded to heat spreader or heat sink

Configurations Available:

• 

Roll form

• 

Die-cut parts

• 

Sheet form

Shelf Life: The BOND-PLY LMS 500P is a heat-cured material and should be stored 
in temperature-controlled conditions. A recommended storage temperature range of 
5-25°C should be used to maintain optimum characteristics for 5 months.

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

BPLMS500P = BOND-PLY LMS500P Material

BPLMS500P

0.008

00

12/100

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.008"

00 = No adhesive

1212 = 12" x 12" Sheets, 12/100 = 12" x 100' rolls 

|| 

example

TYPICAL PROPERTIES OF BOND-PLY LMS 500P

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Orange

Orange

Visual

Reinforcement Carrier

Polyimide Film

Polyimide Film

Thickness (in.) / (mm)

0.008

0.203

ASTM D374

ADHESION

Lap Shear @ RT (psi) / (mPa)

(1)

200

1.4

ASTM D1002

ELECTRICAL

VALUE

TEST METHOD

Dielectric Breakdown Voltage (Vac.)

(2)

6,000

ASTM D149

Flame Rating

V-O

UL 94

THERMAL

Bulk Thermal Conductivity of Resin (W/m-K)

0.7

ASTM D5470

THERMAL PERFORMANCE VS. PRESSURE

Lamination Pressure (psi)

25

75

TO-220 Thermal Performance (°C/W)

(3)

3.5

2.8

1)   Laminates at 75 psi, cured at 160°C for 6 minutes. Lap Shear tested at 25°C. 
2)   The ASTM D149 test method was completed on cured BOND-PLY LMS 500P material. No pressure was applied to the product during the cure cycle. Actual 

application dielectric performance will vary with primary dependence on consistent material handling of Bond-Ply LMS 500P in the pre-cured or “green” 
state and applied pressure and dwell time during the lamination process.

3)   TO-220 Thermal Performance testing, per the BERGQUIST RD2010 specification for Laminates, was completed on pre-laminated TO-220 assemblies. 

Lamination was completed at the pressure levels referenced above. Actual pressure during performance testing was limited to the inherent weight 
distribution of the TO-220 component. No additional pressure was applied.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— BOND-PLY

 | 

85

 

BOND-PLY LMS-HD

Features and Benefits

• 

TO-220 thermal performance: 2.3°C/W, 

initial pressure only lamination

• 

Exceptional dielectric strength

• 

Very low interfacial resistance

• 

200 psi adhesion strength

• 

Continuous use of -60 to 180°C

• 

Eliminates mechanical fasteners

BOND-PLY LMS-HD is a thermally 
conductive heat curable laminate 
material. The product consists of a high 
performance thermally conductive low 
modulus silicone compound coated 
on a cured core, and double lined with 
protective films. The low modulus silicone 
design effectively absorbs mechanical 
stresses induced by assembly-level 
CTE mismatch, shock and vibration 
while providing exceptional thermal 
performance (vs. PSA technologies) and 
long-term integrity. BOND-PLY LMS-HD 
will typically be used for structurally 
adhering power components and PCBs to 
a heat sink.

Liner

Liner

Uncured 

Silicone 

Dispersion

Fiberglass

Note: Not to scale

Cured Core

Overall 

Thickness 

10 or 12 mil

Typical Applications Include:

• 

Discrete semiconductor packages 

bonded to heat spreader or heat sink

Laminate Material – Silicone, High Durability, Optional Lamination Methods 

Configurations Available:

• 

Roll form

• 

Die-cut parts

• 

Sheet form

Shelf Life:

  BOND-PLY LMS-HD is a heat-cured material and should be stored in 

temperature controlled conditions. The recommended storage temperature range of 
5-25°C should be used to maintain optimum characteristics for a 5-month shelf life.

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

BPLMSHD = BOND-PLY LMS-HD Material

BPLMSHD

0.010

00

12/100

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

Standard thicknesses available:  0.010", 0.012"

00 = No adhesive

1212 = 12" x 12" Sheets, 12/100 = 12" x 100' rolls 

|| 

example

TYPICAL PROPERTIES OF BOND-PLY LMS-HD

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Yellow

Yellow

Visual

Reinforcement Carrier

Fiberglass

Fiberglass

Thickness (in.) / (mm)

0.010, 0.012

0.254, 0.305

ASTM D374

Continuous Use Temp. (°F) / (°C)

-76 to 356

-60 to 180

ADHESION

Lap Shear @ RT (psi) / (mPa)

200

1.4

ASTM D1002

ELECTRICAL

VALUE

TEST METHOD

Breakdown Voltage, Sheet (Vac.)

(1)

5,000

ASTM D149

Breakdown Voltage, Laminated (Vac.)

(2)

4,000

ASTM D149

Dielectric Constant (1,000 Hz) 

5.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

ASTM D257

Flame Rating

V-O

UL  94

THERMAL

Post-Cured Thermal Conductivity (W/m-K)

(3)

1.4

ASTM D5470

THERMAL IMPEDANCE VS. LAMINATION METHOD

Lamination Pressure (75 psi)

(4)

Constant

IPO

TO-220 Thermal Performance (°C/W)

2.1

2.3

CURE SCHEDULE

Cure @ 125°C (mins.)

(5)

30

30

Cure @ 160°C (mins.)

(5)

6

6

1)   The ASTM D149 test method on cured LMS-HD material. No pressure was applied to the LMS-HD during the cure cycle. 
2)   A 1/2 in. diameter probe was laminated with LMS-HD to a 2 in. X 2 in. plate at 200 psi for 30 seconds, then cured with no pressure at 160°C for 6 minutes. 

The cured assembly was then tested per ASTM D149. This LMS-HD sample resembles a typical lamination application. 

3).   The ASTM D5470 (BERGQUIST Modified) test procedure was used on post-cured LMS-HD material. The recorded value includes interfacial thermal resistance. 

These values are given for customer reference only. 

4).   TO-220 Thermal Performance testing, per The BERGQUIST RD2010 specification for laminates, was completed on laminated TO-220 assemblies. Lamination 

was completed at 75 psi for 30 seconds for “IPO” (Initial Pressure Only) and at a constant 75 psi during the lamination and curing process for “Constant.” No 
additional pressure was applied during TO-220 thermal performance testing.

5).   Cure Schedule – time after cure temperature is achieved at the interface. Ramp time is application dependent. 

TIM SG_0115_WEB-html.html
background image

86 

| Thermal Interface Selection Guide 

— LIQUI-BOND

LIQUI-BOND EA 1805 (Two-Part)

Thermally Conductive, Liquid Epoxy Adhesive

Features and Benefits

• 

Room temperature cure

• 

Room temperature storage

• 

Thermal Conductivity: 1.8 W/m-K

• 

Eliminates need for 

mechanical fasteners

• 

Maintains structural bond in 

severe environment applications

• 

Excellent chemical and 

mechanical stability 

LIQUI-BOND EA 1805 is a two-component, 
epoxy based, liquid-dispensable adhesive. 
LIQUI-BOND EA 1805 has a thermal 
conductivity of 1.8 W/mK. 

LIQUI-BOND EA 1805 will be supplied in a 
two-component format, and refrigeration 
is not required. 

LIQUI-BOND EA 1805 has a high bond 
strength with room temperature  
cure that can be accelerated with 
additional heat. The high bond strength 
eliminates the need for fasteners and 
maintains structural bond in severe 
environments. Recommended usage is 
filling any surface irregularities between 
heat sources and heat spreaders of 
similar CTE. LIQUI-BOND EA 1805 is 
thixotropic and will remain in place 
during dispensing, and the material 
will flow easily under minimal pressure, 
resulting in thin bond lines and very 
low stress placed on fragile components 
during assembly. 

Typical Applications:

• 

LED lighting

• 

Power supplies

• 

Discrete component to heat spreader

• 

Automotive lighting

• 

White goods

Configurations Available:

• 

Supplied in cartridge or kit form

Building a Part Number Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

LBEA1805 = LIQUI-BOND EA 1805 Material

LBEA1805

00

30

50cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

10 = 0.010" spacer beads

Working time - 30 minutes

Cartridges:  50cc = 50.0cc, 200cc = 200.0cc, 400cc = 400.0cc

Kits:  1200cc = 1200.0cc, or 7G = 7 gallon

|| 

example

TYPICAL PROPERTIES OF LIQUI-BOND EA 1805

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Grey

Grey

Visual

Color / Part B

Pale Yellow

Pale Yellow

Visual

Viscosity / Part A, High Shear (Pa·s)

(1)

60

60

ASTM D2196

Viscosity / Part B, High Shear (Pa·s)

(1)

62

62

ASTM D2196

Density (g/cc)

2.7

2.7

ASTM D792

Mix Ratio By Volume

1:1

1:1

Shelf Life @ 25°C (months)

6

6

PROPERTY AS CURED

Hardness (Shore D)

(2)

90

90

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-40 to 257

-40 to 125

Shear Strength (psi) / (mPa)

(3)

450

3.1

ASTM D1002

ELECTRICAL AS CURED

Dielectric Strength (V/mil) / (V/mm)

250

10,000

ASTM D149

Dielectric Constant (1,000 Hz)

7.5

7.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

14

10

14

ASTM D257

Flame Rating

V-O

V-O

UL 94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

1.8

1.8

ASTM D5470

cure schedule

Cure @ 25°C (hrs.)

10

10

Cure @ 125°C (mins.)

(4)

10

10

1)   Capillary Viscosity, 200/sec., Part A and B measured separately.
2)   Thirty-second delay value Shore D hardness scale.
3)   Al to Al, cured at room temperature
4)   90% cure cycle - time after cure temperature is achieved at the interface. Ramp time is application dependent.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— LIQUI-BOND

 | 

87

 

LIQUI-BOND SA 1000 (One-Part)

Features and Benefits

• 

High thermal performance

• 

Eliminates need for 

mechanical fasteners

• 

Low viscosity for ease of screening 

or stenciling

• 

Can achieve a very thin bond line

• 

Mechanical and chemical stability

• 

Maintains structural bond in 

severe environment applications

• 

Heat cure

LIQUI-BOND SA 1000 is a thermally 
conductive, one-part liquid silicone 
adhesive with a low viscosity for easy 
screenability. LIQUI-BOND SA 1000 
features a high thermal performance 
and maintains its structure even in 
severe environment applications. 

LIQUI-BOND SA 1000 features excellent 
low and high temperature mechanical 
and chemical stability. The material’s 
mild elastic properties assist in relieving 
CTE stresses during thermal cycling. 
LIQUI-BOND SA 1000 contains no 
cure by-products, cures at elevated 
temperatures and requires refrigeration 
storage at 10°C. The material is 
available in both tube and mid-sized 
container forms.

Typical Applications Include:

• 

PCBA to housing

• 

Discrete component to heat spreader

Configurations Available:

• 

With or without glass beads

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

LBSA1000 = LIQUI-BOND SA 1000 Liquid Adhesive

Material

LBSA1000

00

00

30cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

00 = No adhesive

Cartridges:  30cc = 30.0cc, 600cc = 600.0cc (ml)

Pail:  0.85G = 0.85-gallon, 5G = 5-gallon

|| 

example

Thermally Conductive, Liquid Silicone Adhesive

TYPICAL PROPERTIES OF LIQUI-BOND SA 1000

PROPERTY AS SUPPLIED

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Viscosity (cPs)

(1)

125,000

125,000

ASTM D2196

Density (g/cc)

2.4

2.4

ASTM D792

Shelf Life @ 10°C (months)

6

6

PROPERTY AS CURED – PHYSICAL

Hardness (Shore A)

75

75

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

Shear Strength (psi) / (mPa)

200

1.4

ASTM D1002

PROPERTY AS CURED – ELECTRICAL

Dielectric Strength (V/mil) / (V/mm)

250

10,000

ASTM D149

Dielectric Constant (1,000 Hz)

5.5

5.5

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL 94

PROPERTY AS CURED – THERMAL

Thermal Conductivity (W/m-K)

1.0

1.0

ASTM D5470

CURE SCHEDULE

Pot Life @ 25°C (hrs.)

(2)

10

10

Cure @ 125°C (mins.)

(3)

20

20

Cure @ 150°C (mins.)

(3)

10

10

1)  Brookfield RV, Heli-path, Spindle TF @ 20 rpm, 25°C.
2)  Based on 1/8 in. diameter bead.
3)  Cure Schedule - time after cure temperature is achieved at the interface. Ramp time is application dependent.

TIM SG_0115_WEB-html.html
background image

88 

| Thermal Interface Selection Guide 

— LIQUI-BOND

LIQUI-BOND SA 1800 (One-Part)

Thermally Conductive, Liquid Silicone Adhesive

TYPICAL PROPERTIES OF LIQUI-BOND SA 1800

PROPERTY AS SUPPLIED

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Black

Black

Visual

Viscosity (cPs)

(1)

125,000

125,000

ASTM D2196

Density (g/cc)

2.8

2.8

ASTM D792

Shelf Life @ 10°C (months)

6

6

PROPERTY AS CURED – PHYSICAL

Hardness (Shore A)

80

80

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

Shear Strength (psi) / (mPa)

200

1.4

ASTM D1002

PROPERTY AS CURED – ELECTRICAL

Dielectric Strength (V/mil) / (V/mm)

250

10,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

PROPERTY AS CURED – THERMAL

Thermal Conductivity (W/m-K)

1.8

1.8

ASTM D5470

CURE SCHEDULE

Pot Life @ 25°C (hrs.)

(2)

10

10

Cure @ 125°C (mins.)

(3)

20

20

Cure @ 150°C (mind.)

(3)

10

10

1)  Brookfield RV, Heli-path, Spindle TF @ 20 rpm, 25°C.
2)  Based on 1/8 in. diameter bead.
3)  Cure Schedule - time after cure temperature is achieved at the interface. Ramp time is application dependent.

Features and Benefits

• 

High thermal conductivity: 1.8 W/m-K

• 

Eliminates need for 

mechanical fasteners

• 

Low viscosity for ease of screening 

or stenciling

• 

Maintains structural bond in severe 

environment applications

• 

Heat cure 

LIQUI-BOND SA 1800 is a high 
performance, liquid silicone adhesive that 
cures to a solid bonding elastomer. The 
adhesive is supplied as a one-part liquid 
component, offered in a tube or mid-size 
container.

LIQUI-BOND SA 1800 features a 
combination of high thermal conductivity 
with a low viscosity which allows for 
ease of screen or stencil application. This 
material is also ideal for high volume 
automated pattern dispensing.  
LIQUI-BOND SA 1800’s low viscosity 
allows the material to achieve a very thin 
bond line, producing excellent thermal 
performance and a high shear strength. 

The mild elastic properties of  
LIQUI-BOND SA 1800 assist in relieving 
CTE stresses during thermal cycling. The 
material cures at elevated temperatures 
and requires refrigeration storage at 
10°C. LIQUI-BOND SA 1800 is available 
with optional glass beads to provide 
a consistent stand-off and ensure 
dielectric integrity. 

Typical Applications Include:

• 

PCB assembly to housing

• 

Discrete component to heat spreader

Configurations Available:

• 

With or without glass beads

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

LBSA1800 = LIQUI-BOND SA 1800 (One-Part)

                     Liquid Adhesive Material

LBSA1800

00

00

30cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

00 = No adhesive

Cartridges:  30cc = 30.0cc, 600cc = 600.0cc (ml)

Pail:  0.85G = 0.85-gallon, 5G = 5-gallon

|| 

example

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— LIQUI-BOND

 | 

89

 

LIQUI-BOND SA 2000 (One-Part)

Features and Benefits

• 

High thermal conductivity: 2.0 W/m-K

• 

Eliminates need for 

mechanical fasteners

• 

One-part formulation for easy 

dispensing

• 

Mechanical and chemical stability

• 

Maintains structural bond in 

severe environment applications

• 

Heat cure

LIQUI-BOND SA 2000 is a high 
performance, thermally conductive 
silicone adhesive that cures to a solid 
bonding elastomer. LIQUI-BOND 
SA 2000 is supplied as a one-part liquid 
component, in either tube or mid-sized 
container form.

LIQUI-BOND SA 2000 features excellent 
low and high-temperature mechanical 
and chemical stability. The material’s 
mild elastic properties assist in relieving 
CTE stresses during thermal cycling. 
LIQUI-BOND SA 2000 cures at elevated 
temperatures and requires refrigeration 
storage at 10°C.

Typical Applications Include:

• 

PCBA to housing

• 

Discrete component to heat spreader

Configurations Available:

• 

With or without glass beads

Building a Part Number 

Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

LBSA2000 = LIQUI-BOND SA 2000 Liquid Adhesive

Material

LBSA2000

00

00

30cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

00 = No adhesive

Cartridges:  30cc = 30.0cc, 600cc = 600.0cc (ml)

Pail:  0.85G = 0.85-gallon, 5G = 5-gallon

|| 

example

Thermally Conductive, Liquid Silicone Adhesive

TYPICAL PROPERTIES OF LIQUI-BOND SA 2000

PROPERTY AS SUPPLIED

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color

Yellow

Yellow

Visual

Viscosity (cPs)

(1)

200,000

200,000

ASTM D2196

Density (g/cc)

2.4

2.4

ASTM D792

Shelf Life @ 10°C (months)

6

6

PROPERTY AS CURED – PHYSICAL

Hardness (Shore A)

80

80

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

Shear Strength (psi) / (mPa)

200

1.4

ASTM D1002

PROPERTY AS CURED – ELECTRICAL

Dielectric Strength (V/mil) / (V/mm)

250

10,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.0

6.0

ASTM D150

Volume Resistivity (Ohmmeter)

10

11

10

11

ASTM D257

Flame Rating

V-O

V-O

UL 94

PROPERTY AS CURED – THERMAL

Thermal Conductivity (W/m-K)

2.0

2.0

ASTM D5470

CURE SCHEDULE

Pot Life @ 25°C (hrs.)

(2)

24

24

Cure @ 125°C (mins.)

(3)

20

20

Cure @ 150°C (mins.)

(3)

10

10

1)  Brookfield RV, Heli-path, Spindle TF @ 20 rpm, 25°C.
2)  Based on 1/8 in. diameter bead.
3)  Cure Schedule - time after cure temperature is achieved at the interface. Ramp time is application dependent.

TIM SG_0115_WEB-html.html
background image

90 

| Thermal Interface Selection Guide 

— LIQUI-BOND

LIQUI-BOND SA 3505 (Two-Part)

Thermally Conductive, Liquid Silicone Adhesive

Features and Benefits

• 

Thermal conductivity: 3.5 W/m-K

• 

Eliminates need for mechanical 

fasteners

• 

Room temperature storage

• 

Maintains structural bond in 

severe environment applications

• 

Heat cure

LIQUI-BOND SA 3505 is a high 
performance, thermally conductive,  
liquid adhesive. This material is supplied 
as a two-part material and requires 
no refrigeration.

The mixed material cures at  
elevated temperatures. As cured,  
LIQUI-BOND SA 3505 provides a strong 
bonding, form-in-place elastomer. The 
material’s mild elastic properties assist 
in relieving CTE stresses during thermal 
cycling.

Liquid dispensed thermal materials offer 
infinite thickness variations and impart 
little to no stress on sensitive components 
during assembly. LIQUI-BOND SA 3505 is 
available with optional glass spacer beads 
to provide a consistent bond line and 
ensure dielectric integrity.

Typical Applications:

• 

Power supplies

• 

Discrete component to heat spreader

• 

PCBA to housing

Configurations Available:

• 

Supplied in cartridge or kit form

Building a Part Number Standard Options

Section A

Section B

Section C

Section D

Section E

NA = Selected standard option. If not selecting a standard

option, insert company name, drawing number, and

revision level.

LBSA3505 = LIQUI-BOND SA 3505 Material

LBSA3505

00

240

50cc

NA

Note:  To build a part number, go to www.bergquistcompany.com/Part_Number_Builder.php.

00 = No spacer beads

07 = 0.007" spacer beads

10 = 0.010" spacer beads

Pot Life:  240 = 240 minutes

Cartridges:  50cc = 50.0cc, 400cc = 400.0cc

Kits:  1200cc = 1200.0cc, or 10G = 10 gallon

|| 

example

TYPICAL PROPERTIES OF LIQUI-BOND SA 3505

PROPERTY

IMPERIAL VALUE

METRIC VALUE

TEST METHOD

Color / Part A

Brown

Brown

Visual

Color / Part B

Light Grey

Light Grey

Visual

Viscosity / Part A, High Shear (Pa·s)

(1)

45

45

ASTM D5099

Viscosity / Part B, High Shear (Pa·s)

(1)

30

30

ASTM D5099

Density (g/cc)

2.9

2.9

ASTM D792

Mix Ratio

1:1

1:1

Shelf Life @ 25°C (months)

6

6

PROPERTY AS CURED

Color

Light Brown

Light Brown

Visual

Hardness (Shore A)

(2)

90

90

ASTM D2240

Continuous Use Temp. (°F) / (°C)

-76 to 392

-60 to 200

Shear Strength (psi) / (mPa)

450

3.15

ASTM D1002

ELECTRICAL AS CURED

Dielectric Strength (V/mil) / (V/mm)

250

10,000

ASTM D149

Dielectric Constant (1,000 Hz)

6.9

6.9

ASTM D150

Volume Resistivity (Ohmmeter)

10

10

10

10

ASTM D257

Flame Rating

V-O

V-O

UL  94

THERMAL AS CURED

Thermal Conductivity (W/m-K)

3.5

3.5

ASTM D5470

CURE SCHEDULE

Pot Life @ 25°C

(3)

240 mins. (4 hrs.)

240 mins. (4 hrs.)

Cure @ 125°C (mins.)

(4)

20

20

Cure @ 150°C (mins.)

(4)

10

10

1)  Capillary Viscosity, 600/sec., Part A and B measured separately.
2)  Thirty-second delay value Shore A hardness scale.
3)  Based on 1/8 in. diameter bead.
4)  Cure schedule — time after cure temperature is achieved at the interface. Ramp time is application dependent.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— Ordering

 | 

91

 

SIL PAD Configurations

TO-220

Imperial Measurements

4 LEAD TO-66

PART NUMBER SUFFIX

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-84

1.312

.762

.140

.062

.960

.200

.100

PLASTIC 

POWER

PART 

NUMBER

SUFFIX

 

DIMENSIONS

PLASTIC 

POWER

PART 

NUMBER

SUFFIX

 

DIMENSIONS

“A”

“B”

“C”

“D”

“A”

“B”

“C”

“D”

Various

-35

.710

.500

.160

.141

Various

-104

1.000

.750

.300

.140

(Clip Mount)

-43

.750

.500

Various

-107

.810

.910

.170

.147

TO-126

-50

.437

.312

.140

093

Various

-110

.984

.787

Various

-51

.687

.562

.218

.125

Various

-114

.827

.945

.197

.150

Various

-52

.855

.630

.230

.093

Various

-116

.855

.630

.228

.122

TO-220

-54

.750

.500

.187

.147

Various

-117

.827

.709

.256

.126

TO-202

-55

.610

.560

.245

.125

Various

-118

.748

.551

.217

.126

Various

-56

.855

.562

.218

.125

Various

-119

.437

.311

.142

.110

TO-220

-58

.750

.500

.187

.125

Various

-120

.728

.472

.157

.098

TO-126

-60

.437

.312

.140

.122

TO-3P

-122

1.140

.810

.355

.147

Various

-61

.750

.410

.225

.156

Various

-126

.945

.748

.256

.162

TO-220

-62

.750

.600

.240

.150

Various

-128

.984

1.654

.315

.157

Various

-63

.750

.600

.240

.115

Various

-131

.709

.512

.177

.122

Various

-64

.500

.385

.170

.120

Various

-132

.472

.315

.157

.126

TO-218

-68

1.125

.625

.200

.145

Various

-133

.866

.709

.256

.126

Various

-70

1.410

.810

.355

.147

Various

-134

.945

.709

.228

.126

Various

-90

.860

.740

.200

.160

Various

-136

1.250 1.000

Various

-102

.866

.650

.217

.142

Various

-137

1.250 1.000

.258

.127

Various

-103

.750

.800

.150

.160

Various

-138

1.250 1.000

.258

.148

POWER MODULE

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

-67

1.500

.900

.150

1.200

.450

.075

-101

2.500

2.000

.344

1.812

1.000

.156

PLASTIC POWER

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-57

.910

.500

.200

.125

.580

.046

.265

-89

.983

.750

.432

.156

.665

.101

.217

PLASTIC POWER

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

-66

1.000

.500

.200

.141

.626

.046

.219

.032

POWER RESISTORS PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

“I”

RH-25

-94

1.187

1.205

.234

.469

.212

.156

.719

.781

.140

RH-50

-95

2.093 1.265

.265

.530

.210

.255

1.563

.845

.140

RH-5

-96

.725

.771

.140

.280

.140

.156

.445

.491

.093

RH-10

-97

.805

.890

.127

.250

.130

.190

.551

.630

.121

RH-25

-98

1.150

1.180

.231

.425

.190

.270

.688

.800

.147

RH-50

-99

1.965

1.236

.198

.404

.132

.263

1.569

.972

.130

TO-220 

MULTIPLES

PART NUMBER SUFFIX

DIMENSIONS

# OF HOLES

“A”

“B”

“C”

“D”

“E”

“F”

2 Parts

-34

1.000

.750

.187

.125

.250

.500

2

3 Parts

-36

1.500

.750

.187

.125

.250

.500

3

-37

2.000

.750

.187

.125

.250

.500

4

-38

2.500

.750

.187

.125

.250

.500

5

-39

3.000

.750

.187

.125

.250

.500

6

-40

3.500

.750

.187

.125

.250

.500

7

-41

4.000

.750

.187

.125

.250

.500

8

POWER MODULE

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

-108

4.600

2.400

2.125

.500

1.800

.125

-140

4.598

2.402

2.098

0.500

1.799

0.150

-141

2.279

2.402

2.102

0.488

0.650

0.150

-142

2.280

1.450

1.270

0.490

0.650

0.130

TIM SG_0115_WEB-html.html
background image

92 

| Thermal Interface Selection Guide 

— Ordering

SIL PAD Configurations

Imperial Measurements

B

A

D-DIA

E

C

A

B

C

D

A

D

C

B

(2) G Dia

F  RAD

(TYP)

E

MULTIWATT

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

-124

.872

.790

.160

.148 

.118 x 45°

-125

.866

.787

.157

.154 

.079 x 45°

MULTI-LEAD TO-66

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

-93

1.350

.800

.140

.400

.960

.480

DIODE WASHER

PART NUMBER 

SUFFIX

DIMENSIONS

DIODE WASHER

PART NUMBER 

SUFFIX

DIMENSIONS

“A”

“B”

“A”

“B”

Various

-19

.510

.140

Various

-75

.360

.260

DO-4

-20

.510

.200

Various

-76

.750

.125

DO-5

-21

.800

.260

Various

-77

.800

.190

DO-4 (oversized)

-22

.625

.200

DO-8

-78

.875

.313

DO-5 (oversized)

-25

1.000

.260

Various

-79

1.180

.515

Various

-26

.812

.145

Various

-80

1.250

.380

Various

-27

.812

.115

Various

-81

1.500

.200

Various

-28

1.000

.140

Various

-82

.512

.161

Various

-32

1.500

.500

Various

-111

.591

.217

TO-36

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

-08

1.063

.690

.190

SMALL POWER DEVICES

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

TO-5, 3 Holes 

-09

.360

.200

.040

TO-18, 3 Holes

-12

.250

.100

.036

TO-18, 4 Holes

-13

.250

.100

.036

TO-5, 4 Holes

-33

.360

.200

.040

TO-5, 3 Holes 

-44

.390

.200

.040

TO-5, 4 Holes

-45

.390

.200

.040

RECTIFIER

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

-46

1.250

1.250

.200

-47

1.125

1.125

.140

-48

1.000

1.000

.187

TIP PACKAGES

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

Clip Mount

-42

.984

.787

.205

TIP-36 Plastic Tip

-53

.865

.650

.650

.140

.205

TO-3P

-65

1.260

.787

.984

.142

.205

Plastic Clip

-73

.984

.787

.708

.142

.205

POWER MODULE

PART NUMBER SUFFIX

DIMENSIONS 

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-100

2.510

1.260

.630

.305

1.900

.205

.205

-123

1.614

1.102

.551

.157

1.220

.118

.118

SIP PACKAGE

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-105

1.450

.838

.612

.245

.960

.170

.120

QUARTZ

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

-115

.472

.197

.193

.031

POWER MODULE

 PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-109

1.350

.642

.321

.195

.960

.060

.125

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— Ordering

 | 

93

 

SIL PAD Configurations

Imperial Measurements

I

A

F DIA.

B

E

C DIA.

  (2)

D DIA.

   (4)

18¡

A

B

E

D

C - DIA.

    (2)

TO-3 & TO-66

STYLE

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-02

1.780

1.250

.140

.093

1.187

.430

.072

-03

1.563

1.050

.140

.080

1.187

.430

.072

-04

1.650

1.140

.122

.062

1.187

.430

.072

-05

1.650

1.140

.140

.093

1.187

.430

.072

-06

1.650

1.140

.165

.062

1.187

.430

.072

-07

1.780

1.250

.165

.094

1.187

.430

.072

-10

1.440

1.000

.140

.075

.960

.200

.100

-11

1.312

.762

.140

.062

.960

.200

.100

-15

1.780

1.250

.140

.046

1.187

.430

.072

-16

2.070

1.560

.122

.062

1.187

.430

.072

-17

1.650

1.140

.140

.046

1.187

.430

.072

-18

1.563

1.050

.140

.140

1.187

.430

.072

-23

1.593

1.100

.156

.062

1.187

.430

.072

-24

1.700

1.187

.156

.062

1.187

.430

.072

-29

1.650

1.065

.140

.046

1.187

.430

.072

-30

1.250

.700

.140

.062

.960

.200

.100

-31

1.375

.825

.140

.062

.960

.200

.100

-59 Leadless

1.650

1.140

.165

1.187

-112

1.780

1.248

.165

.063

1.185

.429

.073

-113

1.563

1.051

.165

.079

1.185

.429

.073

-127

1.307

.819

.165

.063

.909

.236

.061

-129

1.654

1.063

.138

.059

1.181

.433

.071

-135

1.650

1.142

.165

.142

1.187

.429

..072

3 LEAD 

TO-3

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

“I”

-92

1.650

1.140

.140

.093

1.187

.430

.400

.155

.718

4 LEAD TO-3

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-86

1.560

1.050

.156

.080

1.170

.470

72°

-87

1.563

1.050

.156

.063

1.187

.470

72°

8 LEAD TO-3

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-88

1.655

1.187

.156

.060

1.187

40°

.500

10 LEAD TO-3

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

-91

1.650

1.140

.165

.040

1.187

.593

.500

32.7°

3 LEAD TO-66

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

-85

1.275

.750

.156

.100

.960

.200

.100

.200

9 LEAD TO-66

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

-83

1.440

1.000

.140

.055

.960

.480

.325

36°

POWER MODULE

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

-130

1.600

.480

.165

1.197

.240

TIM SG_0115_WEB-html.html
background image

94 

| Thermal Interface Selection Guide 

— Ordering

SIL PAD Configurations

Metric Measurements

TO-220

4 LEAD TO-66

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-84

33.32

19.35

3.56

1.57

24.38

5.08

2.54

PLASTIC 

POWER

PART 

NUMBER 

SUFFIX

 

DIMENSIONS

PLASTIC 

POWER

PART 

NUMBER 

SUFFIX

 

DIMENSIONS

“A”

“B”

“C”

“D”

“A”

“B”

“C”

“D”

Various

-35

18.03

12.70

4.06

3.58

Various

-104

25.40

19.05

7.62

3.56

(Clip 

Mount)

-43

19.05

12.70 Various

-107

20.57

23.11

4.32

3.73

TO-126

-50

11.10

7.92

3.56

2.36

Various

-110

24.99

19.99

Various

-51

17.45

14.27

5.54

3.18

Various

-114

21.01

24.00

5.00

3.81

Various

-52

21.72

16.00

5.84

2.36

Various

-116

21.72

16.00

5.79

3.10

TO-220

-54

19.05

12.70

4.75

3.73

Various

-117

21.01

18.01

6.50

3.20

TO-202

-55

15.49

14.22

6.22

3.18

Various

-118

19.00

14.00

5.51

3.20

Various

-56

21.72

14.27

5.54

3.18

Various

-119

11.10

7.90

3.61

2.79

TO-220

-58

19.05

12.70

4.75

3.18

Various

-120

18.49

11.99

3.99

2.49

TO-126

-60

11.10

7.92

3.56

3.10

TO-3P

-122

28.96

20.57

9.02

3.73

Various

-61

19.05

10.41

5.72

3.96

Various

-126

24.00

19.00

6.50

4.11

TO-220

-62

19.05

15.24

6.10

3.81

Various

-128

24.99

42.01

8.00

3.99

Various

-63

19.05

15.24

6.10

2.92

Various

-131

18.01

13.00

4.50

3.10

Various

-64

12.70

9.78

4.32

3.05

Various

-132

11.99

8.00

3.99

3.20

TO-218

-68

28.58

15.88

5.08

3.68

Various

-133

22.00

18.01

6.50

3.20

Various

-70

35.81

20.57

9.02

3.73

Various

-134

24.00

18.01

5.79

3.20

Various

-90

21.84

18.80

5.08

4.06

Various

-136

31.75

25.40

Various

-102

22.00

16.51

5.51

3.61

Various

-137

31.75

25.40

6.55

3.23

Various

-103

19.05

20.32

3.81

4.06

Various

-138

31.75

25.40

6.55

3.76

POWER MODULE

NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

-67

38.10

22.86

3.81

30.48

11.43

1.90

-101

63.50

50.80

8.74

46.02

25.40

3.96

PLASTIC POWER PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-57

23.11

12.70

5.08

3.18

14.73

1.17

6.73

-89

24.97

19.05

10.97

3.96

16.89

2.57

5.51

PLASTIC POWER

PART NUMBER SUFFIX

 DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

-66

25.40 12.70

5.08

3.58

15.90

1.17

5.56

0.81

POWER RESISTORS PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

“I”

RH-25

-94

30.15 30.61 5.94

11.91

5.38

3.96

18.26 19.84 3.56

RH-50

-95

53.16 32.13

6.73

13.46

5.33

6.48 39.70 21.46

3.56

RH-5

-96

18.42 19.58

3.56

7.11

3.56

3.96

11.30 12.47

2.36

RH-10

-97

20.45 22.61

3.23

6.35

3.30

4.83 14.00 16.00 3.07

RH-25

-98

29.21 29.97

5.87 10.80 4.83

6.86

17.48 20.32

3.73

RH-50

-99

49.91 31.39

5.03 10.26

3.35

6.68 39.85 24.69 3.30

TO-220 MULTIPLES

PART NUMBER SUFFIX

DIMENSIONS

# OF HOLES

“A”

“B”

“C”

“D”

“E”

“F”

2 Parts

-34

25.40 19.05

4.75

3.18

6.35

12.70

2

3 Parts

-36

38.10

19.05

4.75

3.18

6.35

12.70

3

-37

50.80 19.05

4.75

3.18

6.35

12.70

4

-38

63.50 19.05

4.75

3.18

6.35

12.70

5

-39

76.20 19.05

4.75

3.18

6.35

12.70

6

-40

88.90 19.05

4.75

3.18

6.35

12.70

7

-41

101.60 19.05

4.75

3.18

6.35

12.70

8

POWER MODULE

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

-108

116.84

60.96

53.97

12.70

45.72

3.18

-140

116.8

61.00

53.30

12.70

45.70

3.80

-141

57.90

61.00

53.40

12.40

16.50

3.80

-142

57.91

36.83

32.26

12.45

16.50

3.30

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— Ordering

 | 

95

 

SIL PAD Configurations

Metric Measurements

B

A

D-DIA

E

C

A

B

C

D

A

D

C

B

(2) G Dia

F  RAD

(TYP)

E

MULTIWATT

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

-124

22.15

20.07

4.06

3.76

3.0 x 45°

-125

22.00

19.99

3.99

3.91 

2.0 x 45°

MULTI- LEAD TO-66

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

-93

34.29

20.32

3.56

10.16

24.38

12.19

DIODE WASHER

PART NUMBER 

SUFFIX

DIMENSIONS

DIODE WASHER

PART NUMBER 

SUFFIX

DIMENSIONS

“A”

“B”

“A”

“B”

Various

-19

12.95

3.56

Various

-75

9.14

6.60

DO-4

-20

12.95

5.08

Various

-76

19.05

3.18

DO-5

-21

20.32

6.60

Various

-77

20.32

4.83

DO-4 (oversized)

-22

15.88

5.08

DO-8

-78

22.23

7.95

DO-5 (oversized)

-25

25.40

6.60

Various

-79

29.97

13.08

Various

-26

20.62

3.68

Various

-80

31.75

9.65

Various

-27

20.62

2.92

Various

-81

38.10

5.08

Various

-28

25.40

3.56

Various

-82

13.00

4.09

Various

-32

38.10

12.70

-111

15.01

5.51

TO-36

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

-08

27.00

17.53

4.83

SMALL POWER DEVICES

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

TO-5, 3 Holes 

-09

9.14

5.08

1.02

TO-18, 3 Holes

-12

6.35

2.54

0.91

TO-18, 4 Holes

-13

6.35

2.54

0.91

TO-5, 4 Holes

-33

9.14

5.08

1.02

TO-5, 3 Holes

-44

9.91

5.08

1.02

TO-5, 4 Holes

-45

9.91

5.08

1.02

RECTIFIER

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

-46

31.75

31.75

5.08

-47

28.58

28.58

3.56

-48

25.40

25.40

4.75

TIP PACKAGES

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

Clip Mount

-42

24.99

19.99

5.21

TIP-36 Plastic Tip

-53

21.97

16.51

16.51

3.56

5.21

TO-3P

-65

32.00

19.99

24.99

3.61

5.21

Plastic Clip

-73

24.99

19.99

17.98

3.61

5.21

POWER MODULE

PART NUMBER SUFFIX

DIMENSIONS 

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-100

63.75

32.00

16.00

7.75

48.26

5.21

5.21

-123

41.00

27.99

14.00

3.99

30.99

3.00

3.00

SIP PACKAGE

PART NUMBER SUFFIX

DIMENSIONS 

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-105

36.83

21.29

15.54

6.22

24.38

4.32

3.05

POWER MODULE

PART NUMBER SUFFIX

DIMENSIONS 

“A”

“B”

“C”

“D”

-115

11.99

5.00

4.90

0.79

POWER MODULE

 PART NUMBER 

SUFFIX

DIMENSIONS 

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-109

34.29

16.31

8.15

4.95

24.38

1.52

3.18

TIM SG_0115_WEB-html.html
background image

96 

| Thermal Interface Selection Guide 

— Ordering

SIL PAD Configurations

Metric Measurements

I

A

F DIA.

B

E

C DIA.

  (2)

D DIA.

   (4)

18¡

A

B

E

D

C - DIA.

    (2)

TO-3 STYLE

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-02

45.21

31.75

3.56

2.36

30.15

10.92

1.83

-03

39.70

26.67

3.56

2.03

30.15

10.92

1.83

-04

41.91

28.96

3.10

1.57

30.15

10.92

1.83

-05

41.91

28.96

3.56

2.36

30.15

10.92

1.83

-06

41.91

28.96

4.19

1.57

30.15

10.92

1.83

-07

45.21

31.75

4.19

2.39

30.15

10.92

1.83

-10

36.58

25.40

3.56

1.90

24.38

5.08

2.54

-11

33.32

19.35

3.56

1.57

24.38

5.08

2.54

-15

45.21

31.75

3.56

1.17

30.15

10.92

1.83

-16

52.58

39.62

3.10

1.57

30.15

10.92

1.83

-17

41.91

28.96

3.56

1.17

30.15

10.92

1.83

-18

39.70

26.67

3.56

3.56

30.15

10.92

1.83

-23

40.46

27.94

3.96

1.57

30.15

10.92

1.83

-24

43.18

30.15

3.96

1.57

30.15

10.92

1.83

-29

41.91

27.05

3.56

1.17

30.15

10.92

1.83

-30

31.75

17.78

3.56

1.57

24.38

5.08

2.54

-31

34.92

20.96

3.56

1.57

24.38

5.08

2.54

-59 Leadless

41.91

28.96

4.19

30.15

-112

45.21

31.70

4.19

1.60

30.10

10.90

1.85

-113

39.70

26.70

4.19

2.01

30.10

10.90

1.85

-127

33.20

20.80

4.19

1.60

23.09

5.99

1.55

-129

42.01

27.00

3.51

1.50

30.00

11.00

1.80

-135

41.91

29.01

4.19

3.61

30.15

10.90

1.83

3 LEAD TO-3

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

“I”

-92

41.91 28.96

3.56

2.36

30.15

10.92

10.16

3.94

18.24

4 LEAD TO-3

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-86

39.62

26.67

3.96

2.03

29.72

11.94

72°

-87

39.70

26.67

3.96

1.60

30.15

11.94

72°

8 LEAD TO-3

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

-88

42.04

30.15

3.96

1.52

30.15

40°

12.70

10 LEAD TO-3

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

-91

41.91

28.96

4.19

1.02

30.15

15.06

12.70

32.7°

3 LEAD TO-66

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

-85

32.38

19.05

3.96

2.54

24.38

5.08

2.54

5.08

9 LEAD TO-66 PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

“F”

“G”

“H”

-83

36.58

25.40

3.56

1.40

24.38

12.19

8.26

36°

POWER MODULE

PART NUMBER SUFFIX

DIMENSIONS

“A”

“B”

“C”

“D”

“E”

-130

40.64

12.19

4.19

30.40

6.10

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— Ordering

 | 

97

 

HI-FLOW 225 Configurations

HI-FLOW 225 Configurations

PART NUMBER SUFFIX

DIMENSIONS (± .015)

“A”

“B”

“C”

MIN. PCS./ROLL

-150

41.91

41.91

67.31

3,000

-151

38.10 

38.10

63.50

5,000

-152

34.93

34.93

60.33

5,000

-153

31.75

31.75

57.15

5,000

-154

25.40

25.40

50.80

7,500

-155 

17.78

17.78

43.18

10,000

-156

12.70 

12.70

38.10

15,000

HI-FLOW 225UT/565UT Tab Configurations

Imperial Measurements

Metric Measurements

PART NUMBER SUFFIX

 DIMENSIONS (± .015)

“A”

“B”

“C”

MIN. PCS./ROLL

-150

1.650

1.650

2.650

3,000

-151

1.500 

1.500

2.500

5,000

-152

1.375

1.375

2.375

5,000

-153

1.250

1.250

2.250

5,000

-154

1.000

1.000

2.000

7,500

-155 

.700

.700

1.700

10,000

-156 

.500 

.500

1.500

15,000

HI-FLOW 225UT/565UT Tab Configurations

COLORED PSA T APE

CLEAR PSA TAPE

PSA STRIP

M ATERIAL

LINER

LINER

.750+.063

.750+.063

.500+.030

.250+.125

("B")

("B")

("C")

("A")

("A")

COLORED PSA T APE

CLEAR PSA TAPE

PSA STRIP

M ATERIAL

LINER

LINER

.750+.063

.750+.063

.500+.030

.250+.125

("B")

("B")

("C")

("A")

("A")

TIM SG_0115_WEB-html.html
background image

98 

| Thermal Interface Selection Guide 

— Ordering

Solutions for Surface Mount Applications

HI-FLOW

The HI-FLOW family of phase change materials offers an easy-to-apply thermal 
interface for many surface mount packages. At the phase change temperature, 
HI-FLOW materials change from a solid and flow with minimal applied pressure. This 
characteristic optimizes heat transfer by maximizing wet-out of the interface. HI-FLOW 
is commonly used to replace messy thermal grease.

BERGQUIST phase change materials are specially compounded to prevent pump-out of 
the interface area, which is often associated with thermal grease. Typical applications 
for HI-FLOW materials include:

• 

High performance CPUs and integrated circuits

• 

DC/DC converters 

• 

Power modules

HI-FLOW materials are manufactured with or without film or foil carriers. Custom 
shapes and sizes for non-standard applications are also available.

High Power Application  

HI-FLOW without THERMAL CLAD

High Power Application 

HI-FLOW with THERMAL CLAD

Power Device

Processor

THERMAL CLAD

HI-FLOW

HI-FLOW

Heat

Spreader

Heat

Spreader

FR-4 Board

SIL PAD

SIL PAD sets a benchmark in thermal interface materials. The SIL PAD family of 
materials is thermally conductive and electrically insulating. Available in custom  
shapes, sheets, and rolls, SIL PAD materials come in a variety of thicknesses and are 
frequently used in SMT applications such as:

• 

Interface between thermal vias in a PCB, and a heat sink or casting

• 

Heat sink interface to many surface mount packages

Mid Power Application with BOND-PLY or SIL PAD

Power Device

SIL PAD or 
BOND-PLY

FR-4

Heat

Spreader

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— Ordering

 | 

99

 

Where Thermal Solutions Come Together

BOND-PLY and LIQUI-BOND

The BOND-PLY family of materials is thermally conductive and electrically isolating. 
BOND-PLY is available in a pressure sensitive adhesive or laminating format. BOND-PLY 
provides for the mechanical decoupling of bonded materials with mismatched thermal 
coefficients of expansion. LIQUI-BOND is a high thermal performance liquid silicone 
adhesive that cures to a solid bonding elastomer.  
Typical applications include:

• 

Bonding bus bars in a variety of electronic modules and sub-assemblies

• 

Attaching a metal-based component to a heat sink

• 

Bonding a heat sink to a variety of ASIC, graphic chip and CPU packages

• 

Bonding flexible circuits to a rigid heat spreader or thermal plane

• 

Assembly tapes for BGA heat spreader

• 

Attaching PCB assemblies to housings

GAP PAD and Gap Filler

GAP PAD and Gap Filler product families are highly conformable, thermally conductive 
materials in pad or liquid dispensable format. Varying degrees of  
thermal conductivity and compression deflection characteristics are available.  
Typical applications include:

• 

On top of a semiconductor package such as a QFP or BGA. Often times, several 

packages with varying heights can use a common heat sink when using GAP PAD.

• 

Between a PCB or substrate and a chassis, frame, or other heat spreader

• 

Areas where heat needs to be transferred to any type of heat spreader

• 

For interfacing pressure sensitive devices

• 

Filling various gaps between heat-generating devices and heat sinks or housings

GAP PADs are available in thickness of 0.010 in. to 0.250 in., and in custom shapes, with 
or without adhesive. Gap Fillers are available in cartridge or kit form.

Lower Power Application 

with GAP PAD

GAP PAD or GAP FILLER

Power 

Device

Heat

Spreader

FR-4 Board

Top Efficiency In 
Thermal Materials For 
Today’s Changing Technology.

Contact Henkel for additional information regarding our thermal solutions. We are 
constantly innovating to offer you the greatest selection of options and flexibility  
to meet today’s changing technology.

TIM SG_0115_WEB-html.html
background image

100 

| Thermal Interface Selection Guide 

— Ordering

Ordering Information

Ordering Procedure:

The last 2 or 3 digits define the part number selected. The 
“footprint” and dimensions are shown on pages 91-97.

Special Shapes:

For applications requiring non-standard or custom SIL PAD 
configurations, contact your Henkel Sales Representative. We 
produce thousands of custom die shapes and designs. 

Tolerances:

Typical converting tolerances are held on length (L), width 
(W), hole diameter and hole location for most materials as 
noted below:

TYPICAL SIL PAD / HI-FLOW TOLERANCES

Part (1)

Dimension

Length and Width  

Tolerance

Rule Defined

Features (2)

Hole Location 

and Diameter

<6 in.

± 0.010 in. (0.25 mm) ± 0.010 in. (0.25 mm) ± 0.005 in. (0.13 mm)

6 in. - 12 in. ± 0.015 in. (0.38 mm) ± 0.015 in. (0.38 mm) ± 0.010 in. (0.25 mm)

>12 in.

± 0.020 in. (0.51 mm) ± 0.020 in. (0.51 mm) ± 0.020 in. (0.51 mm)

TYPICAL GAP PAD TOLERANCES (3)

Material 

Thickness

Length and Width Tolerance

Hole Location 

and Diameter

10 mil

± 0.015 in. (0.38 mm)

± 0.015 in. (0.38 mm)

15 mil

± 0.015 in. (0.38 mm)

± 0.015 in. (0.38 mm)

20 mil

± 0.020 in. (0.51 mm)

± 0.020 in. (0.51 mm)

30 mil

± 0.030 in. (0.76 mm)

± 0.030 in. (0.76 mm)

40 mil

± 0.035 in. (0.89 mm)

± 0.035 in. (0.89 mm)

50 mil

± 0.040 in. (1.02 mm)

± 0.040 in. (1.02 mm)

60 mil

± 0.050 in. (1.27 mm)

± 0.050 in. (1.27 mm)

70 mil

± 0.050 in. (1.27 mm)

± 0.050 in. (1.27 mm)

80 mil

± 0.050 in. (1.27 mm)

± 0.050 in. (1.27 mm)

100 mil

± 0.060 in. (1.52 mm)

± 0.060 in. (1.52 mm)

125 mil

± 0.075 in. (1.91 mm)

± 0.075 in. (1.91 mm)

140 mil

± 0.100 in. (2.54 mm)

± 0.100 in. (2.54 mm)

160 mil

± 0.100 in. (2.54 mm)

± 0.100 in. (2.54 mm)

200 mil

± 0.125 in. (3.17 mm)

± 0.125 in. (3.17 mm)

225 mil

± 0.160 in. (4.06 mm)

± 0.160 in. (4.06 mm)

250 mil

± 0.160 in. (4.06 mm)

± 0.160 in. (4.06 mm)

1) Material thicknesses: <6 in. (152.4mm), 6-12 in. (152.4-304.8mm), >12 in. (304.8mm). 
2)  Rule defined by geometry can be notches, internal shapes not created by a punch or cutouts that are created by 

a rule and not a punch. 

3)  GAP PAD VO materials have a SIL PAD Side / Cutline tolerance of parts on the liner to within  

± 0.020 in. (0.51mm) typically, GAP PAD may deform to the standard tolerances when handled or removed from 
the liner. 

Note:  Dependent upon material and application requirements, tighter tolerances may be feasible and available. 

Please contact Henkel Sales for these requests and additional information regarding tolerances.

Typical Configuration Tolerances:

• 

Roll width: ±0.06 in. (1.6 mm) for standard widths  

(2 in., 4 in., 6 in., etc.)

• 

SIL PAD sheet: -0.06 in. / +0.25 in. (-1.6 mm / +6.4 mm)

• 

GAP PAD sheet: -0.0 in. / +0.40 in. (-0.0 mm / +10.0 mm)

• 

Typical SIL PAD roll length: 250-foot to 300-foot

• 

Typical number of splices per roll: 3

• 

Typical butt splice: 2-sided colored tape

• 

Material thickness tolerances:   SIL PAD ±0.001 in. 

(0.0254 mm) 

GAP PAD VO ±5% 

GAP PAD S-Class ±10%

Note: Tighter tolerances are available per factory review.

Sheets:

Standard sheet size for most materials is 12 in. x 12 in., with or 
without adhesive as specified on the individual data sheet.  
When ordering sheets, please specify material type, thickness 
and include all dimensions. Contact Henkel Sales if other sizes 
are required.

Note: SIL PAD A2000 maximum sheet size is 10 in. x 12 in. GAP 
PAD standard sheet size is 8 in. x 16 in.

Rolls:

SIL PAD materials are available in roll form, with or without 
adhesive, with the exception of SIL PAD 1750 and SIL PAD 2000. 
HI-FLOW materials are available in roll form. Certain GAP PAD 
materials are available in roll form. Please contact Henkel Sales 
for more information.

Color Matching:

We identify product color as a reference product characteristic 
and/or specification for SIL PAD and GAP PAD products. Slight 
color variation is normal across lot-to-lot splicing due to the 
different variations in natural colorants used to achieve the 
desired hue and shade in these products. We continue to monitor 
and control incoming raw material specifications  
and production processes to ensure the highest possible 
consistency of quality and product performance. If you have  
any questions regarding color matching, please contact  
Henkel Product Management.

TIM SG_0115_WEB-html.html
background image

Thermal Interface Selection Guide 

— Ordering

 | 

101

 

Ordering Information

Adhesives:

BERGQUIST adhesives include:

 

SILICONE: 

 (AC) 

-  Unloaded 

(ACA)   - Unloaded, Low Tack 
(TAC)   - Loaded (Thermally Enhanced)

 

ACRYLIC: 

 (AAC)   - Unloaded 
(TAAC)   - Thermally Loaded 
(EAAC)   - Thermally Enhanced

  THICKNESS: 

 0.0005 in. - 0.001 in., (12-25µm) 
(adhesive only)

Note: For non-symmetrical parts, please indicate on print which 
side the adhesive is on.

Peel Strength: See data below. 

POL = Peel-Off Liner (force per unit width of the liner to 
the adhesive)

QS = Quick Stick (simulated force per unit width of the adhesive 
to the heat sink) 
g/in. = Grams per inch

TYPICAL ADHESIVE PROPERTIES

ADHESIVE

POL

QS

Silicone AC

50-150 g/in.

50-150 g/in.

Silicone ACA

5-70 g/in.

5-150 g/in.

Silicone TAC

50-150 g/in.

50-150 g/in.

Acrylic AAC

5-70 g/in.

100-800 g/in.

Acrylic TAAC

5-70 g/in.

100-400 g/in.

Acrylic EAAC

5-60 g/in.

100-200 g/in.

Note: These values are typical after the material has aged for 2-3 
weeks and are significantly different immediately after coating. 
Upon completion of coating, QS is 250-500 g/in. and POL is 3-20 
g/in. for all silicone adhesives.

Shelf Life:

Silicone Adhesives: Six (6) months from date of manufacture 
when stored in original packaging at 70°F (21°C) and 50% 
relative humidity.

Acrylic Adhesives: One (1) year from date of manufacture 
when stored in original packaging at 70°F (21°C) and 50% 
relative humidity.

Peel adhesion data is available upon request. Please contact 
Henkel Sales for more information.

PSA Characteristics:

Standard pressure sensitive adhesive coated on one side of a  
SIL PAD will increase the thermal resistance (per ASTM D5470) 
by 0.2°C-in.

2

/W. Standard pressure sensitive adhesive on two 

sides increases the thermal impedance by 0.4°C-in.

2

/W.

Thermally conductive pressure sensitive adhesive on one side 
increases the thermal resistance by 0.05°C-in.

2

/W and on two 

sides by 0.1°C-in.

2

/W.

The effect of an adhesive layer on the thermal impedance in an 
application will vary. In low-pressure applications, the pressure 
sensitive adhesive will wet-out the interface easier and eliminate 
the interfacial thermal resistance.

UL Recognition:

For information regarding the UL (Underwriters Laboratories, 
Inc.) recognition status of Henkel (BERGQUIST) SIL PAD, 
GAP PAD and HI-FLOW materials, the UL web site provides the 
most current information.

Using the URL: http://www.ul.com, select “Online Certification 
Directory.” You may then enter one of the following file numbers 
for the applicable BERGQUIST file:

QMFZ2.E59150: Plastics – Component. This category includes all 
SIL PAD, GAP PAD and HI-FLOW materials.

QOQW2.E81718: Polymeric Adhesive Systems, Electrical 
Equipment – Component. This category includes  
BOND-PLY adhesive only.

In each group there is a “Guide Information” section which gives 
a detailed description of the categories listed and all recognized 
materials will be listed with supporting data.

TIM SG_0115_WEB-html.html
background image

AMERICAS

HEADQUARTERS: 
UNITED STATES
 
Henkel Electronic Materials LLC 
14000 Jamboree Road 
Irvine, CA 92606 
USA 
Tel: +1.714.368.8000 
Tel: +1.800.562.8483 
Customer Support: +1.888.943.6535 
Fax: +1.714.368.2265

Henkel Electronic Materials LLC 
20021 Susana Road 
Rancho Dominguez, CA 90221 
USA 
Tel: +1.310.764.4600
Fax: +1.310.605.2274

BRAZIL
Henkel Brazil
Av. Prof. Vernon Krieble, 91
06690-250 Itapevi,
Sao Paulo, Brazil
Tel: +55.11.4143.7000

ASIA-PACIFIC

CHINA 
No. 332 Meigui South Road
WaiGaoQiao Free Trade Zone
Shanghai 200131, P.R. China
Tel: +86.21.3898.4800
Fax: +86.21.5048.4169

Henkel Huawei Electronics CO. LTD
Songtiao Industrial Park Lianyungang
Jiangsu Province 222006 China
Tel: +86.518.8515.5342
Fax: +86.518.8515.3801

JAPAN
Henkel Japan Ltd.
27-7, Shin Isogo-cho
Isogo-ku Yokohama, 235-0017
Japan
Tel: +81.45.286.0184

KOREA
Henkel Technologies (Korea) Ltd.
8th Floor
Dae Ryung Techno Town II
569-21 Gasan-dong,
Geumcheon-gu, Seoul 153-771
Korea
Tel: +82.2.6675.8000

EUROPE

BELGIUM
Henkel Electronics Materials (Belgium)
N.V. Nijverheidsstraat 7 
B-2260 Westerlo
Belgium
Tel: +32.1457.5611
Fax: +32.1458.5530

UNITED KINGDOM
Henkel Ltd.
Adhesives Limited Technologies House
Wood Lane End
Hemel Hempstead
Hertfordshire HP2 4RQ
Tel: +44.1442.278000
Fax: +44.1442.278071

www.henkel-adhesives.com/thermal

Across the Board,
Around the Globe.

All marks used above are trademarks and/or registered trademarks of Henkel and its affiliates in the U.S., Germany and elsewhere. 
© 2016 Henkel Corporation. All rights reserved. 4282_US/LT-8116 (2/16)