background image

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Cyclone II Device Handbook, Volume 1

CII5V1-3.3

ac/package_outlines/cyc_c52006-html.html
background image

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services

.

ii

 Altera 

Corporation

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

iii

  

Contents

Chapter Revision Dates  ........................................................................... xi

About This Handbook ............................................................................  xiii

How to Contact Altera .......................................................................................................................... xiii
Typographic Conventions .................................................................................................................... xiii

Section I. Cyclone II Device Family Data Sheet

Revision History .................................................................................................................................... 1–1

Chapter 1. Introduction

Introduction ............................................................................................................................................ 1–1

Low-Cost Embedded Processing Solutions .................................................................................. 1–1
Low-Cost DSP Solutions ................................................................................................................. 1–1

Features ................................................................................................................................................... 1–2
Referenced Documents ......................................................................................................................... 1–9
Document Revision History ................................................................................................................. 1–9

Chapter 2. Cyclone II Architecture

Functional Description .......................................................................................................................... 2–1
Logic Elements ....................................................................................................................................... 2–2

LE Operating Modes ........................................................................................................................ 2–4

Logic Array Blocks ................................................................................................................................ 2–7

LAB Interconnects ............................................................................................................................ 2–8
LAB Control Signals ......................................................................................................................... 2–8

MultiTrack Interconnect ..................................................................................................................... 2–10

Row Interconnects .......................................................................................................................... 2–10
Column Interconnects .................................................................................................................... 2–12
Device Routing ............................................................................................................................... 2–15

Global Clock Network & Phase-Locked Loops ............................................................................... 2–16

Dedicated Clock Pins ..................................................................................................................... 2–20
Dual-Purpose Clock Pins .............................................................................................................. 2–20
Global Clock Network ................................................................................................................... 2–21
Global Clock Network Distribution ............................................................................................ 2–23
PLLs .................................................................................................................................................. 2–25

Embedded Memory ............................................................................................................................. 2–27

Memory Modes ............................................................................................................................... 2–30
Clock Modes .................................................................................................................................... 2–31
M4K Routing Interface .................................................................................................................. 2–31

ac/package_outlines/cyc_c52006-html.html
background image

iv

Altera Corporation

Cyclone II Device Handbook, Volume 1

Contents

Embedded Multipliers ........................................................................................................................ 2–32

Multiplier Modes ............................................................................................................................ 2–35
Embedded Multiplier Routing Interface ..................................................................................... 2–36

I/O Structure & Features .................................................................................................................... 2–37

External Memory Interfacing ....................................................................................................... 2–44
Programmable Drive Strength ..................................................................................................... 2–49
Open-Drain Output ........................................................................................................................ 2–50
Slew Rate Control ........................................................................................................................... 2–51
Bus Hold .......................................................................................................................................... 2–51
Programmable Pull-Up Resistor .................................................................................................. 2–51
Advanced I/O Standard Support ................................................................................................ 2–52
High-Speed Differential Interfaces .............................................................................................. 2–53
Series On-Chip Termination ......................................................................................................... 2–55
I/O Banks ........................................................................................................................................ 2–57
MultiVolt I/O Interface ................................................................................................................. 2–60

Chapter 3. Configuration & Testing

IEEE Std. 1149.1 (JTAG) Boundary Scan Support ............................................................................. 3–1
Configuration ......................................................................................................................................... 3–5
Operating Modes ................................................................................................................................... 3–5
Configuration Schemes ......................................................................................................................... 3–6
Cyclone II Automated Single Event Upset Detection ...................................................................... 3–7

Custom-Built Circuitry .................................................................................................................... 3–7
Software Interface ............................................................................................................................. 3–7

Document Revision History ................................................................................................................. 3–8

Chapter 4. Hot Socketing & Power-On Reset

Introduction ............................................................................................................................................ 4–1
Cyclone II Hot-Socketing Specifications ............................................................................................ 4–1

Devices Can Be Driven before Power-Up ..................................................................................... 4–2
I/O Pins Remain Tri-Stated during Power-Up ............................................................................ 4–2

Hot-Socketing Feature Implementation in Cyclone II Devices ....................................................... 4–3
Power-On Reset Circuitry .................................................................................................................... 4–5

"Wake-up" Time for Cyclone II Devices ....................................................................................... 4–5

Conclusion .............................................................................................................................................. 4–7
Document Revision History ................................................................................................................. 4–7

Chapter 5. DC Characteristics and Timing Specifications

Operating Conditions ........................................................................................................................... 5–1

Single-Ended I/O Standards .......................................................................................................... 5–5
Differential I/O Standards .............................................................................................................. 5–7

DC Characteristics for Different Pin Types ..................................................................................... 5–11

On-Chip Termination Specifications ........................................................................................... 5–12

Power Consumption ........................................................................................................................... 5–13
Timing Specifications .......................................................................................................................... 5–14

Preliminary and Final Timing Specifications ............................................................................. 5–14

Performance .................................................................................................................................... 5–

15

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

v

Cyclone II Device Handbook, Volume 1

Contents

Internal Timing ............................................................................................................................... 5–18
Cyclone II Clock Timing Parameters ........................................................................................... 5–23
Clock Network Skew Adders ....................................................................................................... 5–29
IOE Programmable Delay ............................................................................................................. 5–30
Default Capacitive Loading of Different I/O Standards .......................................................... 5–31
I/O Delays ....................................................................................................................................... 5–33
Maximum Input and Output Clock Rate .................................................................................... 5–46
High Speed I/O Timing Specifications ....................................................................................... 5–55
External Memory Interface Specifications .................................................................................. 5–63
JTAG Timing Specifications .......................................................................................................... 5–64
PLL Timing Specifications ............................................................................................................ 5–66

Duty Cycle Distortion ......................................................................................................................... 5–67

DCD Measurement Techniques ................................................................................................... 5–68

Referenced Documents ....................................................................................................................... 5–74
Document Revision History ............................................................................................................... 5–74

Chapter 6. Reference & Ordering Information

Software .................................................................................................................................................. 6–1
Device Pin-Outs ..................................................................................................................................... 6–1
Ordering Information ........................................................................................................................... 6–1
Document Revision History ................................................................................................................. 6–2

Section II. Clock Management

Revision History .................................................................................................................................... 6–1

Chapter 7. PLLs in Cyclone II Devices

Introduction ............................................................................................................................................ 7–1
Cyclone II PLL Hardware Overview .................................................................................................. 7–2

PLL Reference Clock Generation ................................................................................................... 7–6

Clock Feedback Modes ....................................................................................................................... 7–10

Normal Mode .................................................................................................................................. 7–10
Zero Delay Buffer Mode ................................................................................................................ 7–11
No Compensation Mode ............................................................................................................... 7–12
Source-Synchronous Mode ........................................................................................................... 7–13

Hardware Features .............................................................................................................................. 7–14

Clock Multiplication & Division .................................................................................................. 7–14
Programmable Duty Cycle ........................................................................................................... 7–15
Phase-Shifting Implementation .................................................................................................... 7–16
Control Signals ................................................................................................................................ 7–17
Manual Clock Switchover ............................................................................................................. 7–20

Clocking ................................................................................................................................................ 7–21

Global Clock Network ................................................................................................................... 7–21
Clock Control Block ....................................................................................................................... 7–24
Global Clock Network Clock Source Generation ...................................................................... 7–26
Global Clock Network Power Down ........................................................................................... 7–28

ac/package_outlines/cyc_c52006-html.html
background image

vi

Altera Corporation

Cyclone II Device Handbook, Volume 1

Contents

clkena signals .................................................................................................................................. 7–29

Board Layout ........................................................................................................................................ 7–30

VCCA & GNDA ............................................................................................................................. 7–31
VCCD & GND ................................................................................................................................. 7–33

Conclusion ............................................................................................................................................ 7–33

Section III. Memory

Revision History .................................................................................................................................... 7–1

Chapter 8. Cyclone II Memory Blocks

Introduction ............................................................................................................................................ 8–1
Overview ................................................................................................................................................. 8–1

Control Signals .................................................................................................................................. 8–3
Parity Bit Support ............................................................................................................................. 8–4
Byte Enable Support ........................................................................................................................ 8–4
Packed Mode Support ..................................................................................................................... 8–6
Address Clock Enable ...................................................................................................................... 8–6

Memory Modes ...................................................................................................................................... 8–8

Single-Port Mode .............................................................................................................................. 8–9
Simple Dual-Port Mode ................................................................................................................. 8–10
True Dual-Port Mode ..................................................................................................................... 8–12
Shift Register Mode ........................................................................................................................ 8–14
ROM Mode ...................................................................................................................................... 8–16
FIFO Buffer Mode ........................................................................................................................... 8–16

Clock Modes ......................................................................................................................................... 8–16

Independent Clock Mode .............................................................................................................. 8–17
Input/Output Clock Mode ........................................................................................................... 8–19
Read/Write Clock Mode ............................................................................................................... 8–22
Single-Clock Mode ......................................................................................................................... 8–24
Power-Up Conditions & Memory Initialization ........................................................................ 8–27

Read-During- Write Operation at the Same Address .................................................................... 8–28

Same-Port Read-During-Write Mode .......................................................................................... 8–28
Mixed-Port Read-During-Write Mode ........................................................................................ 8–29

Conclusion ............................................................................................................................................ 8–30
Referenced Documents ....................................................................................................................... 8–30

Chapter 9. External Memory Interfaces

Introduction ............................................................................................................................................ 9–1
External Memory Interface Standards ................................................................................................ 9–2

DDR & DDR2 SDRAM .................................................................................................................... 9–2
QDRII SRAM ..................................................................................................................................... 9–5

Cyclone II DDR Memory Support Overview .................................................................................... 9–9

Data & Data Strobe Pins ................................................................................................................ 9–10
Clock, Command & Address Pins ............................................................................................... 9–14
Parity, DM & ECC Pins ................................................................................................................. 9–14

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

vii

Cyclone II Device Handbook, Volume 1

Contents

Phase Lock Loop (PLL) .................................................................................................................. 9–15
Clock Delay Control ....................................................................................................................... 9–15
DQS Postamble ............................................................................................................................... 9–16
DDR Input Registers ...................................................................................................................... 9–18
DDR Output Registers ................................................................................................................... 9–21
Bidirectional DDR Registers ......................................................................................................... 9–22

Conclusion ............................................................................................................................................ 9–24
Document Revision History ............................................................................................................... 9–25

Section IV. I/O Standards

Revision History .................................................................................................................................... 9–1

Chapter 10. Selectable I/O Standards in Cyclone II Devices

Introduction .......................................................................................................................................... 10–1
Supported I/O Standards ................................................................................................................... 10–1

3.3-V LVTTL (EIA/JEDEC Standard JESD8-B) .......................................................................... 10–3
3.3-V LVCMOS (EIA/JEDEC Standard JESD8-B) ..................................................................... 10–4
3.3-V (PCI Special Interest Group [SIG] PCI Local Bus Specification Revision 3.0) ............. 10–4
3.3-V PCI-X ...................................................................................................................................... 10–6
Easy-to-Use, Low-Cost PCI Express Solution ............................................................................ 10–6
2.5-V LVTTL (EIA/JEDEC Standard EIA/JESD8-5) ................................................................. 10–7
2.5-V LVCMOS (EIA/JEDEC Standard EIA/JESD8-5) ............................................................ 10–7
SSTL-2 Class I and II (EIA/JEDEC Standard JESD8-9A) ......................................................... 10–7
Pseudo-Differential SSTL-2 ........................................................................................................... 10–8
1.8-V LVTTL (EIA/JEDEC Standard EIA/JESD8-7) ................................................................. 10–9
1.8-V LVCMOS (EIA/JEDEC Standard EIA/JESD8-7) .......................................................... 10–10
SSTL-18 Class I and II .................................................................................................................. 10–10
1.8-V HSTL Class I and II ............................................................................................................ 10–11
Pseudo-Differential SSTL-18 Class I and Differential SSTL-18 Class II ............................... 10–12
1.8-V Pseudo-Differential HSTL Class I and II ........................................................................ 10–13
1.5-V LVCMOS (EIA/JEDEC Standard JESD8-11) .................................................................. 10–14
1.5-V HSTL Class I and II ............................................................................................................ 10–14
1.5-V Pseudo-Differential HSTL Class I and II ........................................................................ 10–15
LVDS, RSDS and mini-LVDS ..................................................................................................... 10–16
Differential LVPECL .................................................................................................................... 10–17

Cyclone II I/O Banks ........................................................................................................................ 10–18
Programmable Current Drive Strength .......................................................................................... 10–24

Voltage-Referenced I/O Standard Termination ...................................................................... 10–26
Differential I/O Standard Termination .................................................................................... 10–26
I/O Driver Impedance Matching (R

S

) and Series Termination (R

S

) ..................................... 10–27

Pad Placement and DC Guidelines ................................................................................................. 10–27

Differential Pad Placement Guidelines ..................................................................................... 10–28
V

REF

 Pad Placement Guidelines ................................................................................................. 10–29

DC Guidelines ............................................................................................................................... 10–32

5.0-V Device Compatibility .............................................................................................................. 10–34

ac/package_outlines/cyc_c52006-html.html
background image

viii

Altera Corporation

Cyclone II Device Handbook, Volume 1

Contents

Conclusion .......................................................................................................................................... 10–36
References ........................................................................................................................................... 10–37
Referenced Documents ..................................................................................................................... 10–38
Document Revision History ............................................................................................................. 10–38

Chapter 11. High-Speed Differential Interfaces in Cyclone II Devices

Introduction .......................................................................................................................................... 11–1
Cyclone II High-Speed I/O Banks .................................................................................................... 11–1
Cyclone II High-Speed I/O Interface ............................................................................................... 11–3
I/O Standards Support ....................................................................................................................... 11–4

LVDS Standard Support in Cyclone II Devices ......................................................................... 11–4
RSDS I/O Standard Support in Cyclone II Devices .................................................................. 11–7
mini-LVDS Standard Support in Cyclone II Devices ................................................................ 11–9
LVPECL Support in Cyclone II .................................................................................................. 11–11
Differential SSTL Support in Cyclone II Devices ..................................................................... 11–12
Differential HSTL Support in Cyclone II Devices ................................................................... 11–13

High-Speed I/O Timing in Cyclone II Devices ............................................................................. 11–14
Design Guidelines ............................................................................................................................. 11–16

Differential Pad Placement Guidelines ..................................................................................... 11–16
Board Design Considerations ..................................................................................................... 11–16

Conclusion .......................................................................................................................................... 11–17

Section V. DSP

Revision History .................................................................................................................................. 11–1

Chapter 12. Embedded Multipliers in Cyclone II Devices

Introduction .......................................................................................................................................... 12–1
Embedded Multiplier Block Overview ............................................................................................ 12–2
Architecture .......................................................................................................................................... 12–4

Input Registers ................................................................................................................................ 12–4
Multiplier Stage .............................................................................................................................. 12–5
Output Registers ............................................................................................................................. 12–6

Operational Modes .............................................................................................................................. 12–6

18-Bit Multipliers ............................................................................................................................ 12–7
9-Bit Multipliers .............................................................................................................................. 12–7

Software Support ................................................................................................................................. 12–9
Conclusion ............................................................................................................................................ 12–9

Section VI. Configuration & Test

Revision History .................................................................................................................................. 12–1

Chapter 13. Configuring Cyclone II Devices

Introduction .......................................................................................................................................... 13–1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

ix

Cyclone II Device Handbook, Volume 1

Contents

Cyclone II Configuration Overview ................................................................................................. 13–1
Configuration File Format .................................................................................................................. 13–3
Configuration Data Compression ..................................................................................................... 13–3
Active Serial Configuration (Serial Configuration Devices) ......................................................... 13–6

Single Device AS Configuration ................................................................................................... 13–7
Multiple Device AS Configuration ............................................................................................ 13–12
Configuring Multiple Cyclone II Devices with the Same Design ......................................... 13–15
Estimating AS Configuration Time ........................................................................................... 13–18
Programming Serial Configuration Devices ............................................................................ 13–19

PS Configuration ................................................................................................................................ 13–22

Single Device PS Configuration Using a MAX II Device as an External Host .................... 13–22
Multiple Device PS Configuration Using a MAX II Device as an External Host ................ 13–26
PS Configuration Using a Microprocessor ............................................................................... 13–31
Single Device PS Configuration Using a Configuration Device ............................................ 13–32
Multiple Device PS Configuration Using a Configuration Device ....................................... 13–37
PS Configuration Using a Download Cable ............................................................................. 13–48

JTAG Configuration .......................................................................................................................... 13–53

Single Device JTAG Configuration ............................................................................................ 13–55
JTAG Configuration of Multiple Devices ................................................................................. 13–58
Jam STAPL .................................................................................................................................... 13–60
Configuring Cyclone II FPGAs with JRunner .......................................................................... 13–60
Combining JTAG & Active Serial Configuration Schemes .................................................... 13–61
Programming Serial Configuration Devices In-System Using the JTAG Interface ............ 13–61

Device Configuration Pins ............................................................................................................... 13–64
Conclusion .......................................................................................................................................... 13–70

Chapter 14. IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

Introduction .......................................................................................................................................... 14–1
IEEE Std. 1149.1 BST Architecture .................................................................................................... 14–2
IEEE Std. 1149.1 Boundary-Scan Register ........................................................................................ 14–4

Boundary-Scan Cells of a Cyclone II Device I/O Pin ............................................................... 14–4

IEEE Std. 1149.1 BST Operation Control .......................................................................................... 14–6

SAMPLE/PRELOAD Instruction Mode ..................................................................................... 14–9
Capture Phase ............................................................................................................................... 14–10
Shift & Update Phases ................................................................................................................. 14–10
EXTEST Instruction Mode .......................................................................................................... 14–11
Capture Phase ............................................................................................................................... 14–12
Shift & Update Phases ................................................................................................................. 14–12
BYPASS Instruction Mode .......................................................................................................... 14–13
IDCODE Instruction Mode ......................................................................................................... 14–14
USERCODE Instruction Mode ................................................................................................... 14–14
CLAMP Instruction Mode .......................................................................................................... 14–14
HIGHZ Instruction Mode ........................................................................................................... 14–15
I/O Voltage Support in JTAG Chain ......................................................................................... 14–15

Using IEEE Std. 1149.1 BST Circuitry ............................................................................................. 14–16
BST for Configured Devices ............................................................................................................. 14–17
Disabling IEEE Std. 1149.1 BST Circuitry ....................................................................................... 14–18

ac/package_outlines/cyc_c52006-html.html
background image

x

Altera Corporation

Cyclone II Device Handbook, Volume 1

Contents

Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing ............................................................. 14–18
Boundary-Scan Description Language (BSDL) Support .............................................................. 14–19
Conclusion .......................................................................................................................................... 14–19
References ........................................................................................................................................... 14–19
Document Revision History ............................................................................................................. 14–20

Section VII. PCB Layout Guidelines

Revision History .................................................................................................................................. 14–1

Chapter 15. Package Information for Cyclone II Devices

Introduction .......................................................................................................................................... 15–1
Thermal Resistance .............................................................................................................................. 15–2
Package Outlines ................................................................................................................................. 15–4

144-Pin Plastic Thin Quad Flat Pack (TQFP) – Wirebond ........................................................ 15–4
208-Pin Plastic Quad Flat Pack (PQFP) – Wirebond ................................................................. 15–7
240-Pin Plastic Quad Flat Pack (PQFP) ....................................................................................... 15–9
256-Pin FineLine Ball-Grid Array, Option 2 – Wirebond ....................................................... 15–11
484-Pin FineLine BGA, Option 3 – Wirebond .......................................................................... 15–13
484-Pin Ultra FineLine BGA – Wirebond ................................................................................. 15–15
672-Pin FineLine BGA Package, Option 3 – Wirebond ........................................................... 15–17
896-Pin FineLine BGA Package – Wirebond ............................................................................ 15–19

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

xi

  

Chapter Revision Dates

The chapters in this book, 

Cyclone II Device Handbook, Volume 1

, were revised on the following dates. 

Where chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Introduction

Revised:

February 2008

Part number:

CII51001-3.2

Chapter 2. Cyclone II Architecture

Revised:

February 2007

Part number:

CII51002-3.1

Chapter 3. Configuration & Testing

Revised:

February 2007

Part number:

CII51003-2.2

Chapter 4. Hot Socketing & Power-On Reset

Revised:

February 2007

Part number:

CII51004-3.1

Chapter 5. DC Characteristics and Timing Specifications

Revised:

February 2008

Part number:

CII51005-4.0

Chapter 6. Reference & Ordering Information

Revised:

February 2007

Part number:

CII51006-1.4

Chapter 7. PLLs in Cyclone II Devices

Revised:

February 2007

Part number:

CII51007-3.1

Chapter 8. Cyclone II Memory Blocks

Revised:

February 2008

Part number:

CII51008-2.4

Chapter 9. External Memory Interfaces

Revised:

February 2007

Part number:

CII51009-3.1

ac/package_outlines/cyc_c52006-html.html
background image

xii

 Altera 

Corporation

  

Chapter Revision Dates

Cyclone II Device Handbook, Volume 1

Chapter 10. Selectable I/O Standards in Cyclone II Devices

Revised:

February 2008

Part number:

CII51010-2.4

Chapter 11. High-Speed Differential Interfaces in Cyclone II Devices

Revised:

February 2007

Part number:

CII51011-2.2

Chapter 12. Embedded Multipliers in Cyclone II Devices

Revised:

February 2007

Part number:

CII51012-1.2

Chapter 13. Configuring Cyclone II Devices

Revised:

February 2007

Part number:

CII51013-3.1

Chapter 14. IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

Revised:

February 2007

Part number:

CII51014-2.1

Chapter 15. Package Information for Cyclone II Devices

Revised:

February 2007

Part number:

CII51015-2.3

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

  

xiii

Cyclone II Device Handbook, Volume 1

About This Handbook

This handbook provides comprehensive information about the Altera

®

 

Cyclone

®

II family of devices. 

How to Contact 
Altera

For the most up-to-date information about Altera products, refer to the 
following table.

Typographic 
Conventions

This document uses the typographic conventions shown below.

Contact 

(1)

Contact 
Method

Address

 

Technical support

Website

www.altera.com/support

Technical training

Website

www.altera.com/training

Email

custrain@altera.com

Product literature

Website

www.altera.com/literature

 

Altera literature services

Email

literature@altera.com

Non-technical support (General)

(Software Licensing)

Email

nacomp@altera.com

 

Email

authorization@altera.com

Note to table:

(1)

You can also contact your local Altera sales office or sales representative. 

Visual Cue

Meaning

Bold Type with Initial 
Capital Letters

 

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: 

Save As

 dialog box. 

bold type

 

External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold 
type. Examples: 

f

MAX

, \qdesigns

 directory, 

d:

 drive, 

chiptrip.gdf

 file.

Italic Type with Initial Capital 
Letters

 

Document titles are shown in italic type with initial capital letters. Example: 

AN 

75: High-Speed Board Design.

ac/package_outlines/cyc_c52006-html.html
background image

xiv

Altera Corporation

Cyclone II Device Handbook, Volume 1

Typographic Conventions

Italic type

 

Internal timing parameters and variables are shown in italic type. 
Examples: 

t

PIA

n

 + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. 
Example: 

<file name>

<project name>

.pof

 file. 

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title”

References to sections within a document and titles of on-line help topics are 
shown in quotation marks. Example: “Typographic Conventions.”

Courier type

 

Signal and port names are shown in lowercase Courier type. Examples: 

data1

tdi

input.

 Active-low signals are denoted by suffix 

n

, e.g., 

resetn

.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: 

c:\qdesigns\tutorial\chiptrip.gdf

. Also, sections of an 

actual file, such as a Report File, references to parts of files (e.g., the AHDL 
keyword 

SUBDESIGN

), as well as logic function names (e.g., 

TRI

) are shown in 

Courier. 

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

 

Bullets are used in a list of items when the sequence of the items is not important. 

v

 

The checkmark indicates a procedure that consists of one step only.

1

 

The hand points to information that requires special attention. 

c

The caution indicates required information that needs special consideration and 
understanding and should be read prior to starting or continuing with the 
procedure or process.

w

The warning indicates information that should be read prior to starting or 
continuing the procedure or processes

r

 

The angled arrow indicates you should press the Enter key.

f

 

The feet direct you to more information on a particular topic. 

Visual Cue

Meaning

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

Section I–1

Preliminary

Section I. Cyclone II

Device Family Data Sheet

This section provides information for board layout designers to 
successfully layout their boards for Cyclone

®

II devices. It contains the 

required PCB layout guidelines, device pin tables, and package 
specifications.

This section includes the following chapters:

Chapter 1. Introduction

Chapter 2. Cyclone II Architecture

Chapter 3. Configuration & Testing

Chapter 4. Hot Socketing & Power-On Reset

Chapter 5. DC Characteristics and Timing Specifications

Chapter 6. Reference & Ordering Information

Revision History 

Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Section I–2

 

Altera Corporation

Preliminary

Revision History

Cyclone II Device Handbook, Volume 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

1–1

February 2008

1. Introduction

Introduction

Following the immensely successful first-generation Cyclone

®

 device 

family, Altera

®

 Cyclone II FPGAs extend the low-cost FPGA density 

range to 68,416 logic elements (LEs) and provide up to 622 usable I/O 
pins and up to 1.1 Mbits of embedded memory. Cyclone II FPGAs are 
manufactured on 300-mm wafers using TSMC's 90-nm low-k dielectric 
process to ensure rapid availability and low cost. By minimizing silicon 
area, Cyclone II devices can support complex digital systems on a single 
chip at a cost that rivals that of ASICs. Unlike other FPGA vendors who 
compromise power consumption and performance for low-cost, Altera’s 
latest generation of low-cost FPGAs—Cyclone II FPGAs, offer 60% higher 
performance and half the power consumption of competing 90-nm 
FPGAs. The low cost and optimized feature set of Cyclone II FPGAs make 
them ideal solutions for a wide array of automotive, consumer, 
communications, video processing, test and measurement, and other 
end-market solutions. Reference designs, system diagrams, and IP, found 
at 

www.altera.com

, are available to help you rapidly develop complete 

end-market solutions using Cyclone II FPGAs.

Low-Cost Embedded Processing Solutions

Cyclone II devices support the Nios II embedded processor which allows 
you to implement custom-fit embedded processing solutions.  Cyclone II 
devices can also expand the peripheral set, memory, I/O, or performance 
of embedded processors.  Single or multiple Nios II embedded processors 
can be designed into a Cyclone II device to provide additional 
co-processing power or even replace existing embedded processors in 
your system.  Using Cyclone II and Nios II together allow for low-cost, 
high-performance embedded processing solutions, which allow you to 
extend your product's life cycle and improve time to market over 
standard product solutions.

Low-Cost DSP Solutions

Use Cyclone II FPGAs alone or as DSP co-processors to improve 
price-to-performance ratios for digital signal processing (DSP) 
applications. You can implement high-performance yet low-cost DSP 
systems with the following Cyclone II features and design support:

Up to 150 18 × 18 multipliers

Up to 1.1 Mbit of on-chip embedded memory

High-speed interfaces to external memory

CII51001-3.2

ac/package_outlines/cyc_c52006-html.html
background image

1–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Features

DSP intellectual property (IP) cores

DSP Builder interface to The Mathworks Simulink and Matlab 
design environment

DSP Development Kit, Cyclone II Edition

Cyclone II devices include a powerful FPGA feature set optimized for 
low-cost applications including a wide range of density, memory, 
embedded multiplier, and packaging options. Cyclone II devices support 
a wide range of common external memory interfaces and I/O protocols 
required in low-cost applications. Parameterizable IP cores from Altera 
and partners make using Cyclone II interfaces and protocols fast and easy.

Features

The Cyclone II device family offers the following features:

High-density architecture with 4,608 to 68,416 LEs

M4K embedded memory blocks

Up to 1.1 Mbits of RAM available without reducing available 
logic

4,096 memory bits per block (4,608 bits per block including 512 
parity bits)

Variable port configurations of ×1, ×2, ×4, ×8, ×9, ×16, ×18, ×32, 
and ×36

True dual-port (one read and one write, two reads, or two 
writes) operation for ×1, ×2, ×4, ×8, ×9, ×16, and ×18 modes

Byte enables for data input masking during writes

Up to 260-MHz operation

Embedded multipliers

Up to 150 18- × 18-bit multipliers are each configurable as two 
independent 9- × 9-bit multipliers with up to 250-MHz 
performance

Optional input and output registers

Advanced I/O support

High-speed differential I/O standard support, including LVDS, 
RSDS, mini-LVDS, LVPECL, differential HSTL, and differential 
SSTL 

Single-ended I/O standard support, including 2.5-V and 1.8-V, 
SSTL class I and II, 1.8-V and 1.5-V HSTL class I and II, 3.3-V PCI 
and PCI-X 1.0, 3.3-, 2.5-, 1.8-, and 1.5-V LVCMOS, and 3.3-, 2.5-, 
and 1.8-V LVTTL

Peripheral Component Interconnect Special Interest Group (PCI 
SIG) 

PCI Local Bus Specification, Revision 3.0

 

compliance for 3.3-V 

operation at 33 or 66 MHz for 32- or 64-bit interfaces 

PCI Express with an external TI PHY and an Altera PCI Express 
×1 Megacore

®

 function

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

1–3

February 2008

Cyclone II Device Handbook, Volume 1

Introduction

133-MHz PCI-X 1.0 specification compatibility

High-speed external memory support, including DDR, DDR2, 
and SDR SDRAM, and QDRII SRAM supported by drop in 
Altera IP MegaCore functions for ease of use

Three dedicated registers per I/O element (IOE): one input 
register, one output register, and one output-enable register

Programmable bus-hold feature

Programmable output drive strength feature

Programmable delays from the pin to the IOE or logic array

I/O bank grouping for unique VCCIO and/or VREF bank 
settings

MultiVolt

 I/O standard support for 1.5-, 1.8-, 2.5-, and 

3.3-interfaces

Hot-socketing operation support

Tri-state with weak pull-up on I/O pins before and during 
configuration

Programmable open-drain outputs

Series on-chip termination support

Flexible clock management circuitry

Hierarchical clock network for up to 402.5-MHz performance

Up to four PLLs per device provide clock multiplication and 
division, phase shifting, programmable duty cycle, and external 
clock outputs, allowing system-level clock management and 
skew control 

Up to 16 global clock lines in the global clock network that drive 
throughout the entire device

Device configuration

Fast serial configuration allows configuration times less than 
100 ms

Decompression feature allows for smaller programming file 
storage and faster configuration times

Supports multiple configuration modes: active serial, passive 
serial, and JTAG-based configuration

Supports configuration through low-cost serial configuration 
devices

Device configuration supports multiple voltages (either 3.3, 2.5, 
or 1.8 V)

Intellectual property

Altera megafunction and Altera MegaCore function support, 
and Altera Megafunctions Partners Program (AMPP

SM

megafunction support, for a wide range of embedded 
processors, on-chip and off-chip interfaces, peripheral 
functions, DSP functions, and communications functions and 

ac/package_outlines/cyc_c52006-html.html
background image

1–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Features

protocols. Visit the Altera IPMegaStore at 

www.altera.com

 to 

download IP MegaCore functions.

Nios II Embedded Processor support

The Cyclone II family offers devices with the Fast-On feature, which 
offers a faster power-on-reset (POR) time. Devices that support the 
Fast-On feature are designated with an “A” in the device ordering code.  
For example, EP2C5A, EP2C8A, EP2C15A, and EP2C20A. The EP2C5A is 
only available in the automotive speed grade. The EP2C8A and EP2C20A 
are only available in the industrial speed grade. The EP2C15A is only 
available with the Fast-On feature and is available in both commercial 
and industrial grades. The Cyclone II “A” devices are identical in feature 
set and functionality to the non-A devices except for support of the faster 
POR time.

f

Cyclone II A devices are offered in automotive speed grade. For more 
information, refer to the Cyclone II section in the 

Automotive-Grade Device 

Handbook

.

f

For more information on POR time specifications for Cyclone II A and 
non-A devices, refer to the 

Hot Socketing & Power-On Reset

 

chapter in the 

Cyclone II Device Handbook

.

Table 1–1

 lists the Cyclone II device family features. 

Table 1–2

 lists the 

Cyclone II device package offerings and maximum user I/O pins.

Table 1–1. Cyclone II FPGA Family Features (Part 1 of 2)

Feature

EP2C5 

(2)

EP2C8 

(2)

EP2C15 

(1)

EP2C20 

(2)

EP2C35

EP2C50

EP2C70

LEs

4,608

8,256

14,448

18,752

33,216

50,528

68,416

M4K RAM blocks (4 
Kbits plus 
512 parity bits

26

36

52

52

105

129

250

Total RAM bits

119,808

165,888

239,616

239,616

483,840

594,432

1,152,00

0

Embedded 
multipliers 

(3)

13

18

26

26

35

86

150

PLLs

2

2

4

4

4

4

4

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

1–5

February 2008

Cyclone II Device Handbook, Volume 1

Introduction

Maximum user 
I/O pins

158

182

315

315

475

450

622

Notes to 

Table 1–1

:

(1)

The EP2C15A is only available with the Fast On feature, which offers a faster POR time. This device is available in 
both commercial and industrial grade.

(2)

The EP2C5, EP2C8, and EP2C20 optionally support the Fast On feature, which is designated with an “A” in the 
device ordering  code. The EP2C5A is only available in the automotive speed grade. The EP2C8A and EP2C20A 
devices are only available in industrial grade.

(3)

This is the total number of 18 

×

 18 multipliers. For the total number of 9 

×

 9 multipliers per device, multiply the 

total number of 18 

×

 18 multipliers by 2.

Table 1–1. Cyclone II FPGA Family Features (Part 2 of 2)

Feature

EP2C5 

(2)

EP2C8 

(2)

EP2C15 

(1)

EP2C20 

(2)

EP2C35

EP2C50

EP2C70

ac/package_outlines/cyc_c52006-html.html
background image

1–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Features

Cyclone II devices support vertical migration within the same package 
(for example, you can migrate between the EP2C35, EPC50, and EP2C70 
devices in the 672-pin FineLine BGA package). The exception to vertical 
migration support within the Cyclone II family is noted in 

Table 1–3

Table 1–2. Cyclone II Package Options & Maximum User I/O Pins

Notes (1)

 

(2)

Device

144-Pin 

TQFP 

(3)

208-Pin 

PQFP 

(4)

240-Pin 

PQFP

256-Pin 

FineLine 

BGA

484-Pin 

FineLine 

BGA

484-Pin 

Ultra 

FineLine 

BGA

672-Pin 

FineLine 

BGA

896-Pin 

FineLine 

BGA

EP2C5 

(6)

 

(8)

89

142

158 

(5)

EP2C8 

(6)

85

138

182

EP2C8A 

(6)

(7)

182

EP2C15A 

(6)

(7)

152

315

EP2C20 

(6)

142

152

315

EP2C20A 

(6)

(7)

152

315

EP2C35 

(6)

322

322

475

EP2C50 

(6)

294

294

450

EP2C70 

(6)

422

622

Notes to 

Table 1–2

:

(1)

Cyclone II devices support vertical migration within the same package (for example, you can migrate between the 
EP2C20 device in the 484-pin FineLine BGA package and the EP2C35 and EP2C50 devices in the same package).

(2)

The Quartus

®

 II software I/O pin counts include four additional pins, 

TDI

TDO

TMS

, and 

TCK

, which are not 

available as general purpose I/O pins.

(3)

TQFP: thin quad flat pack.

(4)

PQFP: plastic quad flat pack.

(5)

Vertical migration is supported between the EP2C5F256 and the EP2C8F256 devices. However, not all of the DQ 
and DQS groups are supported. Vertical migration between the EP2C5 and the EP2C15 in the F256 package is not 
supported.

(6)

The I/O pin counts for the EP2C5, EP2C8, and EP2C15A devices include 8 dedicated clock pins that can be used 
for data inputs. The I/O counts for the EP2C20, EP2C35, EP2C50, and EP2C70 devices include 16 dedicated clock 
pins that can be used for data inputs.

(7)

EP2C8A, EP2C15A, and EP2C20A have a Fast On feature that has a faster POR time. The EP2C15A is only available 
with the Fast On option.

(8)

The EP2C5 optionally support the Fast On feature, which is designated with an “A” in the device ordering code. 
The EP2C5A is only available in the automotive speed grade. Refer to the Cyclone II section in the 

Automotive-Grade 

Device Handbook

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

1–7

February 2008

Cyclone II Device Handbook, Volume 1

Introduction

Vertical migration means that you can migrate to devices whose 
dedicated pins, configuration pins, and power pins are the same for a 
given package across device densities.

1

When moving from one density to a larger density, I/O pins are 
often lost because of the greater number of power and ground 
pins required to support the additional logic within the larger 
device. For I/O pin migration across densities, you must cross 
reference the available I/O pins using the device pin-outs for all 
planned densities of a given package type to identify which I/O 
pins are migratable.

To ensure that your board layout supports migratable densities within 
one package offering, enable the applicable vertical migration path 
within the Quartus II software (go to Assignments menu, then Device, 
then click the 

Migration Devices

 button). After compilation, check the 

information messages for a full list of I/O, DQ, LVDS, and other pins that 
are not available because of the selected migration path. 

Table 1–3

 lists the 

Cyclone II device package offerings and shows the total number of 
non-migratable I/O pins when migrating from one density device to a 
larger density device.

Table 1–3. Total Number of Non-Migratable I/O Pins for Cyclone II Vertical Migration Paths

Vertical 

Migration Path

144-Pin TQFP

208-Pin 

PQFP 

256-Pin 

FineLine BGA 

(1)

484-Pin 

FineLine BGA 

(2)

484-Pin Ultra 

FineLine BGA

672-Pin 

FineLine BGA 

(3)

EP2C5 to 
EP2C8

4

4

(4)

EP2C8 to 
EP2C15

30

EP2C15 to 
EP2C20

0

0

EP2C20 to 
EP2C35

16

EP2C35 to 
EP2C50

28

28 

(5)

28

EP2C50 to 
EP2C70

28

28

Notes to 

Table 1–3

:

(1)

Vertical migration between the EP2C5F256 to the EP2C15AF256 and the EP2C5F256 to the EP2C20F256 devices is 
not supported.

(2)

When migrating from the EP2C20F484 device to the EP2C50F484 device, a total of 39 I/O pins are non-migratable.

(3)

When migrating from the EP2C35F672 device to the EP2C70F672 device, a total of 56 I/O pins are non-migratable.

(4)

In addition to the one non-migratable I/O pin, there are 34 DQ pins that are non-migratable.

(5)

The pinouts of 484 FBGA and 484 UBGA are the same.

ac/package_outlines/cyc_c52006-html.html
background image

1–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Features

Cyclone II devices are available in up to three speed grades: –6, –7, and 
–8, with –6 being the fastest. 

Table 1–4

 shows the Cyclone II device 

speed-grade offerings.

Table 1–4. Cyclone II Device Speed Grades

Device

144-Pin 

TQFP

208-Pin 

PQFP 

240-Pin 

PQFP

256-Pin 

FineLine 

BGA

484-Pin 

FineLine 

BGA

484-Pin 

Ultra 

FineLine 

BGA

672-Pin 

FineLine 

BGA

896-Pin 

FineLine 

BGA

EP2C5 

(1)

6, 

7, 

8

7, 

8

6, 

7, 

EP2C8 

6, 

7, 

8

7, 

8

6, 

7, 

8

EP2C8A 

(2)

8

EP2C15A

6, 

7, 

8

6, 

7, 

8

EP2C20 —

8

6, 

7, 

8

6, 

7, 

8

EP2C20A 

(2)

8

8

EP2C35 —

6, 

7, 

8

6, 

7, 

8

6, 

7, 

8

EP2C50 —

6, 

7, 

8

6, 

7, 

8

6, 

7, 

8

EP2C70 

6, 

7, 

8

6, 

7, 

8

Notes to 

Table 1–4

:

(1)

The EP2C5 optionally support the Fast On feature, which is designated with an “A” in the device ordering code. 
The EP2C5A is only available in the automotive speed grade. Refer to the Cyclone II section in the 

Automotive-Grade 

Device Handbook

 

for detailed information.

(2)

EP2C8A and EP2C20A are only available in industrial grade.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

1–9

February 2008

Cyclone II Device Handbook, Volume 1

Introduction

Referenced 
Documents

This chapter references the following documents:

Hot Socketing & Power-On Reset

 chapter in 

Cyclone II Device Handbook

Automotive-Grade Device Handbook

 

Document 
Revision History

Table 1–5

 shows the revision history for this document.

Table 1–5. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2008 
v3.2

Added 

“Referenced Documents”

.

Updated 

“Features”

 section and 

Table 1–1

Table 1–2

and 

Table 1–4

 with information about EP2C5A.

February 2007 
v3.1

Added document revision history.

Added new 

Note (2)

 to 

Table 1–2

.

Note to explain difference 
between I/O pin count 
information provided in 

Table 1–2

 and in the Quartus II 

software documentation.

November 2005 
v2.1

Updated Introduction and Features.

Updated 

Table 1–3

.

July 2005 v2.0

Updated technical content throughout.

Updated 

Table 1–2

.

Added 

Tables 1–3

 and 

1–4

.

November 2004 
v1.1

Updated 

Table 1–2

.

Updated bullet list in the 

“Features”

 section.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

1–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Document Revision History

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

2–1

February 2007

2. Cyclone II Architecture

Functional 
Description

Cyclone

®

II devices contain a two-dimensional row- and column-based 

architecture to implement custom logic. Column and row interconnects 
of varying speeds provide signal interconnects between logic array 
blocks (LABs), embedded memory blocks, and embedded multipliers.

The logic array consists of LABs, with 16 logic elements (LEs) in each 
LAB. An LE is a small unit of logic providing efficient implementation of 
user logic functions. LABs are grouped into rows and columns across the 
device. Cyclone II devices range in density from 4,608 to 68,416 LEs.

Cyclone II devices provide a global clock network and up to four 
phase-locked loops (PLLs). The global clock network consists of up to 16 
global clock lines that drive throughout the entire device. The global clock 
network can provide clocks for all resources within the device, such as 
input/output elements (IOEs), LEs, embedded multipliers, and 
embedded memory blocks. The global clock lines can also be used for 
other high fan-out signals. Cyclone II PLLs provide general-purpose 
clocking with clock synthesis and phase shifting as well as external 
outputs for high-speed differential I/O support.

M4K memory blocks are true dual-port memory blocks with 4K bits of 
memory plus parity (4,608 bits). These blocks provide dedicated true 
dual-port, simple dual-port, or single-port memory up to 36-bits wide at 
up to 260 MHz. These blocks are arranged in columns across the device 
in between certain LABs. Cyclone II devices offer between 119 to 
1,152 Kbits of embedded memory.

Each embedded multiplier block can implement up to either two 9 × 9-bit 
multipliers, or one 18 × 18-bit multiplier with up to 250-MHz 
performance. Embedded multipliers are arranged in columns across the 
device.

Each Cyclone II device I/O pin is fed by an IOE located at the ends of LAB 
rows and columns around the periphery of the device. I/O pins support 
various single-ended and differential I/O standards, such as the 66- and 
33-MHz, 64- and 32-bit PCI standard, PCI-X, and the LVDS I/O standard 
at a maximum data rate of 805 megabits per second (Mbps) for inputs and 
640 Mbps for outputs. Each IOE contains a bidirectional I/O buffer and 
three registers for registering input, output, and output-enable signals. 
Dual-purpose DQS, DQ, and DM pins along with delay chains (used to 

CII51002-3.1

ac/package_outlines/cyc_c52006-html.html
background image

2–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Logic Elements

phase-align double data rate (DDR) signals) provide interface support for 
external memory devices such as DDR, DDR2, and single data rate (SDR) 
SDRAM, and QDRII SRAM devices at up to 167 MHz. 

Figure 2–1

 shows a diagram of the Cyclone II EP2C20 device.

Figure 2–1. Cyclone II EP2C20 Device Block Diagram

The number of M4K memory blocks, embedded multiplier blocks, PLLs, 
rows, and columns vary per device.

Logic Elements

The smallest unit of logic in the Cyclone II architecture, the LE, is compact 
and provides advanced features with efficient logic utilization. Each LE 
features:

A four-input look-up table (LUT), which is a function generator that 
can implement any function of four variables

A programmable register

A carry chain connection

A register chain connection

The ability to drive all types of interconnects: local, row, column, 
register chain, and direct link interconnects

Support for register packing

Support for register feedback

PLL

PLL

IOEs

PLL

PLL

IOEs

IOEs

Logic
Array

Logic
Array

Logic
Array

Logic
Array

IOEs

M4K Blocks

M4K Blocks

Embedded
Multipliers

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–3

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–2

 shows a Cyclone II LE.

Figure 2–2. Cyclone II LE 

Each LE’s programmable register can be configured for D, T, JK, or SR 
operation. Each register has data, clock, clock enable, and clear inputs. 
Signals that use the global clock network, general-purpose I/O pins, or 
any internal logic can drive the register’s clock and clear control signals. 
Either general-purpose I/O pins or internal logic can drive the clock 
enable. For combinational functions, the LUT output bypasses the 
register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing 
resources. The LUT or register output can drive these three outputs 
independently. Two LE outputs drive column or row and direct link 
routing connections and one drives local interconnect resources, allowing 
the LUT to drive one output while the register drives another output. This 
feature, register packing, improves device utilization because the device 
can use the register and the LUT for unrelated functions. When using 
register packing, the LAB-wide synchronous load control signal is not 
available. See 

“LAB Control Signals” on page 2–8

 for more information.

labclk1

labclk2

labclr2

LAB Carry-In

Clock &

Clock Enable

Select

LAB Carry-Out

Look-Up

Table
(LUT)

Carry

Chain

Row, Column,
And Direct Link 
Routing

Row, Column,
And Direct Link 
Routing

Programmable
Register

CLRN

D

Q

ENA

Register Bypass

Packed
Register Select

Chip-Wide

Reset

(DEV_CLRn)

labclkena1

labclkena2

Synchronous

Load and

Clear Logic

LAB-Wide

Synchronous

Load

LAB-Wide

Synchronous

Clear

Asynchronous

Clear Logic

data1
data2
data3

data4

labclr1

Local Routing

Register Chain
Output

Register
Feedback

Register Chain
Routing From
Previous LE

ac/package_outlines/cyc_c52006-html.html
background image

2–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Logic Elements

Another special packing mode allows the register output to feed back into 
the LUT of the same LE so that the register is packed with its own fan-out 
LUT, providing another mechanism for improved fitting. The LE can also 
drive out registered and unregistered versions of the LUT output.

In addition to the three general routing outputs, the LEs within an LAB 
have register chain outputs. Register chain outputs allow registers within 
the same LAB to cascade together. The register chain output allows an 
LAB to use LUTs for a single combinational function and the registers to 
be used for an unrelated shift register implementation. These resources 
speed up connections between LABs while saving local interconnect 
resources. Se

“MultiTrack Interconnect” on page 2–10

 for more 

information on register chain connections.

LE Operating Modes

The Cyclone II LE operates in one of the following modes:

Normal mode

Arithmetic mode

Each mode uses LE resources differently. In each mode, six available 
inputs to the LE—the four data inputs from the LAB local interconnect, 
the LAB carry-in from the previous carry-chain LAB, and the register 
chain connection—are directed to different destinations to implement the 
desired logic function. LAB-wide signals provide clock, asynchronous 
clear, synchronous clear, synchronous load, and clock enable control for 
the register. These LAB-wide signals are available in all LE modes.

The Quartus

®

II software, in conjunction with parameterized functions 

such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinational functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see 

Figure 2–3

). The 

Quartus II Compiler automatically selects the carry-in or the 

data3

 

signal as one of the inputs to the LUT. LEs in normal mode support 
packed registers and register feedback.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–5

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–3. LE in Normal Mode

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, counters, 
accumulators, and comparators. An LE in arithmetic mode implements a 
2-bit full adder and basic carry chain (see 

Figure 2–4

). LEs in arithmetic 

mode can drive out registered and unregistered versions of the LUT 
output. Register feedback and register packing are supported when LEs 
are used in arithmetic mode.

data1

Four-Input

LUT

data2

data3
cin (from cout 
of previous LE)

data4

clock (LAB Wide)

ena (LAB Wide)

aclr (LAB Wide)

CLRN

D

Q

ENA

sclear

(LAB Wide)

sload

(LAB Wide)

Register chain

connection

Register
chain output

Row, Column, and
Direct Link Routing

Row, Column, and
Direct Link Routing

Local routing

Register Feedback

Packed Register Input

ac/package_outlines/cyc_c52006-html.html
background image

2–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Logic Elements

Figure 2–4. LE in Arithmetic Mode

The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 16 LEs by 
automatically linking LABs in the same column. For enhanced fitting, a 
long carry chain runs vertically, which allows fast horizontal connections 
to M4K memory blocks or embedded multipliers through direct link 
interconnects. For example, if a design has a long carry chain in a LAB 
column next to a column of M4K memory blocks, any LE output can feed 
an adjacent M4K memory block through the direct link interconnect. 
Whereas if the carry chains ran horizontally, any LAB not next to the 
column of M4K memory blocks would use other row or column 
interconnects to drive a M4K memory block. A carry chain continues as 
far as a full column.

clock (LAB Wide)

ena (LAB Wide)

aclr (LAB Wide)

CLRN

D

Q

ENA

Register chain

connection

sclear

(LAB Wide)

sload

(LAB Wide)

Register
chain output

Row, column, and
direct link routing

Row, column, and
direct link routing

Local routing

Register Feedback

Three-Input

LUT

Three-Input

LUT

cin (from cout

of previous LE)

data2

data1

cout

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–7

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Logic Array 
Blocks

Each LAB consists of the following:

16 LEs

LAB control signals

LE carry chains

Register chains

Local interconnect

The local interconnect transfers signals between LEs in the same LAB. 
Register chain connections transfer the output of one LE’s register to the 
adjacent LE’s register within an LAB. The Quartus II Compiler places 
associated logic within an LAB or adjacent LABs, allowing the use of 
local, and register chain connections for performance and area efficiency. 

Figure 2–5

 shows the Cyclone II LAB.

Figure 2–5. Cyclone II LAB Structure

Direct link
interconnect
from adjacent
block

Direct link
interconnect
to adjacent
block

Row Interconnect

Column 
Interconnect

Local Interconnect

LAB

Direct link
interconnect
from adjacent
block

Direct link
interconnect
to adjacent
block

ac/package_outlines/cyc_c52006-html.html
background image

2–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Logic Array Blocks

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB 
local interconnect is driven by column and row interconnects and LE 
outputs within the same LAB. Neighboring LABs, PLLs, M4K RAM 
blocks, and embedded multipliers from the left and right can also drive 
an LAB’s local interconnect through the direct link connection. The direct 
link connection feature minimizes the use of row and column 
interconnects, providing higher performance and flexibility. Each LE can 
drive 48 LEs through fast local and direct link interconnects. 

Figure 2–6

 

shows the direct link connection.

Figure 2–6. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. 
The control signals include:

Two clocks

Two clock enables

Two asynchronous clears

One synchronous clear

One synchronous load

LAB

Direct link
interconnect
to right

Direct link interconnect from
right LAB, M4K memory
block, embedded multiplier,
PLL, or IOE output

Direct link interconnect from

left LAB, M4K memory

block, embedded multiplier,

PLL, or IOE output

Local

Interconnect

Direct link

interconnect

to left

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–9

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

This gives a maximum of seven control signals at a time. When using the 
LAB-wide synchronous load, the 

clkena

 of 

labclk1

 is not available. 

Additionally, register packing and synchronous load cannot be used 
simultaneously.

Each LAB can have up to four non-global control signals. Additional LAB 
control signals can be used as long as they are global signals.

Synchronous clear and load signals are useful for implementing counters 
and other functions. The synchronous clear and synchronous load signals 
are LAB-wide signals that affect all registers in the LAB.

Each LAB can use two clocks and two clock enable signals. Each LAB’s 
clock and clock enable signals are linked. For example, any LE in a 
particular LAB using the 

labclk1

 signal also uses 

labclkena1

. If the 

LAB uses both the rising and falling edges of a clock, it also uses both 
LAB-wide clock signals. De-asserting the clock enable signal turns off the 
LAB-wide clock.

The LAB row clocks [5..0] and LAB local interconnect generate the LAB-
wide control signals. The MultiTrack

 interconnect’s inherent low skew 

allows clock and control signal distribution in addition to data. 

Figure 2–7

 

shows the LAB control signal generation circuit.

Figure 2–7. LAB-Wide Control Signals

LAB-wide signals control the logic for the register’s clear signal. The LE 
directly supports an asynchronous clear function. Each LAB supports up 
to two asynchronous clear signals (

labclr1

 and 

labclr2

).

labclkena1

labclk2

labclk1

labclkena2

labclr1

Dedicated
LAB Row
Clocks

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

syncload

synclr

labclr2

6

ac/package_outlines/cyc_c52006-html.html
background image

2–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

MultiTrack Interconnect

A LAB-wide asynchronous load signal to control the logic for the 
register’s preset signal is not available. The register preset is achieved by 
using a NOT gate push-back technique. Cyclone II devices can only 
support either a preset or asynchronous clear signal.

In addition to the clear port, Cyclone II devices provide a chip-wide reset 
pin (

DEV_CLRn

) that resets all registers in the device. An option set before 

compilation in the Quartus II software controls this pin. This chip-wide 
reset overrides all other control signals.

MultiTrack 
Interconnect

In the Cyclone II architecture, connections between LEs, M4K memory 
blocks, embedded multipliers, and device I/O pins are provided by the 
MultiTrack interconnect structure with DirectDrive™ technology. The 
MultiTrack interconnect consists of continuous, performance-optimized 
routing lines of different speeds used for inter- and intra-design block 
connectivity. The Quartus II Compiler automatically places critical paths 
on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row (direct link, R4, and R24) and 
column (register chain, C4, and C16) interconnects that span fixed 
distances. A routing structure with fixed-length resources for all devices 
allows predictable and repeatable performance when migrating through 
different device densities.

Row Interconnects

Dedicated row interconnects route signals to and from LABs, PLLs, M4K 
memory blocks, and embedded multipliers within the same row. These 
row resources include:

Direct link interconnects between LABs and adjacent blocks

R4 interconnects traversing four blocks to the right or left

R24 interconnects for high-speed access across the length of the 
device

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–11

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

The direct link interconnect allows an LAB, M4K memory block, or 
embedded multiplier block to drive into the local interconnect of its left 
and right neighbors. Only one side of a PLL block interfaces with direct 
link and row interconnects. The direct link interconnect provides fast 
communication between adjacent LABs and/or blocks without using 
row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M4K memory 
block, or three LABs and one embedded multiplier to the right or left of a 
source LAB. These resources are used for fast row connections in a four-
LAB region. Every LAB has its own set of R4 interconnects to drive either 
left or right. 

Figure 2–8

 shows R4 interconnect connections from an LAB. 

R4 interconnects can drive and be driven by LABs, M4K memory blocks, 
embedded multipliers, PLLs, and row IOEs. For LAB interfacing, a 
primary LAB or LAB neighbor (see 

Figure 2–8

) can drive a given R4 

interconnect. For R4 interconnects that drive to the right, the primary 
LAB and right neighbor can drive on to the interconnect. For R4 
interconnects that drive to the left, the primary LAB and its left neighbor 
can drive on to the interconnect. R4 interconnects can drive other R4 
interconnects to extend the range of LABs they can drive. Additionally, 
R4 interconnects can drive R24 interconnects, C4, and C16 interconnects 
for connections from one row to another. 

Figure 2–8. R4 Interconnect Connections

Notes to 

Figure 2–8

:

(1)

C4 interconnects can drive R4 interconnects.

(2)

This pattern is repeated for every LAB in the LAB row.

Primary
LAB (2)

R4 Interconnect

Driving Left

Adjacent LAB can
Drive onto Another
LAB's R4 Interconnect

C4 Column Interconnects (1)

R4 Interconnect
Driving Right

LAB

Neighbor

LAB

Neighbor

ac/package_outlines/cyc_c52006-html.html
background image

2–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

MultiTrack Interconnect

R24 row interconnects span 24 LABs and provide the fastest resource for 
long row connections between non-adjacent LABs, M4K memory blocks, 
dedicated multipliers, and row IOEs. R24 row interconnects drive to 
other row or column interconnects at every fourth LAB. R24 row 
interconnects drive LAB local interconnects via R4 and C4 interconnects 
and do not drive directly to LAB local interconnects. R24 interconnects 
can drive R24, R4, C16, and C4 interconnects.

Column Interconnects

The column interconnect operates similar to the row interconnect. Each 
column of LABs is served by a dedicated column interconnect, which 
vertically routes signals to and from LABs, M4K memory blocks, 
embedded multipliers, and row and column IOEs. These column 
resources include:

Register chain interconnects within an LAB

C4 interconnects traversing a distance of four blocks in an up and 
down direction

C16 interconnects for high-speed vertical routing through the device

Cyclone II devices include an enhanced interconnect structure within 
LABs for routing LE output to LE input connections faster using register 
chain connections. The register chain connection allows the register 
output of one LE to connect directly to the register input of the next LE in 
the LAB for fast shift registers. The Quartus II Compiler automatically 
takes advantage of these resources to improve utilization and 
performance. 

Figure 2–9

 shows the register chain interconnects.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–13

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–9. Register Chain Interconnects

The C4 interconnects span four LABs, M4K blocks, or embedded 
multipliers up or down from a source LAB. Every LAB has its own set of 
C4 interconnects to drive either up or down. 

Figure 2–10

 shows the C4 

interconnect connections from an LAB in a column. The C4 interconnects 
can drive and be driven by all types of architecture blocks, including 
PLLs, M4K memory blocks, embedded multiplier blocks, and column 
and row IOEs. For LAB interconnection, a primary LAB or its LAB 
neighbor (see 

Figure 2–10

) can drive a given C4 interconnect. C4 

interconnects can drive each other to extend their range as well as drive 
row interconnects for column-to-column connections.

LE 1

LE 2

LE 3

LE 4

LE 5

LE 6

LE 7

LE 8

LE 9

LE 10

LE 11

LE 12

LE13

LE 14

LE 15

LE 16

Carry Chain

Routing to

Adjacent LE

Local

Interconnect

Register Chain
Routing to Adjacent
LE's Register Input

Local Interconnect
Routing Among LEs
in the LAB

ac/package_outlines/cyc_c52006-html.html
background image

2–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

MultiTrack Interconnect

Figure 2–10. C4 Interconnect Connections

Note (1)

Note to 

Figure 2–10

:

(1)

Each C4 interconnect can drive either up or down four rows.

C4 Interconnect
Drives Local and R4
Interconnects
Up to Four Rows

Adjacent LAB can

drive onto neighboring
LAB's C4 interconnect

C4 Interconnect
Driving Up

C4 Interconnect
Driving Down

LAB

Row
Interconnect

Local

Interconnect

Primary

LAB

LAB

Neighbor

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–15

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

C16 column interconnects span a length of 16 LABs and provide the 
fastest resource for long column connections between LABs, M4K 
memory blocks, embedded multipliers, and IOEs. C16 column 
interconnects drive to other row and column interconnects at every 
fourth LAB. C16 column interconnects drive LAB local interconnects via 
C4 and R4 interconnects and do not drive LAB local interconnects 
directly. C16 interconnects can drive R24, R4, C16, and C4 interconnects.

Device Routing

All embedded blocks communicate with the logic array similar to 
LAB-to-LAB interfaces. Each block (for example, M4K memory, 
embedded multiplier, or PLL) connects to row and column interconnects 
and has local interconnect regions driven by row and column 
interconnects. These blocks also have direct link interconnects for fast 
connections to and from a neighboring LAB.

Table 2–1

 shows the Cyclone II device’s routing scheme.

Table 2–1. Cyclone II Device Routing Scheme (Part 1 of 2)

Source

Destination

Register

 Chain

Loca

l Inter

connect

Direct Link 

Interconnect

R4 Interconn

ect

R2

4 Interconnect

C4 Intercon

nect

C16 Interconnect

LE

M4K RAM Bloc

k

Embe

dded Multiplier

PLL

Col

u

mn IO

E

Ro

w I

O

E

Register 
Chain

v

Local 
Interconnect

v

v

v

v

v

v

Direct Link 
Interconnect

v

R4 
Interconnect

v

v

v

v

v

R24 
Interconnect

v

v

v

v

C4 
Interconnect

v

v

v

v

v

C16 
Interconnect

v

v

v

v

ac/package_outlines/cyc_c52006-html.html
background image

2–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Global Clock Network & Phase-Locked Loops

Global Clock 
Network & 
Phase-Locked 
Loops

Cyclone II devices provide global clock networks and up to four PLLs for 
a complete clock management solution. Cyclone II clock network features 
include:

Up to 16 global clock networks

Up to four PLLs

Global clock network dynamic clock source selection

Global clock network dynamic enable and disable

LE

v

v

v

v

v

M4K memory 
Block

v

v

v

v

Embedded 
Multipliers

v

v

v

v

PLL

v

v

v

Column IOE

v

v

Row IOE

v

v

v

v

Table 2–1. Cyclone II Device Routing Scheme (Part 2 of 2)

Source

Destination

Register Chain

Local Inte

rconn

ect

Direct Link 

Interconnect

R4 Interco

nnect

R24 Interconnect

C4 Interconnect

C16 Inter

connect

LE

M4K

 R

A

Bl

ock

Embedded Multiplier

PL

L

Col

u

mn IO

E

Row IO

E

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–17

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Each global clock network has a clock control block to select from a 
number of input clock sources (PLL clock outputs, 

CLK[]

 pins, 

DPCLK[]

 

pins, and internal logic) to drive onto the global clock network. 

Table 2–2

 

lists how many PLLs, 

CLK[]

 pins, 

DPCLK[]

 pins, and global clock 

networks are available in each Cyclone II device. 

CLK[]

 pins are 

dedicated clock pins and 

DPCLK[]

 pins are dual-purpose clock pins.

Figures 2–11

 and 

2–12

 show the location of the Cyclone II PLLs, 

CLK[]

 

inputs, 

DPCLK[]

 pins, and clock control blocks. 

Table 2–2. Cyclone II Device Clock Resources

Device

Number of 

PLLs

Number of 

CLK Pins

Number of 

DPCLK Pins

Number of 

Global Clock 

Networks

EP2C5

2

8

8

8

EP2C8

2

8

8

8

EP2C15

4

16

20

16

EP2C20

4

16

20

16

EP2C35

4

16

20

16

EP2C50

4

16

20

16

EP2C70

4

16

20

16

ac/package_outlines/cyc_c52006-html.html
background image

2–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Global Clock Network & Phase-Locked Loops

Figure 2–11. EP2C5 & EP2C8 PLL, CLK[], DPCLK[] & Clock Control Block Locations

Note to 

Figure 2–11

:

(1)

There are four clock control blocks on each side.

PLL 2

CLK[7..4]

DPCLK7

DPCLK6

CLK[3..0]

DPCLK0

DPCLK1

DPCLK10

DPCLK8

DPCLK2

GCLK[7..0]

GCLK[7..0]

DPCLK4

PLL 1

8

8

8

8

Clock Control

Block (1)

Clock Control

Block (1)

4

4

4

4

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–19

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–12. EP2C15 & Larger PLL, CLK[], DPCLK[] & Clock Control Block Locations

Notes to 

Figure 2–12

:

(1)

There are four clock control blocks on each side.

(2)

Only one of the corner 

CDPCLK

 pins in each corner can feed the clock control block at a time. The other 

CDPCLK

 pins 

can be used as general-purpose I/O pins.

PLL 4

PLL 3

PLL 2

CLK[7..4]

DPCLK7

CDPCLK5

CDPCLK4

DPCLK6

CLK[3..0]

DPCLK0

CDPCLK0

CDPCLK1

DPCLK1

CDPCLK7

DPCLK[9..8]

DPCLK[11..10]

CLK[11..8]

GCLK[15..0]

GCLK[15..0]

PLL 1

CDPCLK6

CDPCLK2

DPCLK[5..4]

DPCLK[3..2]

CLK[15..12]

CDPCLK3

Clock Control

Block (1)

Clock Control

Block (1)

16

16

16

16

2

2

4

4

4

4

4

2

2

4

(2)

(2)

(2)

(2)

4

4

3

3

3

3

ac/package_outlines/cyc_c52006-html.html
background image

2–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Global Clock Network & Phase-Locked Loops

Dedicated Clock Pins

Larger Cyclone II devices (EP2C15 and larger devices) have 16 dedicated 
clock pins (

CLK[15..0]

, four pins on each side of the device). Smaller 

Cyclone II devices (EP2C5 and EP2C8 devices) have eight dedicated clock 
pins (

CLK[7..0]

, four pins on left and right sides of the device). These 

CLK

 pins drive the global clock network (GCLK), as shown in 

Figures 2–11

 and 

2–12

.

If the dedicated clock pins are not used to feed the global clock networks, 
they can be used as general-purpose input pins to feed the logic array 
using the MultiTrack interconnect. However, if they are used as general-
purpose input pins, they do not have support for an I/O register and 
must use LE-based registers in place of an I/O register.

Dual-Purpose Clock Pins

Cyclone II devices have either 20 dual-purpose clock pins, 

DPCLK[19..0]

 or 8 dual-purpose clock pins, 

DPCLK[7..0]

. In the 

larger Cyclone II devices (EP2C15 devices and higher), there are 
20

DPCLK

 pins; four on the left and right sides and six on the top and 

bottom of the device. The corner 

CDPCLK

 pins are first multiplexed before 

they drive into the clock control block. Since the signals pass through a 
multiplexer before feeding the clock control block, these signals incur 
more delay to the clock control block than other 

DPCLK

 pins that directly 

feed the clock control block. In the smaller Cyclone II devices (EP2C5 and 
EP2C8 devices), there are eight 

DPCLK

 pins; two on each side of the device 

(see 

Figures 2–11

 and 

2–12

).

A programmable delay chain is available from the 

DPCLK

 pin to its fan-

out destinations. To set the propagation delay from the 

DPCLK

 pin to its 

fan-out destinations, use the 

Input Delay from Dual-Purpose Clock Pin 

to Fan-Out Destinations

 assignment in the Quartus II software.

These dual-purpose pins can connect to the global clock network for 
high-fanout control signals such as clocks, asynchronous clears, presets, 
and clock enables, or protocol control signals such as 

TRDY

 and 

IRDY

 for 

PCI, or DQS signals for external memory interfaces.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–21

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Global Clock Network

The 16 or 8 global clock networks drive throughout the entire device. 
Dedicated clock pins (

CLK[]

), PLL outputs, the logic array, and 

dual-purpose clock (

DPCLK[]

) pins can also drive the global clock 

network. 

The global clock network can provide clocks for all resources within the 
device, such as IOEs, LEs, memory blocks, and embedded multipliers. 
The global clock lines can also be used for control signals, such as clock 
enables and synchronous or asynchronous clears fed from the external 
pin, or DQS signals for DDR SDRAM or QDRII SRAM interfaces. Internal 
logic can also drive the global clock network for internally generated 
global clocks and asynchronous clears, clock enables, or other control 
signals with large fan-out.

Clock Control Block

There is a clock control block for each global clock network available in 
Cyclone II devices. The clock control blocks are arranged on the device 
periphery and there are a maximum of 16 clock control blocks available 
per Cyclone II device. The larger Cyclone II devices (EP2C15 devices and 
larger) have 16 clock control blocks, four on each side of the device. The 
smaller Cyclone II devices (EP2C5 and EP2C8 devices) have eight clock 
control blocks, four on the left and right sides of the device.

The control block has these functions:

Dynamic global clock network clock source selection 

Dynamic enable/disable of the global clock network 

In Cyclone II devices, the dedicated 

CLK[]

 pins, PLL counter outputs, 

DPCLK[]

 pins, and internal logic can all feed the clock control block. The 

output from the clock control block in turn feeds the corresponding 
global clock network. 

The following sources can be inputs to a given clock control block:

Four clock pins on the same side as the clock control block

Three PLL clock outputs from a PLL

Four 

DPCLK

 pins (including 

CDPCLK

 pins) on the same side as the 

clock control block

Four internally-generated signals

ac/package_outlines/cyc_c52006-html.html
background image

2–22

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Global Clock Network & Phase-Locked Loops

Of the sources listed, only two clock pins, two PLL clock outputs, one 

DPCLK

 pin, and one internally-generated signal are chosen to drive into a 

clock control block. 

Figure 2–13

 shows a more detailed diagram of the 

clock control block. Out of these six inputs, the two clock input pins and 
two PLL outputs can be dynamic selected to feed a global clock network. 
The clock control block supports static selection of 

DPCLK

 and the signal 

from internal logic.

Figure 2–13. Clock Control Block

Notes to 

Figure 2–13

:

(1)

The 

CLKSWITCH

 signal can either be set through the configuration file or it can be dynamically set when using the 

manual PLL switchover feature. The output of the multiplexer is the input reference clock (f

IN

) for the PLL. 

(2)

The 

CLKSELECT[1..0]

 signals are fed by internal logic and can be used to dynamically select the clock source for 

the global clock network when the device is in user mode.

(3)

The static clock select signals are set in the configuration file and cannot be dynamically controlled when the device 
is in user mode.

(4)

Internal logic can be used to enabled or disabled the global clock network in user mode.

CLKSWITCH 

(1)

Static Clock Select 

(3)

Static Clock

Select 

(3)

Internal Logic

Clock Control Block

DPCLK or

CDPCLK

CLKSELECT[1..0] 

(2)

CLKENA 

(4)

inclk1
inclk0

CLK[

n

 + 3]

CLK[

n

 + 2]

CLK[

n

 + 1]

CLK[

n

]

f

IN

C0
C1
C2

PLL

Global
Clock

Enable/
Disable

(3)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–23

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Global Clock Network Distribution

Cyclone II devices contains 16 global clock networks. The device uses 
multiplexers with these clocks to form six-bit buses to drive column IOE 
clocks, LAB row clocks, or row IOE clocks (see 

Figure 2–14

). Another 

multiplexer at the LAB level selects two of the six LAB row clocks to feed 
the LE registers within the LAB.

Figure 2–14. Global Clock Network Multiplexers

LAB row clocks can feed LEs, M4K memory blocks, and embedded 
multipliers. The LAB row clocks also extend to the row I/O clock regions.

IOE clocks are associated with row or column block regions. Only six 
global clock resources feed to these row and column regions. 

Figure 2–15

 

shows the I/O clock regions. 

Clock [15 or 7..0]

Row I/O Region
IO_CLK [5..0]

Column I/O Region
IO_CLK [5..0]

LAB Row Clock 
LABCLK[5..0]

Global Clock

Network

ac/package_outlines/cyc_c52006-html.html
background image

2–24

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Global Clock Network & Phase-Locked Loops

Figure 2–15. LAB & I/O Clock Regions

f

For more information on the global clock network and the clock control 
block, see the 

PLLs in Cyclone II Devices

 chapter in Volume 1 of the 

Cyclone II Device Handbook

.

Column I/O Clock Region

IO_CLK[5..0]

Column I/O Clock Region

IO_CLK[5..0]

6

6

I/O Clock Regions

I/O Clock Regions

8 or 16

Global Clock
Network

Row I/O Clock
Region
IO_CLK[5..0]

Cyclone Logic Array

6

6

LAB Row Clocks

labclk[5..0]

LAB Row Clocks

labclk[5..0]

LAB Row Clocks

labclk[5..0]

LAB Row Clocks

labclk[5..0]

LAB Row Clocks

labclk[5..0]

LAB Row Clocks

labclk[5..0]

6

6

6

6

6

6

6

6

6

6

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–25

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

PLLs

Cyclone II PLLs provide general-purpose clocking as well as support for 
the following features:

Clock multiplication and division

Phase shifting

Programmable duty cycle

Up to three internal clock outputs

One dedicated external clock output

Clock outputs for differential I/O support

Manual clock switchover

Gated lock signal

Three different clock feedback modes

Control signals

Cyclone II devices contain either two or four PLLs. 

Table 2–3

 shows the 

PLLs available for each Cyclone II device.

Table 2–3. Cyclone II Device PLL Availability

Device

PLL1

PLL2

PLL3

PLL4

EP2C5

v

v

EP2C8

v

v

EP2C15

v

v

v

v

EP2C20

v

v

v

v

EP2C35

v

v

v

v

EP2C50

v

v

v

v

EP2C70

v

v

v

v

ac/package_outlines/cyc_c52006-html.html
background image

2–26

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Global Clock Network & Phase-Locked Loops

Table 2–4

 describes the PLL features in Cyclone II devices. 

Table 2–4. Cyclone II PLL Features

Feature

Description

Clock multiplication and division

m

 / (

n

 × post-scale counter) 

m

 and post-scale counter values (C0 to C2) range from 1 to 32. 

n

 ranges 

from 1 to 4.

Phase shift

Cyclone II PLLs have an advanced clock shift capability that enables 
programmable phase shifts in increments of at least 45°. The finest 
resolution of phase shifting is determined by the voltage control oscillator 
(VCO) period divided by 8 (for example, 1/1000 MHz/8 = down to 125-ps 
increments). 

Programmable duty cycle

The programmable duty cycle allows PLLs to generate clock outputs with 
a variable duty cycle. This feature is supported on each PLL post-scale 
counter (C0-C2). 

Number of internal clock outputs

The Cyclone II PLL has three outputs which can drive the global clock 
network. One of these outputs (C2) can also drive a dedicated 

PLL

<

#

>

_OUT

 pin (single ended or differential). 

Number of external clock outputs 

The C2 output drives a dedicated 

PLL

<

#

>

_OUT

 pin. If the C2 output is not 

used to drive an external clock output, it can be used to drive the internal 
global clock network. The C2 output can concurrently drive the external 
clock output and internal global clock network. 

Manual clock switchover

The Cyclone II PLLs support manual switchover of the reference clock 
through internal logic. This enables you to switch between two reference 
input clocks during user mode for applications that may require clock 
redundancy or support for clocks with two different frequencies.

Gated lock signal

The lock output indicates that there is a stable clock output signal in phase 
with the reference clock. Cyclone II PLLs include a programmable counter 
that holds the lock signal low for a user-selected number of input clock 
transitions, allowing the PLL to lock before enabling the locked signal. 
Either a gated locked signal or an ungated locked signal from the locked 
port can drive internal logic or an output pin.

Clock feedback modes

In zero delay buffer mode, the external clock output pin is phase-aligned 
with the clock input pin for zero delay. 
In normal mode, the PLL compensates for the internal global clock network 
delay from the input clock pin to the clock port of the IOE output registers 
or registers in the logic array.
In no compensation mode, the PLL does not compensate for any clock 
networks.

Control signals 

The 

pllenable

 signal enables and disables the PLLs. 

The 

areset

 signal resets/resynchronizes the inputs for each PLL. 

The 

pfdena

 signal controls the phase frequency detector (PFD) output 

with a programmable gate.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–27

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–16

 shows a block diagram of the Cyclone II PLL.

Figure 2–16. Cyclone II PLL

Note (1)

Notes to 

Figure 2–16

:

(1)

This input can be single-ended or differential. If you are using a differential I/O standard, then two 

CLK

 pins are 

used. LVDS input is supported via the secondary function of the dedicated 

CLK

 pins. For example, the 

CLK0

 pin’s 

secondary function is 

LVDSCLK1p

 and the 

CLK1

 pin’s secondary function is 

LVDSCLK1n

. If a differential I/O 

standard is assigned to the PLL clock input pin, the corresponding 

CLK(n)

 pin is also completely used. The 

Figure 2–16

 shows the possible clock input connections (

CLK0

/

CLK1

) to PLL1. 

(2)

This counter output is shared between a dedicated external clock output I/O and the global clock network.

f

For more information on Cyclone II PLLs, see the PLLs in the 

Cyclone II 

Devices

 chapter in Volume 1 of the 

Cyclone II Device Handbook

.

Embedded 
Memory

The Cyclone II embedded memory consists of columns of M4K memory 
blocks. The M4K memory blocks include input registers that synchronize 
writes and output registers to pipeline designs and improve system 
performance. The output registers can be bypassed, but input registers 
cannot. 

PFD

Loop
Filter

Lock Detect

& Filter

VCO

Charge

Pump

÷c0

÷c1

÷c2

÷

m

÷

n

Global
Clock

Global
Clock

Global
Clock

To I/O or
general routing

PLL<

#

>_OUT

Post-Scale

Counters

VCO Phase Selection

Selectable at Each 

PLL Output Port

CLK1

CLK3

CLK2 

(1)

CLK0 

(1)

inclk0

inclk1

up

down

8

8

8

f

VCO

f

FB

f

IN

Reference

Input Clock

f

REF

 = f

IN 

/

n

(2)

Manual Clock

Switchover

Select Signal

÷k

(3)

ac/package_outlines/cyc_c52006-html.html
background image

2–28

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Embedded Memory

Each M4K block can implement various types of memory with or without 
parity, including true dual-port, simple dual-port, and single-port RAM, 
ROM, and first-in first-out (FIFO) buffers. The M4K blocks support the 
following features:

4,608 RAM bits

250-MHz performance

True dual-port memory

Simple dual-port memory

Single-port memory

Byte enable

Parity bits

Shift register

FIFO buffer

ROM

Various clock modes

Address clock enable

1

Violating the setup or hold time on the memory block address 
registers could corrupt memory contents. This applies to both 
read and write operations.

Table 2–5

 shows the capacity and distribution of the M4K memory blocks 

in each Cyclone II device.

Table 2–5. M4K Memory Capacity & Distribution in Cyclone II Devices

Device

M4K Columns

M4K Blocks

Total RAM Bits

EP2C5

2

26

119,808

EP2C8

2

36

165,888

EP2C15

2

52

239,616

EP2C20

2

52

239,616

EP2C35

3

105

483,840

EP2C50

3

129

594,432

EP2C70

5

250

1,152,000

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–29

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Table 2–6

 summarizes the features supported by the M4K memory.

Table 2–6. M4K Memory Features

Feature

Description

Maximum performance 

(1)

250 MHz

Total RAM bits per M4K block (including parity bits)

4,608

Configurations supported

4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32 (not available in true dual-port mode)
128 × 36 (not available in true dual-port mode)

Parity bits

One parity bit for each byte. The parity bit, along with 
internal user logic, can implement parity checking for 
error detection to ensure data integrity. 

Byte enable

M4K blocks support byte writes when the write port has 
a data width of 1, 2, 4, 8, 9, 16, 18, 32, or 36 bits. The 
byte enables allow the input data to be masked so the 
device can write to specific bytes. The unwritten bytes 
retain the previous written value. 

Packed mode

Two single-port memory blocks can be packed into a 
single M4K block if each of the two independent block 
sizes are equal to or less than half of the M4K block 
size, and each of the single-port memory blocks is 
configured in single-clock mode.

Address clock enable

M4K blocks support address clock enable, which is 
used to hold the previous address value for as long as 
the signal is enabled. This feature is useful in handling 
misses in cache applications.

Memory initialization file (

.mif

)

When configured as RAM or ROM, you can use an 
initialization file to pre-load the memory contents.

Power-up condition

Outputs cleared

Register clears

Output registers only

Same-port read-during-write

New data available at positive clock edge

Mixed-port read-during-write

Old data available at positive clock edge

Note to 

Table 2–6

:

(1)

Maximum performance information is preliminary until device characterization.

ac/package_outlines/cyc_c52006-html.html
background image

2–30

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Embedded Memory

Memory Modes

Table 2–7

 summarizes the different memory modes supported by the 

M4K memory blocks.

1

Embedded Memory can be inferred in your HDL code or 
directly instantiated in the Quartus II software using the 
MegaWizard

®

 Plug-in Manager Memory Compiler feature.

Table 2–7. M4K Memory Modes

Memory Mode

Description

Single-port memory

M4K blocks support single-port mode, used when 
simultaneous reads and writes are not required. 
Single-port memory supports non-simultaneous 
reads and writes.

Simple dual-port memory

Simple dual-port memory supports a 
simultaneous read and write.

Simple dual-port with mixed 
width 

Simple dual-port memory mode with different 
read and write port widths.

True dual-port memory

True dual-port mode supports any combination of 
two-port operations: two reads, two writes, or one 
read and one write at two different clock 
frequencies.

True dual-port with mixed 
width 

True dual-port mode with different read and write 
port widths.

Embedded shift register

M4K memory blocks are used to implement shift 
registers. Data is written into each address 
location at the falling edge of the clock and read 
from the address at the rising edge of the clock.

ROM

The M4K memory blocks support ROM mode. A 
MIF initializes the ROM contents of these blocks.

FIFO buffers

A single clock or dual clock FIFO may be 
implemented in the M4K blocks. Simultaneous 
read and write from an empty FIFO buffer is not 
supported.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–31

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Clock Modes

Table 2–8

 summarizes the different clock modes supported by the M4K 

memory.

Table 2–9

 shows which clock modes are supported by all M4K blocks 

when configured in the different memory modes. 

M4K Routing Interface

The R4, C4, and direct link interconnects from adjacent LABs drive the 
M4K block local interconnect. The M4K blocks can communicate with 
LABs on either the left or right side through these row resources or with 
LAB columns on either the right or left with the column resources. Up to 
16 direct link input connections to the M4K block are possible from the 
left adjacent LAB and another 16 possible from the right adjacent LAB. 
M4K block outputs can also connect to left and right LABs through each 
16 direct link interconnects. 

Figure 2–17

 shows the M4K block to logic 

array interface.

Table 2–8. M4K Clock Modes

Clock Mode

Description

Independent

In this mode, a separate clock is available for each port (ports A 
and B). Clock A controls all registers on the port A side, while 
clock B controls all registers on the port B side. 

Input/output

On each of the two ports, A or B, one clock controls all registers 
for inputs into the memory block: data input, 

wren

, and address. 

The other clock controls the block’s data output registers. 

Read/write

Up to two clocks are available in this mode. The write clock 
controls the block’s data inputs, 

wraddress

, and 

wren

. The 

read clock controls the data output, 

rdaddress

, and 

rden

Single

In this mode, a single clock, together with clock enable, is used to 
control all registers of the memory block. Asynchronous clear 
signals for the registers are not supported.

Table 2–9. Cyclone II M4K Memory Clock Modes

Clocking Modes

True Dual-Port 

Mode

Simple Dual-Port 

Mode

Single-Port Mode

Independent

v

Input/output

v

v

v

Read/write

v

Single clock

v

v

v

ac/package_outlines/cyc_c52006-html.html
background image

2–32

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Embedded Multipliers

Figure 2–17. M4K RAM Block LAB Row Interface

f

For more information on Cyclone II embedded memory, see the 

Cyclone II Memory Blocks

 chapter in Volume 1 of the 

Cyclone II Device 

Handbook

.

Embedded 
Multipliers

Cyclone II devices have embedded multiplier blocks optimized for 
multiplier-intensive digital signal processing (DSP) functions, such as 
finite impulse response (FIR) filters, fast Fourier transform (FFT) 
functions, and discrete cosine transform (DCT) functions. You can use the 
embedded multiplier in one of two basic operational modes, depending 
on the application needs:

One 18-bit multiplier

Up to two independent 9-bit multipliers

dataout

M4K RAM

Block

datain

address

16

16

16

Direct link 
interconnect
from adjacent LAB

Direct link 
interconnect
to adjacent LAB

Direct link 
interconnect
from adjacent LAB

Direct link 
interconnect
to adjacent LAB

M4K RAM Block Local
Interconnect Region

C4 Interconnects

R4 Interconnects

LAB Row Clocks

Clocks

Byte enable

Control

Signals

6

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–33

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Embedded multipliers can operate at up to 250 MHz (for the fastest speed 
grade) for 18 × 18 and 9 × 9 multiplications when using both input and 
output registers.

Each Cyclone II device has one to three columns of embedded multipliers 
that efficiently implement multiplication functions. An embedded 
multiplier spans the height of one LAB row. 

Table 2–10

 shows the number 

of embedded multipliers in each Cyclone II device and the multipliers 
that can be implemented.

The embedded multiplier consists of the following elements:

Multiplier block

Input and output registers

Input and output interfaces

Figure 2–18

 shows the multiplier block architecture.

Table 2–10. Number of Embedded Multipliers in Cyclone II Devices

Note (1)

Device

Embedded 

Multiplier Columns

Embedded 

Multipliers

9 × 9 Multipliers

18 × 18 Multipliers

EP2C5

1

13

26

13

EP2C8

1

18

36

18

EP2C15

1

26

52

26

EP2C20

1

26

52

26

EP2C35

1

35

70

35

EP2C50

2

86

172

86

EP2C70

3

150

300

150

Note to 

Table 2–10

:

(1)

Each device has either the number of 9 × 9-, or 18 × 18-bit multipliers shown. The total number of multipliers for 
each device is not the sum of all the multipliers.

ac/package_outlines/cyc_c52006-html.html
background image

2–34

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Embedded Multipliers

Figure 2–18. Multiplier Block Architecture

Note to 

Figure 2–18

:

(1)

If necessary, these signals can be registered once to match the data signal path.

Each multiplier operand can be a unique signed or unsigned number. 
Two signals, 

signa

 and 

signb

, control the representation of each 

operand respectively. A logic 1 value on the 

signa

 signal indicates that 

data A is a signed number while a logic 0 value indicates an unsigned 
number. 

Table 2–11

 shows the sign of the multiplication result for the 

various operand sign representations. The result of the multiplication is 
signed if any one of the operands is a signed value. 

CLRN

D

Q

ENA

Data A

Data B

aclr

clock

ena

signa 

(1)

signb 

(1)

CLRN

D

Q

ENA

CLRN

D

Q

ENA

Data Out

Embedded Multiplier Block

Output

Register

Input

Register

Table 2–11. Multiplier Sign Representation

Data A (signa Value)

Data B (signb Value)

Result

Unsigned

Unsigned

Unsigned

Unsigned

Signed

Signed

Signed

Unsigned

Signed

Signed

Signed

Signed

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–35

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

There is only one 

signa

 and one 

signb

 signal for each dedicated 

multiplier. Therefore, all of the data A inputs feeding the same dedicated 
multiplier must have the same sign representation. Similarly, all of the 
data B inputs feeding the same dedicated multiplier must have the same 
sign representation. The 

signa

 and 

signb

 signals can be changed 

dynamically to modify the sign representation of the input operands at 
run time. The multiplier offers full precision regardless of the sign 
representation and can be registered using dedicated registers located at 
the input register stage.

Multiplier Modes 

Table 2–12

 summarizes the different modes that the embedded 

multipliers can operate in.

Table 2–12. Embedded Multiplier Modes 

Multiplier Mode

Description

18-bit Multiplier

An embedded multiplier can be configured to support a 
single 18 × 18 multiplier for operand widths up to 18 bits. 
All 18-bit multiplier inputs and results can be registered 
independently. The multiplier operands can accept 
signed integers, unsigned integers, or a combination of 
both. 

9-bit Multiplier

An embedded multiplier can be configured to support 
two 9 × 9 independent multipliers for operand widths up 
to 9-bits. Both 9-bit multiplier inputs and results can be 
registered independently. The multiplier operands can 
accept signed integers, unsigned integers or a 
combination of both. 
There is only one 

signa

 signal to control the sign 

representation of both data A inputs and one 

signb

 

signal to control the sign representation of both data B 
inputs of the 9-bit multipliers within the same dedicated 
multiplier.

ac/package_outlines/cyc_c52006-html.html
background image

2–36

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Embedded Multipliers

Embedded Multiplier Routing Interface

The R4, C4, and direct link interconnects from adjacent LABs drive the 
embedded multiplier row interface interconnect. The embedded 
multipliers can communicate with LABs on either the left or right side 
through these row resources or with LAB columns on either the right or 
left with the column resources. Up to 16 direct link input connections to 
the embedded multiplier are possible from the left adjacent LABs and 
another 16 possible from the right adjacent LAB. Embedded multiplier 
outputs can also connect to left and right LABs through 18 direct link 
interconnects each. 

Figure 2–19

 shows the embedded multiplier to logic 

array interface.

Figure 2–19. Embedded Multiplier LAB Row Interface

LAB

LAB

Row Interface

Block

Embedded Multiplier

16

[35..0]

[35..0]

Embedded Multiplier
to LAB Row Interface
Block Interconnect Region

36 Inputs per Row

36 Outputs per Row

R4 Interconnects

C4 Interconnects

C4 Interconnects

Direct Link Interconnect
from Adjacent LAB

18 Direct Link Outputs
to Adjacent LABs

Direct Link Interconnect
from Adjacent LAB

18

18

36

36

Control

5

18

18

16

LAB Block

Interconect Region

LAB Block

Interconect Region

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–37

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

There are five dynamic control input signals that feed the embedded 
multiplier: 

signa

signb

clk

clkena

, and 

aclr

signa

 and 

signb

 

can be registered to match the data signal input path. The same 

clk

clkena

, and 

aclr

 signals feed all registers within a single embedded 

multiplier. 

f

For more information on Cyclone II embedded multipliers, see the 

Embedded Multipliers in Cyclone II Devices

 chapter.

I/O Structure & 
Features

IOEs support many features, including:

Differential and single-ended I/O standards

3.3-V, 64- and 32-bit, 66- and 33-MHz PCI compliance

Joint Test Action Group (JTAG) boundary-scan test (BST) support

Output drive strength control

Weak pull-up resistors during configuration

Tri-state buffers

Bus-hold circuitry

Programmable pull-up resistors in user mode

Programmable input and output delays

Open-drain outputs

DQ and DQS I/O pins 

V

REF

 pins

Cyclone II device IOEs contain a bidirectional I/O buffer and three 
registers for complete embedded bidirectional single data rate transfer. 

Figure 2–20

 shows the Cyclone II IOE structure. The IOE contains one 

input register, one output register, and one output enable register. You can 
use the input registers for fast setup times and output registers for fast 
clock-to-output times. Additionally, you can use the output enable (OE) 
register for fast clock-to-output enable timing. The Quartus II software 
automatically duplicates a single OE register that controls multiple 
output or bidirectional pins. You can use IOEs as input, output, or 
bidirectional pins.

ac/package_outlines/cyc_c52006-html.html
background image

2–38

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Figure 2–20. Cyclone II IOE Structure

Note to 

Figure 2–20

:

(1)

There are two paths available for combinational or registered inputs to the logic 
array. Each path contains a unique programmable delay chain.

The IOEs are located in I/O blocks around the periphery of the Cyclone II 
device. There are up to five IOEs per row I/O block and up to four IOEs 
per column I/O block (column I/O blocks span two columns). The row 
I/O blocks drive row, column (only C4 interconnects), or direct link 
interconnects. The column I/O blocks drive column interconnects. 

Figure 2–21

 shows how a row I/O block connects to the logic array. 

Figure 2–22

 shows how a column I/O block connects to the logic array.

Output Register

Output

Input 

(1)

OE Register

OE

Input Register

Logic Array

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–39

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–21. Row I/O Block Connection to the Interconnect

Notes to 

Figure 2–21

:

(1)

The 35 data and control signals consist of five data out lines, 

io_dataout[4..0]

, five output enables, 

io_coe[4..0]

, five input clock enables, 

io_cce_in[4..0]

, five output clock enables, 

io_cce_out[4..0]

five clocks, 

io_cclk[4..0]

, five asynchronous clear signals, 

io_caclr[4..0]

, and five synchronous clear 

signals, 

io_csclr[4..0]

.

(2)

Each of the five IOEs in the row I/O block can have two 

io_datain

 (combinational or registered) inputs.

35

R4 & R24 Interconnects

C4 Interconnects

I/O Block Local 

Interconnect

35 Data and
Control Signals
from Logic Array (1)

io_datain0[4..0] 
io_datain1[4..0] 

(2)

io_clk[5..0]

Row I/O Block

Contains up to

Five IOEs

Direct Link

Interconnect

to Adjacent LAB

Direct Link

Interconnect

from Adjacent LAB

LAB Local
Interconnect

LAB

Row

I/O Block

ac/package_outlines/cyc_c52006-html.html
background image

2–40

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Figure 2–22. Column I/O Block Connection to the Interconnect

Notes to 

Figure 2–22

:

(1)

The 28 data and control signals consist of four data out lines, 

io_dataout[3..0]

, four output enables, 

io_coe[3..0]

, four input clock enables, 

io_cce_in[3..0]

, four output clock enables, 

io_cce_out[3..0]

four clocks, 

io_cclk[3..0]

, four asynchronous clear signals, 

io_caclr[3..0]

, and four synchronous clear 

signals, 

io_csclr[3..0]

.

(2)

Each of the four IOEs in the column I/O block can have two 

io_datain

 (combinational or registered) inputs.

2

8

 Data &

Control Signals 

from Logic Array (1)

Column I/O 
Block Contains
up to Four  IOEs

I/O Block

Local Interconnect

io_datain0[3..0]
io_datain1[3..0] (2)

R4 & R24 Interconnects

LAB Local
Interconnect

C4 & C24 Interconnects

28

LAB

LAB

LAB

io_clk[5..0]

Column I/O Block

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–41

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

The pin’s 

datain

 signals can drive the logic array. The logic array drives 

the control and data signals, providing a flexible routing resource. The 
row or column IOE clocks, 

io_clk[5..0]

, provide a dedicated routing 

resource for low-skew, high-speed clocks. The global clock network 
generates the IOE clocks that feed the row or column I/O regions (see 

“Global Clock Network & Phase-Locked Loops” on page 2–16

). 

Figure 2–23

 illustrates the signal paths through the I/O block.

Figure 2–23. Signal Path Through the I/O Block

Each IOE contains its own control signal selection for the following 
control signals: 

oe

ce_in

ce_out

aclr

/

preset

sclr

/

preset

clk_in

, and 

clk_out

Figure 2–24

 illustrates the control signal 

selection.

Row or Column

io_clk[5..0]

io_datain0

io_datain1

io_dataout

io_coe

oe

ce_in

ce_out

io_cce_in

aclr/preset

io_cce_out

sclr/preset

io_caclr

clk_in

io_cclk

clk_out

dataout

Data and

Control

Signal

Selection

IOE

To Logic

Array

From Logic

Array

To Other
IOEs

io_csclr

ac/package_outlines/cyc_c52006-html.html
background image

2–42

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Figure 2–24. Control Signal Selection per IOE

In normal bidirectional operation, you can use the input register for input 
data requiring fast setup times. The input register can have its own clock 
input and clock enable separate from the 

OE

 and output registers. You can 

use the output register for data requiring fast clock-to-output 
performance. The 

OE

 register is available for fast clock-to-output enable 

timing. The 

OE

 and output register share the same clock source and the 

same clock enable source from the local interconnect in the associated 
LAB, dedicated I/O clocks, or the column and row interconnects. All 
registers share 

sclr

 and 

aclr

, but each register can individually disable 

sclr

 and 

aclr

Figure 2–25

 shows the IOE in bidirectional 

configuration.

clk_out

ce_in

clk_in

ce_out

aclr/preset

sclr/preset

Dedicated I/O
Clock [5..0]

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

oe

io_coe

io_caclr

Local
Interconnect

io_csclr

io_cce_out

io_cce_in

io_cclk

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–43

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–25. Cyclone II IOE in Bidirectional I/O Configuration

The Cyclone II device IOE includes programmable delays to ensure zero 
hold times, minimize setup times, or increase clock to output times.

A path in which a pin directly drives a register may require a 
programmable delay to ensure zero hold time, whereas a path in which a 
pin drives a register through combinational logic may not require the 
delay. Programmable delays decrease input-pin-to-logic-array and IOE 
input register delays. The Quartus II Compiler can program these delays 
to automatically minimize setup time while providing a zero hold time. 

Chip-

W

ide Reset

OE Register

V

CCIO

Optio

n

al

PCI Clamp

Col

u

mn

or Ro

w

Interconect

io_clk[5..0]

Inp

u

t Register

Inp

u

t Pin to

Inp

u

t Register Delay

or Inp

u

t Pin to

Logic Array Delay

Open-Drain O

u

tp

u

t

sclr/preset

OE

clko

u

t

ce_o

u

t

aclr/prn

clkin

ce_in

O

u

tp

u

t

Pin Delay

P

r

og

r

ammable

P

u

ll-Up

Re

s

i

s

to

r

B

us

 Hold

PR

N

CLR

N

D

Q

O

u

tp

u

t Register

PR

N

CLR

N

D

Q

PR

N

CLR

N

D

Q

V

CCIO

data_in0

data_in1

E

N

A

E

N

A

E

N

A

ac/package_outlines/cyc_c52006-html.html
background image

2–44

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Programmable delays can increase the register-to-pin delays for output 
registers. 

Table 2–13

 shows the programmable delays for Cyclone II 

devices.

There are two paths in the IOE for an input to reach the logic array. Each 
of the two paths can have a different delay. This allows you to adjust 
delays from the pin to internal LE registers that reside in two different 
areas of the device. You set the two combinational input delays by 
selecting different delays for two different paths under the 

Input delay 

from pin to internal cells logic

 option in the Quartus II software. 

However, if the pin uses the input register, one of delays is disregarded 
because the IOE only has two paths to internal logic. If the input register 
is used, the IOE uses one input path. The other input path is then 
available for the combinational path, and only one input delay 
assignment is applied.

The IOE registers in each I/O block share the same source for clear or 
preset. You can program preset or clear for each individual IOE, but both 
features cannot be used simultaneously. You can also program the 
registers to power up high or low after configuration is complete. If 
programmed to power up low, an asynchronous clear can control the 
registers. If programmed to power up high, an asynchronous preset can 
control the registers. This feature prevents the inadvertent activation of 
another device’s active-low input upon power up. If one register in an 
IOE uses a preset or clear signal then all registers in the IOE must use that 
same signal if they require preset or clear. Additionally a synchronous 
reset signal is available for the IOE registers. 

External Memory Interfacing 

Cyclone II devices support a broad range of external memory interfaces 
such as SDR SDRAM, DDR SDRAM, DDR2 SDRAM, and QDRII SRAM 
external memories. Cyclone II devices feature dedicated high-speed 
interfaces that transfer data between external memory devices at up to 
167 MHz/333 Mbps for DDR and DDR2 SDRAM devices and 
167 MHz/667 Mbps for QDRII SRAM devices. The programmable DQS 
delay chain allows you to fine tune the phase shift for the input clocks or 
strobes to properly align clock edges as needed to capture data.

Table 2–13. Cyclone II Programmable Delay Chain

Programmable Delays

Quartus II Logic Option

Input pin to logic array delay

Input delay from pin to internal cells

Input pin to input register delay

Input delay from pin to input register

Output pin delay

Delay from output register to output pin

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–45

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

In Cyclone II devices, all the I/O banks support SDR and DDR SDRAM 
memory up to 167 MHz/333 Mbps. All I/O banks support DQS signals 
with the DQ bus modes of ×8/×9, or ×16/×18. 

Table 2–14

 shows the 

external memory interfaces supported in Cyclone II devices.

Cyclone II devices use data (DQ), data strobe (DQS), and clock pins to 
interface with external memory

Figure 2–26

 shows the DQ and DQS pins 

in the ×8/×9 mode. 

Table 2–14. External Memory Support in Cyclone II Devices

Note (1)

Memory Standard

I/O Standard

Maximum Bus 

Width

Maximum Clock 

Rate Supported 

(MHz)

Maximum Data 

Rate Supported 

(Mbps)

SDR SDRAM

LVTTL 

(2)

72

167

167

DDR SDRAM

SSTL-2 class I 

(2)

72

167

333 

(1)

SSTL-2 class II 

(2)

72

133

267 

(1)

DDR2 SDRAM

SSTL-18 class I 

(2)

72

167

333 

(1)

SSTL-18 class II 

(3)

72

125

250 

(1)

QDRII SRAM 

(4)

1.8-V HSTL class I 

(2)

36

167

668 

(1)

1.8-V HSTL class II 

(3)

36

100

400 

(1)

Notes to 

Table 2–14

:

(1)

The data rate is for designs using the Clock Delay Control circuitry.

(2)

The I/O standards are supported on all the I/O banks of the Cyclone II device.

(3)

The I/O standards are supported only on the I/O banks on the top and bottom of the Cyclone II device.

(4)

For maximum performance, Altera recommends using the 1.8-V HSTL I/O standard because of higher I/O drive 
strength. QDRII SRAM devices also support the 1.5-V HSTL I/O standard.

ac/package_outlines/cyc_c52006-html.html
background image

2–46

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Figure 2–26. Cyclone II Device DQ & DQS Groups in ×8/×9 Mode

Notes (1)

(2)

Notes to 

Figure 2–26

:

(1)

Each DQ group consists of a DQS pin, DM pin, and up to nine DQ pins.

(2)

This is an idealized pin layout. For actual pin layout, refer to the pin table.

Cyclone II devices support the data strobe or read clock signal (DQS) 
used in DDR and DDR2 SDRAM. Cyclone II devices can use either 
bidirectional data strobes or unidirectional read clocks. The dedicated 
external memory interface in Cyclone II devices also includes 
programmable delay circuitry that can shift the incoming DQS signals to 
center align the DQS signals within the data window.

The DQS signal is usually associated with a group of data (DQ) pins. The 
phase-shifted DQS signals drive the global clock network, which is used 
to clock the DQ signals on internal LE registers.

Table 2–15

 shows the number of DQ pin groups per device.

DQ Pins

DQS Pin

DM Pin

DQ Pins

(2)

Table 2–15. Cyclone II DQS & DQ Bus Mode Support (Part 1 of 2)

Note (1)

Device

Package

Number of ×8 

Groups

Number of ×9 

Groups 

(5)

(6)

Number of ×16 

Groups

Number of ×18 
Groups 

(5)

(6)

EP2C5

144-pin TQFP 

(2)

3

3

0

0

208-pin PQFP 

(3)

4

3

3

EP2C8

144-pin TQFP 

(2)

3

3

0

0

208-pin PQFP

(3)

4

3

3

256-pin FineLine BGA

®

(3)

4

4

4

EP2C15

256-pin FineLine BGA

8

4

4

4

484-pin FineLine BGA

16 

(4)

8

8

8

EP2C20

256-pin FineLine BGA

8

4

4

4

484-pin FineLine BGA

16 

(4)

8

8

8

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–47

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

You can use any of the DQ pins for the parity pins in Cyclone II devices. 
The Cyclone II device family supports parity in the ×8/×9, and ×16/×18 
mode. There is one parity bit available per eight bits of data pins. 

The data mask, DM, pins are required when writing to DDR SDRAM and 
DDR2 SDRAM devices. A low signal on the DM pin indicates that the 
write is valid. If the DM signal is high, the memory masks the DQ signals. 
In Cyclone II devices, the DM pins are assigned and are the preferred 
pins. Each group of DQS and DQ signals requires a DM pin. 

When using the Cyclone II I/O banks to interface with the DDR memory, 
at least one PLL with two clock outputs is needed to generate the system 
and write clock. The system clock is used to clock the DQS write signals, 
commands, and addresses. The write clock is shifted by –90° from the 
system clock and is used to clock the DQ signals during writes.

Figure 2–27

 illustrates DDR SDRAM interfacing from the I/O through 

the dedicated circuitry to the logic array.

EP2C35

484-pin FineLine BGA

16 

(4)

8

8

8

672-pin FineLine BGA

20 

(4)

8

8

8

EP2C50

484-pin FineLine BGA

16 

(4)

8

8

8

672-pin FineLine BGA

20 

(4)

8

8

8

EP2C70

672-pin FineLine BGA

20 

(4)

8

8

8

896-pin FineLine BGA

20 

(4)

8

8

8

Notes to 

Table 2–15

:

(1)

Numbers are preliminary.

(2)

EP2C5 and EP2C8 devices in the 144-pin TQFP package do not have any DQ pin groups in I/O bank 1.

(3)

Because of available clock resources, only a total of 6 DQ/DQS groups can be implemented.

(4)

Because of available clock resources, only a total of 14 DQ/DQS groups can be implemented.

(5)

The ×9 DQS/DQ groups are also used as ×8 DQS/DQ groups. The ×18 DQS/DQ groups are also used as ×16 
DQS/DQ groups.

(6)

For QDRI implementation, if you connect the D ports (write data) to the Cyclone II DQ pins, the total available ×9 
DQS /DQ and ×18 DQS/DQ groups are half of that shown in 

Table 2–15

.

Table 2–15. Cyclone II DQS & DQ Bus Mode Support (Part 2 of 2)

Note (1)

Device

Package

Number of ×8 

Groups

Number of ×9 

Groups 

(5)

(6)

Number of ×16 

Groups

Number of ×18 
Groups 

(5)

(6)

ac/package_outlines/cyc_c52006-html.html
background image

2–48

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Figure 2–27. DDR SDRAM Interfacing

f

For more information on Cyclone II external memory interfaces, see the 

External Memory Interfaces

 chapter in Volume 1 of the 

Cyclone II Device 

Handbook

.

DQS

OE

VCC

PLL

GND

clk

DQ

OE

DataA

DataB

Resynchronizing
to System Clock

Global Clock

Clock Delay

Control Circuitry

-90˚ Shifted clk

Adjacent LAB LEs

Clock Control

Block

LE

Register

LE

Register

LE

Register

LE

Register

t

en/dis

Dynamic Enable/Disable

Circuitry

ENOUT

ena_register_mode

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–49

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Programmable Drive Strength

The output buffer for each Cyclone II device I/O pin has a programmable 
drive strength control for certain I/O standards. The LVTTL, LVCMOS, 
SSTL-2 class I and II, SSTL-18 class I and II, HSTL-18 class I and II, and 
HSTL-1.5 class I and II standards have several levels of drive strength that 
you can control. Using minimum settings provides signal slew rate 
control to reduce system noise and signal overshoot. 

Table 2–16

 shows 

the possible settings for the I/O standards with drive strength control.

Table 2–16. Programmable Drive Strength (Part 1 of 2)

Note (1)

I/O Standard

I

OH

/I

OL

 Current Strength Setting (mA)

Top & Bottom I/O Pins

Side I/O Pins

LVTTL (3.3 V)

4

4

8

8

12

12

16

16

20

20

24

24

LVCMOS (3.3 V)

4

4

8

8

12

12

16

20

24

LVTTL/LVCMOS (2.5 V)

4

4

8

8

12

16

LVTTL/LVCMOS (1.8 V)

2

2

4

4

6

6

8

8

10

10

12

12

ac/package_outlines/cyc_c52006-html.html
background image

2–50

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Open-Drain Output

Cyclone II devices provide an optional open-drain (equivalent to an 
open-collector) output for each I/O pin. This open-drain output enables 
the device to provide system-level control signals (that is, interrupt and 
write-enable signals) that can be asserted by any of several devices.

LVCMOS (1.5 V)

2

2

4

4

6

6

8

SSTL-2 class I

8

8

12

12

SSTL-2 class II

16

16

20

24

SSTL-18 class I

6

6

8

8

10

10

12

SSTL-18 class II

16

18

HSTL-18 class I

8

8

10

10

12

12

HSTL-18 class II

16

18

20

HSTL-15 class I

8

8

10

12

HSTL-15 class II

16

Note to 

Table 2–16

:

(1)

The default current in the Quartus II software is the maximum setting for each 
I/O standard.

Table 2–16. Programmable Drive Strength (Part 2 of 2)

Note (1)

I/O Standard

I

OH

/I

OL

 Current Strength Setting (mA)

Top & Bottom I/O Pins

Side I/O Pins

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–51

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Slew Rate Control

Slew rate control is performed by using programmable output drive 
strength.

Bus Hold

Each Cyclone II device user I/O pin provides an optional bus-hold 
feature. The bus-hold circuitry can hold the signal on an I/O pin at its 
last-driven state. Since the bus-hold feature holds the last-driven state of 
the pin until the next input signal is present, an external pull-up or 
pull-down resistor is not necessary to hold a signal level when the bus is 
tri-stated.

The bus-hold circuitry also pulls undriven pins away from the input 
threshold voltage where noise can cause unintended high-frequency 
switching. You can select this feature individually for each I/O pin. The 
bus-hold output drives no higher than V

CCIO

 to prevent overdriving 

signals.

1

If the bus-hold feature is enabled, the device cannot use the 
programmable pull-up option. Disable the bus-hold feature 
when the I/O pin is configured for differential signals. Bus hold 
circuitry is not available on the dedicated clock pins.

The bus-hold circuitry is only active after configuration. When going into 
user mode, the bus-hold circuit captures the value on the pin present at 
the end of configuration.

The bus-hold circuitry uses a resistor with a nominal resistance (R

BH

) of 

approximately 7 k

Ω

 to pull the signal level to the last-driven state. Refer 

to the 

DC Characteristics & Timing Specifications

 chapter in Volume 1 of the 

Cyclone II Device Handbook

 for the specific sustaining current for each 

V

CCIO

 voltage level driven through the resistor and overdrive current 

used to identify the next driven input level.

Programmable Pull-Up Resistor

Each Cyclone II device I/O pin provides an optional programmable 
pull-up resistor during user mode. If you enable this feature for an I/O 
pin, the pull-up resistor (typically 25 k

Ω

) holds the output to the V

CCIO

 

level of the output pin’s bank.

1

If the programmable pull-up is enabled, the device cannot use 
the bus-hold feature. The programmable pull-up resistors are 
not supported on the dedicated configuration, JTAG, and 
dedicated clock pins.

ac/package_outlines/cyc_c52006-html.html
background image

2–52

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Advanced I/O Standard Support

Table 2–17

 shows the I/O standards supported by Cyclone II devices and 

which I/O pins support them.

Table 2–17. Cyclone II Supported I/O Standards & Constraints (Part 1 of 2)

I/O Standard

Type

V

CCIO

 Level

Top & Bottom 

I/O Pins

Side I/O Pins

Input

Output

CLK, 

DQS

User I/O 

Pins

CLK, 

DQS

PLL_OUT

User I/O 

Pins

3.3-V LVTTL and LVCMOS 

(1)

Single ended

3.3 V/

2.5 V

3.3 V

v

v

v

v

v

2.5-V LVTTL and LVCMOS

Single ended

3.3 V/

2.5 V

2.5 V

v

v

v

v

v

1.8-V LVTTL and LVCMOS

Single ended

1.8 V/

1.5 V

1.8 V

v

v

v

v

v

1.5-V LVCMOS

Single ended

1.8 V/

1.5 V

1.5 V

v

v

v

v

v

SSTL-2 class I

Voltage 
referenced

2.5 V

2.5 V

v

v

v

v

v

SSTL-2 class II

Voltage 
referenced

2.5 V

2.5 V

v

v

v

v

v

SSTL-18 class I

Voltage 
referenced

1.8 V

1.8 V

v

v

v

v

v

SSTL-18 class II

Voltage 
referenced

1.8 V

1.8 V

v

v

(2)

(2)

(2)

HSTL-18 class I

Voltage 
referenced

1.8 V

1.8 V

v

v

v

v

v

HSTL-18 class II

Voltage 
referenced

1.8 V

1.8 V

v

v

(2)

(2)

(2)

HSTL-15 class I

Voltage 
referenced

1.5 V

1.5 V

v

v

v

v

v

HSTL-15 class II

Voltage 
referenced 

1.5 V

1.5 V

v

v

(2)

(2)

(2)

PCI and PCI-X 

(1)

 

(3)

Single ended

3.3 V

3.3 V

v

v

v

Differential SSTL-2 class I or 
class II

Pseudo 
differential 

(4)

(5)

2.5 V

v

2.5 V

(5)

(6)

 

(6)

 

Differential SSTL-18 class I 
or class II

Pseudo 
differential 

(4)

(5)

1.8 V

v

 

(7)

1.8 V

(5)

(6)

(6)

 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–53

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

f

For more information on Cyclone II supported I/O standards, see the 

Selectable I/O Standards in Cyclone II Devices

 chapter in Volume 1 of the 

Cyclone II Device Handbook

.

High-Speed Differential Interfaces

Cyclone II devices can transmit and receive data through LVDS signals at 
a data rate of up to 640 Mbps and 805 Mbps, respectively. For the LVDS 
transmitter and receiver, the Cyclone II device’s input and output pins 
support serialization and deserialization through internal logic. 

Differential HSTL-15 class I 
or class II

Pseudo 
differential 

(4)

(5)

1.5 V

v

 

(7)

1.5 V

(5)

(6)

(6)

 

Differential HSTL-18 class I 
or class II

Pseudo 
differential 

(4)

(5)

1.8 V

v

 

(7)

1.8 V

(5)

(6)

(6)

 

LVDS

Differential

2.5 V

2.5 V

v

v

v

v

v

RSDS and mini-LVDS 

(8)

Differential

(5)

2.5 V

v

v

v

LVPECL 

(9)

Differential

3.3 V/
2.5 V/
1.8 V/
1.5 V

(5)

v

v

Notes to 

Table 2–17

:

(1)

To drive inputs higher than V

C C I O

 but less than 4.0 V, disable the PCI clamping diode and turn on the 

Allow 

LVTTL and LVCMOS input levels to overdrive input buffer

 option in the Quartus II software.

(2)

These pins support SSTL-18 class II and 1.8- and 1.5-V HSTL class II inputs.

(3)

PCI-X does not meet the IV curve requirement at the linear region. PCI-clamp diode is not available on top and 
bottom I/O pins.

(4)

Pseudo-differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed 
as inverted. Pseudo-differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and 
SSTL inputs and only decode one of them.

(5)

This I/O standard is not supported on these I/O pins.

(6)

This I/O standard is only supported on the dedicated clock pins.

(7)

PLL_OUT

 does not support differential SSTL-18 class II and differential 1.8 and 1.5-V HSTL class II.

(8)

mini-LVDS and RSDS are only supported on output pins.

(9)

LVPECL is only supported on clock inputs.

Table 2–17. Cyclone II Supported I/O Standards & Constraints (Part 2 of 2)

I/O Standard

Type

V

CCIO

 Level

Top & Bottom 

I/O Pins

Side I/O Pins

Input

Output

CLK, 

DQS

User I/O 

Pins

CLK, 

DQS

PLL_OUT

User I/O 

Pins

ac/package_outlines/cyc_c52006-html.html
background image

2–54

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

The reduced swing differential signaling (RSDS) and mini-LVDS 
standards are derivatives of the LVDS standard. The RSDS and 
mini-LVDS I/O standards are similar in electrical characteristics to 
LVDS, but have a smaller voltage swing and therefore provide increased 
power benefits and reduced electromagnetic interference (EMI). 
Cyclone II devices support the RSDS and mini-LVDS I/O standards at 
data rates up to 311 Mbps at the transmitter.

A subset of pins in each I/O bank (on both rows and columns) support 
the high-speed I/O interface. The dual-purpose LVDS pins require an 
external-resistor network at the transmitter channels in addition to 100-

Ω

 

termination resistors on receiver channels. These pins do not contain 
dedicated serialization or deserialization circuitry. Therefore, internal 
logic performs serialization and deserialization functions.

Cyclone II pin tables list the pins that support the high-speed I/O 
interface. The number of LVDS channels supported in each device family 
member is listed in 

Table 2–18

.

Table 2–18. Cyclone II Device LVDS Channels (Part 1 of 2)

Device

Pin Count

Number of LVDS 

Channels 

(1)

EP2C5

144

31 (35)

208

56 (60)

256

61 (65)

EP2C8

144

29 (33)

208

53 (57)

256

75 (79)

EP2C15

256

52 (60)

484

128 (136)

EP2C20

240

45 (53)

256

52 (60)

484

128 (136)

EP2C35

484

131 (139)

672

201 (209)

EP2C50

484

119 (127)

672

189 (197)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–55

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

You can use I/O pins and internal logic to implement a high-speed I/O 
receiver and transmitter in Cyclone II devices. Cyclone II devices do not 
contain dedicated serialization or deserialization circuitry. Therefore, 
shift registers, internal PLLs, and IOEs are used to perform 
serial-to-parallel conversions on incoming data and parallel-to-serial 
conversion on outgoing data.

The maximum internal clock frequency for a receiver and for a 
transmitter is 402.5 MHz. The maximum input data rate of 805 Mbps and 
the maximum output data rate of 640 Mbps is only achieved when DDIO 
registers are used. The LVDS standard does not require an input 
reference voltage, but it does require a 100-

Ω

 termination resistor 

between the two signals at the input buffer. An external resistor network 
is required on the transmitter side.

f

For more information on Cyclone II differential I/O interfaces, see the 

High-Speed Differential Interfaces in Cyclone II Devices

 chapter in Volume 1 

of the 

Cyclone II Device Handbook

.

Series On-Chip Termination

On-chip termination helps to prevent reflections and maintain signal 
integrity. This also minimizes the need for external resistors in high pin 
count ball grid array (BGA) packages. Cyclone II devices provide I/O 
driver on-chip impedance matching and on-chip series termination for 
single-ended outputs and bidirectional pins. 

EP2C70

672

160 (168)

896

257 (265)

Note to 

Table 2–18

:

(1)

The first number represents the number of bidirectional I/O pins which can be 
used as inputs or outputs. The number in parenthesis includes dedicated clock 
input pin pairs which can only be used as inputs.

Table 2–18. Cyclone II Device LVDS Channels (Part 2 of 2)

Device

Pin Count

Number of LVDS 

Channels 

(1)

ac/package_outlines/cyc_c52006-html.html
background image

2–56

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Cyclone II devices support driver impedance matching to the impedance 
of the transmission line, typically 25 or 50

Ω

. When used with the output 

drivers, on-chip termination sets the output driver impedance to 25 or 
50

Ω

. Cyclone II devices also support I/O driver series termination 

(R

S

= 50 

Ω

) for SSTL-2 and SSTL-18. 

Table 2–19

 lists the I/O standards that 

support impedance matching and series termination.

1

The recommended frequency range of operation is pending 
silicon characterization.

On-chip series termination can be supported on any I/O bank. V

CCIO

 and 

V

REF

 must be compatible for all I/O pins in order to enable on-chip series 

termination in a given I/O bank. I/O standards that support different R

S

 

values can reside in the same I/O bank as long as their V

CCIO

 and V

REF

 are 

not conflicting.

1

When using on-chip series termination, programmable drive 
strength is not available. 

Impedance matching is implemented using the capabilities of the output 
driver and is subject to a certain degree of variation, depending on the 
process, voltage and temperature. The actual tolerance is pending silicon 
characterization. 

Table 2–19. I/O Standards Supporting Series Termination

Note (1)

I/O Standards

Target R

S

 (

Ω

)

V

CCIO

 (V)

3.3-V LVTTL and LVCMOS

25 

(2)

3.3

2.5-V LVTTL and LVCMOS

50 

(2)

2.5

1.8-V LVTTL and LVCMOS

50 

(2)

1.8

SSTL-2 class I 

50 

(2)

2.5

SSTL-18 class I 

50 

(2)

1.8

Notes to 

Table 2–19

:

(1)

Supported conditions are V

CCIO

= V

CCIO

 ±50 mV.

(2)

These R

S

 values are nominal values. Actual impedance varies across process, 

voltage, and temperature conditions. 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–57

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

I/O Banks

The I/O pins on Cyclone II devices are grouped together into I/O banks 
and each bank has a separate power bus. EP2C5 and EP2C8 devices have 
four I/O banks (see 

Figure 2–28

), while EP2C15, EP2C20, EP2C35, 

EP2C50, and EP2C70 devices have eight I/O banks (see 

Figure 2–29

). 

Each device I/O pin is associated with one I/O bank. To accommodate 
voltage-referenced I/O standards, each Cyclone II I/O bank has a VREF 
bus. Each bank in EP2C5, EP2C8, EP2C15, EP2C20, EP2C35, and EP2C50 
devices supports two VREF pins and each bank of EP2C70 supports four 
VREF pins. When using the VREF pins, each VREF pin must be properly 
connected to the appropriate voltage level. In the event these pins are not 
used as VREF pins, they may be used as regular I/O pins.

The top and bottom I/O banks (banks 2 and 4 in EP2C5 and EP2C8 
devices and banks 3, 4, 7, and 8 in EP2C15, EP2C20, EP2C35, EP2C50, and 
EP2C70 devices) support all I/O standards listed in 

Table 2–17

, except the 

PCI/PCI-X I/O standards. The left and right side I/O banks (banks 1 and 
3 in EP2C5 and EP2C8 devices and banks 1, 2, 5, and 6 in EP2C15, EP2C20, 
EP2C35, EP2C50, and EP2C70 devices) support I/O standards listed in 

Table 2–17

except SSTL-18 class II, HSTL-18 class II, and HSTL-15 class II 

I/O standards. See 

Table 2–17

 for a complete list of supported I/O 

standards.   

The top and bottom I/O banks (banks 2 and 4 in EP2C5 and EP2C8 
devices and banks 3, 4, 7, and 8 in EP2C15, EP2C20, EP2C35, EP2C50, and 
EP2C70 devices) support DDR2 memory up to 167 MHz/333 Mbps and 
QDR memory up to 167 MHz/668 Mbps. The left and right side I/O 
banks (1 and 3 of EP2C5 and EP2C8 devices and 1, 2, 5, and 6 of EP2C15, 
EP2C20, EP2C35, EP2C50, and EP2C70 devices) only support SDR and 
DDR SDRAM interfaces. All the I/O banks of the Cyclone II devices 
support SDR memory up to 167 MHz/167 Mbps and DDR memory up to 
167 MHz/333 Mbps.

1

DDR2 and QDRII interfaces may be implemented in Cyclone II 
side banks if the use of class I I/O standard is acceptable.

ac/package_outlines/cyc_c52006-html.html
background image

2–58

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

Figure 2–28. EP2C5 & EP2C8 I/O Banks

Notes (1)

(2)

Notes to 

Figure 2–28

:

(1)

This is a top view of the silicon die.

(2)

This is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

(3)

The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output 
pins.

(4)

The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock 
pins.

(5)

The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock 
pins.

I/O Bank 2

I/O Bank 3

I/O Bank 4

I/O Bank 1

All I/O Banks Support

  

3.3-V LVTTL/LVCMOS

 

 

 

2.5-V LVTTL/LVCMOS

  

1.

8

-V LVTTL/LVCMOS

  

1.5-V LVCMOS

  

LVDS

  

RSDS

  

mini-LVDS

  

LVPECL (3)

 

 

SSTL-2 Class I and II

  

SSTL-1

8

 Class I

  

HSTL-1

8

 Class I

  

HSTL-15 Class I

 

 

Differential SSTL-2 (4)

  

Differential SSTL-1

8

 (4)

  

Differential HSTL-1

8

 (5)

  

Differential HSTL-15 (5)

I/O Bank 3
Also Supports the 
3.3-V PCI & PCI-X
I/O Standards

I/O Bank 1

Also Supports the

3.3-V PCI & PCI-X

I/O Standards

Individual

Power Bus

I/O Bank 2 Also Supports

the SSTL-1

8

 Class II,

HSTL-1

8

 Class II, & HSTL-15

Class II I/O Standards

I/O Bank 4 Also Supports

the SSTL-1

8

 Class II,

HSTL-1

8

 Class II, & HSTL-15

Class II I/O Standards

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–59

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

Figure 2–29. EP2C15, EP2C20, EP2C35, EP2C50 & EP2C70 I/O Banks

Notes (1)

(2)

Notes to 

Figure 2–29

:

(1)

This is a top view of the silicon die.

(2)

This is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

(3)

The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output 
pins.

(4)

The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock 
pins.

(5)

The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock 
pins.

Each I/O bank has its own 

VCCIO

 pins. A single device can support 

1.5-V, 1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support 
a different standard with different I/O voltages. Each bank also has 
dual-purpose 

VREF

 pins to support any one of the voltage-referenced 

I/O Bank 2

Regular I/O Block

Bank 

8

Regular I/O Block

Bank 7

I/O Bank 3

I/O Bank 4

I/O Bank 1

I/O Bank 5

I/O Bank 6

Individual

Power Bus

All I/O Banks Support

  

3.3-V LVTTL/LVCMOS

 

 

 

2.5-V LVTTL/LVCMOS

  

1.

8

-V LVTTL/LVCMOS

  

1.5-V LVCMOS

  

LVDS

  

RSDS

  

mini-LVDS

  

LVPECL (3)

 

 

SSTL-2 Class I and II

  

SSTL-1

8

 Class I

  

HSTL-1

8

 Class I

  

HSTL-15 Class I

 

 

Differential SSTL-2 (4)

  

Differential SSTL-1

8

 (4)

  

Differential HSTL-1

8

 (5)

  

Differential HSTL-15 (5)

I/O Banks 3 & 4 Also Support

the SSTL-1

8

 Class II,

HSTL-1

8

 Class II, & HSTL-15

Class II I/O Standards

I/O Banks 7 & 

8

 Also Support

the SSTL-1

8

 Class II,

HSTL-1

8

 Class II, & HSTL-15

Class II I/O Standards

I/O Banks 5 & 6 Also
Support the 3.3-V PCI
& PCI-X I/O Standards

I/O Banks 1 & 2 Also

Support the 3.3-V PCI

& PCI-X I/O Standards

ac/package_outlines/cyc_c52006-html.html
background image

2–60

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Structure & Features

standards (e.g., SSTL-2) independently. If an I/O bank does not use 
voltage-referenced standards, the 

VREF

 pins are available as user I/O 

pins.

Each I/O bank can support multiple standards with the same V

CCIO

 for 

input and output pins. For example, when V

CCIO

 is 3.3-V, a bank can 

support LVTTL, LVCMOS, and 3.3-V PCI for inputs and outputs. 
Voltage-referenced standards can be supported in an I/O bank using any 
number of single-ended or differential standards as long as they use the 
same V

REF

 and a compatible V

CCIO

 value.

MultiVolt I/O Interface

The Cyclone II architecture supports the MultiVolt I/O interface feature, 
which allows Cyclone II devices in all packages to interface with systems 
of different supply voltages. Cyclone II devices have one set of V

CC

 pins 

(

VCCINT

) that power the internal device logic array and input buffers that 

use the LVPECL, LVDS, HSTL, or SSTL I/O standards. Cyclone II devices 
also have four or eight sets of VCC pins (

VCCIO

) that power the I/O 

output drivers and input buffers that use the LVTTL, LVCMOS, or PCI 
I/O standards.

The Cyclone II 

VCCINT

 pins must always be connected to a 1.2-V power 

supply. If the V

CCINT

 level is 1.2 V, then input pins are 1.5-V, 1.8-V, 2.5-V, 

and 3.3-V tolerant. The 

VCCIO

 pins can be connected to either a 1.5-V, 

1.8-V, 2.5-V, or 3.3-V power supply, depending on the output 
requirements. The output levels are compatible with systems of the same 
voltage as the power supply (i.e., when 

VCCIO

 pins are connected to a 

1.5-V power supply, the output levels are compatible with 1.5-V systems). 
When 

VCCIO

 pins are connected to a 3.3-V power supply, the output high 

is 3.3-V and is compatible with 3.3-V systems. 

Table 2–20

 summarizes 

Cyclone II MultiVolt I/O support.

Table 2–20. Cyclone II MultiVolt I/O Support  (Part 1 of 2)

Note (1)

V

CCIO

 (V)

Input Signal

Output Signal

1.5 V

1.8 V

2.5 V

3.3 V

1.5 V

1.8 V

2.5 V

3.3 V

1.5

v

v

v

 

(2)

v

 

(2)

v

1.8

v

 

(4)

v

v

 

(2)

v

 

(2)

v

 

(3)

v

2.5

v

v

v

 

(5)

v

 

(5)

v

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

2–61

February 2007

Cyclone II Device Handbook, Volume 1

Cyclone II Architecture

3.3

v

 

(4)

v

v

 

(6)

v

 

(6)

v

 

(6)

v

Notes to 

Table 2–20

:

(1)

The PCI clamping diode must be disabled to drive an input with voltages higher than V

CCIO

.

(2)

These input values overdrive the input buffer, so the pin leakage current is slightly higher than the default value. 
To drive inputs higher than V

CCIO

 but less than 4.0 V, disable the PCI clamping diode and turn on 

Allow voltage 

overdrive for LVTTL/LVCMOS input pins

 option in Device setting option in the Quartus II software.

(3)

When V

CCIO

 = 1.8-V, a Cyclone II device can drive a 1.5-V device with 1.8-V tolerant inputs.

(4)

When V

CCIO

 = 3.3-V and a 2.5-V input signal feeds an input pin or when V

C C I O

 = 1.8-V and a 1.5-V input signal 

feeds an input pin, the V

CCIO

 supply current will be slightly larger than expected. The reason for this increase is 

that the input signal level does not drive to the V

CCIO

 rail, which causes the input buffer to not completely shut off.

(5)

When V

CCIO

 = 2.5-V, a Cyclone II device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.

(6)

When V

CCIO

 = 3.3-V, a Cyclone II device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.

Table 2–20. Cyclone II MultiVolt I/O Support  (Part 2 of 2)

Note (1)

V

CCIO

 (V)

Input Signal

Output Signal

1.5 V

1.8 V

2.5 V

3.3 V

1.5 V

1.8 V

2.5 V

3.3 V

ac/package_outlines/cyc_c52006-html.html
background image

2–62

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

Document 
Revision History

Table 2–21

 shows the revision history for this document.

Table 2–21. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v3.1

Added document revision history.

Removed Table 2-1.

Updated 

Figure 2–25

.

Added new 

Note (1)

 to 

Table 2–17

.

Added handpara note in 

“I/O Banks”

 section.

Updated 

Note (2)

 to 

Table 2–20

.

Removed Drive Strength 
Control from 

Figure 2–25

.

Elaboration of DDR2 and 
QDRII interfaces supported 
by I/O bank included.

November 2005 
v2.1

Updated 

Table 2–7

.

Updated 

Figures 2–11

 and 

2–12

.

Updated Programmable Drive Strength table.

Updated 

Table 2–16

.

Updated 

Table 2–18

.

Updated 

Table 2–19

.

July 2005 v2.0

Updated technical content throughout.

Updated 

Table 2–16

.

February 2005 
v1.2

Updated figure 2-12.

November 2004 
v1.1

Updated 

Table 2–19

.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

3–1

February 2007

3. Configuration & Testing

IEEE Std. 1149.1 
(JTAG) Boundary 
Scan Support

All Cyclone

®

II devices provide JTAG BST circuitry that complies with 

the IEEE Std. 1149.1. JTAG boundary-scan testing can be performed 
either before or after, but not during configuration. Cyclone II devices can 
also use the JTAG port for configuration with the Quartus

®

II software or 

hardware using either Jam Files (

.jam

) or Jam Byte-Code Files (

.jbc

).

Cyclone II devices support IOE I/O standard reconfiguration through the 
JTAG BST chain. The JTAG chain can update the I/O standard for all 
input and output pins any time before or during user mode through the 

CONFIG_IO

 instruction. You can use this capability for JTAG testing 

before configuration when some of the Cyclone II pins drive or receive 
from other devices on the board using voltage-referenced standards. 
Since the Cyclone II device might not be configured before JTAG testing, 
the I/O pins may not be configured for appropriate electrical standards 
for chip-to-chip communication. Programming the I/O standards via 
JTAG allows you to fully test I/O connections to other devices.

f

For information on I/O reconfiguration, refer to the 

MorphIO: An I/O 

Reconfiguration Solution for Altera Devices White Paper

A device operating in JTAG mode uses four required pins: 

TDI

TDO

TMS

and 

TCK

. The 

TCK

 pin has an internal weak pull-down resister, while the 

TDI

 and 

TMS

 pins have weak internal pull-up resistors. The 

TDO

 output 

pin and all JTAG input pin voltage is determined by the V

CCIO

 of the bank 

where it resides. The bank V

CCIO

 selects whether the JTAG inputs are 1.5-, 

1.8-, 2.5-, or 3.3-V compatible.

1

Stratix

®

 II, Stratix, Cyclone II and Cyclone devices must be 

within the first 8 devices in a JTAG chain. All of these devices 
have the same JTAG controller. If any of the Stratix II, Stratix, 
Cyclone II or Cyclone devices are in the 9th of further position, 
they fail configuration. This does not affect Signal Tap II.

CII51003-2.2

ac/package_outlines/cyc_c52006-html.html
background image

3–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 (JTAG) Boundary Scan Support

Cyclone II devices also use the JTAG port to monitor the logic operation 
of the device with the SignalTap

®

II embedded logic analyzer. Cyclone II 

devices support the JTAG instructions shown in 

Table 3–1

Table 3–1. Cyclone II JTAG Instructions (Part 

of 2)

JTAG Instruction

Instruction Code

Description

SAMPLE/PRELOAD

00 0000 0101

Allows a snapshot of signals at the device pins to be captured and 
examined during normal device operation, and permits an initial 
data pattern to be output at the device pins. Also used by the 
SignalTap II embedded logic analyzer.

EXTEST 

(1)

00 0000 1111

Allows the external circuitry and board-level interconnects to be 
tested by forcing a test pattern at the output pins and capturing test 
results at the input pins.

BYPASS

11 1111 1111

Places the 1-bit bypass register between the 

TDI

 and 

TDO

 pins, 

which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation.

USERCODE

00 0000 0111

Selects the 32-bit 

USERCODE

 register and places it between the 

TDI

 and 

TDO

 pins, allowing the 

USERCODE

 to be serially shifted 

out of 

TDO

.

IDCODE

00 0000 0110

Selects the 

IDCODE

 register and places it between 

TDI

 and 

TDO

allowing the 

IDCODE

 to be serially shifted out of 

TDO

.

HIGHZ 

(1)

00 0000 1011

Places the 1-bit bypass register between the 

TDI

 and 

TDO

 pins, 

which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation, while 
tri-stating all of the I/O pins.

CLAMP 

(1)

00 0000 1010

Places the 1-bit bypass register between the 

TDI

 and 

TDO

 pins, 

which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation while 
holding I/O pins to a state defined by the data in the boundary-scan 
register.

ICR 
instructions

Used when configuring a Cyclone II device via the JTAG port with 
a USB Blaster

, ByteBlaster

II, MasterBlaster

 or 

ByteBlasterMV

 download cable, or when using a Jam File or JBC 

File via an embedded processor.

PULSE_NCONFIG

00 0000 0001

Emulates pulsing the 

nCONFIG

 pin low to trigger reconfiguration 

even though the physical pin is unaffected.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

3–3

February 2007

Cyclone II Device Handbook, Volume 1

Configuration & Testing

The Quartus II software has an Auto Usercode feature where you can 
choose to use the checksum value of a programming file as the JTAG user 
code. If selected, the checksum is automatically loaded to the 

USERCODE

 

register. In the 

Settings

 dialog box in the Assignments menu, click 

Device 

& Pin Options

, then 

General, 

and then turn on the 

Auto Usercode 

option

CONFIG_IO

00 0000 1101

Allows configuration of I/O standards through the JTAG chain for 
JTAG testing. Can be executed before, after, or during 
configuration. Stops configuration if executed during configuration. 
Once issued, the 

CONFIG_IO

 instruction holds 

nSTATUS

 low to 

reset the configuration device. 

nSTATUS

 is held low until the 

device is reconfigured.

SignalTap II 
instructions

Monitors internal device operation with the SignalTap II embedded 
logic analyzer.

Note to 

Table 3–1

:

(1)

Bus hold and weak pull-up resistor features override the high-impedance state of 

HIGHZ

CLAMP

, and 

EXTEST.

Table 3–1. Cyclone II JTAG Instructions (Part 

of 2)

JTAG Instruction

Instruction Code

Description

ac/package_outlines/cyc_c52006-html.html
background image

3–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 (JTAG) Boundary Scan Support

The Cyclone II device instruction register length is 10 bits and the 

USERCODE

 register length is 32 bits. 

Tables 3–2

 and 

3–3

 show the 

boundary-scan register length and device 

IDCODE

 information for 

Cyclone II devices.

For more information on the Cyclone II JTAG specifications, refer to the 

DC Characteristics & Timing Specifications

 chapter in the 

Cyclone II Device 

Handbook, Volume 1

.

Table 3–2. Cyclone II Boundary-Scan Register Length

Device

Boundary-Scan Register Length

EP2C5

498

EP2C8

597

EP2C15

969

EP2C20

969

EP2C35

1,449

EP2C50

1,374

EP2C70

1,890 

Table 3–3. 32-Bit Cyclone II Device IDCODE 

Device

IDCODE (32 Bits

(1)

Version (4 Bits)

Part Number (16 Bits)

Manufacturer Identity (11 Bits)

LSB (1 Bit) 

(2)

EP2C5

0000

0010 0000 1011 0001

000  0110  1110

1

EP2C8

0000

0010 0000 1011 0010

000  0110  1110

1

EP2C15

0000

0010 0000 1011 0011

000  0110  1110

1

EP2C20

0000

0010 0000 1011 0011

000  0110  1110

1

EP2C35

0000

0010 0000 1011 0100

000  0110  1110

1

EP2C50

0000

0010 0000 1011 0101

000  0110  1110

1

EP2C70

0000

0010 0000 1011 0110

000  0110  1110

1

Notes to 

Table 3–3

:

(1)

The most significant bit (MSB) is on the left.

(2)

The IDCODE’s least significant bit (LSB) is always 1.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

3–5

February 2007

Cyclone II Device Handbook, Volume 1

Configuration & Testing

SignalTap II 
Embedded Logic 
Analyzer

Cyclone II devices support the SignalTap II embedded logic analyzer, 
which monitors design operation over a period of time through the IEEE 
Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed 
without bringing internal signals to the I/O pins. This feature is 
particularly important for advanced packages, such as FineLine BGA

®

 

packages, because it can be difficult to add a connection to a pin during 
the debugging process after a board is designed and manufactured. 

f

For more information on the SignalTap II, see the 

Signal Tap

 chapter of 

the 

Quartus II Handbook, Volume 3

.

Configuration

The logic, circuitry, and interconnects in the Cyclone II architecture are 
configured with CMOS SRAM elements. Altera FPGA devices are 
reconfigurable and every device is tested with a high coverage 
production test program so you do not have to perform fault testing and 
can instead focus on simulation and design verification.

Cyclone II devices are configured at system power-up with data stored in 
an Altera configuration device or provided by a system controller. The 
Cyclone II device’s optimized interface allows the device to act as 
controller in an active serial configuration scheme with EPCS serial 
configuration devices. The serial configuration device can be 
programmed via SRunner, the ByteBlaster II or USB Blaster download 
cable, the Altera Programming Unit (APU), or third-party programmers.

In addition to EPCS serial configuration devices, Altera offers in-system 
programmability (ISP)-capable configuration devices that can configure 
Cyclone II devices via a serial data stream using the Passive serial (PS) 
configuration mode. The PS interface also enables microprocessors to 
treat Cyclone II devices as memory and configure them by writing to a 
virtual memory location, simplifying reconfiguration. After a Cyclone II 
device has been configured, it can be reconfigured in-circuit by resetting 
the device and loading new configuration data. Real-time changes can be 
made during system operation, enabling innovative reconfigurable 
applications.

Operating 
Modes

The Cyclone II architecture uses SRAM configuration elements that 
require configuration data to be loaded each time the circuit powers up. 
The process of physically loading the SRAM data into the device is called 
configuration. During initialization, which occurs immediately after 
configuration, the device resets registers, enables I/O pins, and begins to 
operate as a logic device. You can use the 10MHz internal oscillator or the 
optional 

CLKUSR

 pin during the initialization. The 10 MHz internal 

oscillator is disabled in user mode. Together, the configuration and 
initialization processes are called command mode. Normal device 
operation is called user mode.

ac/package_outlines/cyc_c52006-html.html
background image

3–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Configuration Schemes

SRAM configuration elements allow Cyclone II devices to be 
reconfigured in-circuit by loading new configuration data into the device. 
With real-time reconfiguration, the device is forced into command mode 
with the 

nCONFIG

 pin. The configuration process loads different 

configuration data, reinitializes the device, and resumes user-mode 
operation. You can perform in-field upgrades by distributing new 
configuration files within the system or remotely.

A built-in weak pull-up resistor pulls all user I/O pins to V

CCIO

 before 

and during device configuration.

The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O 
standards. The voltage level of the configuration output pins is 
determined by the V

CCIO

 of the bank where the pins reside. The bank 

V

CCIO

 selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or 

3.3-V compatible.

Configuration 
Schemes

You can load the configuration data for a Cyclone II device with one of 
three configuration schemes (see 

Table 3–4

), chosen on the basis of the 

target application. You can use a configuration device, intelligent 
controller, or the JTAG port to configure a Cyclone II device. A low-cost 
configuration device can automatically configure a Cyclone II device at 
system power-up.

Multiple Cyclone II devices can be configured in any of the three 
configuration schemes by connecting the configuration enable (

nCE

) and 

configuration enable output (

nCEO

) pins on each device.

f

For more information on configuration, see the 

Configuring Cyclone II 

Devices

 chapter of the

 Cyclone II Handbook, Volume 2

.

Table 3–4. Data Sources for Configuration

Configuration 

Scheme

Data Source

Active serial (AS)

Low-cost serial configuration device

Passive serial (PS) Enhanced or EPC2 configuration device, MasterBlaster, ByteBlasterMV, ByteBlaster II or 

USB Blaster download cable, or serial data source

JTAG

MasterBlaster, ByteBlasterMV, ByteBlaster II or USB Blaster download cable or a 
microprocessor with a Jam or JBC file

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

3–7

February 2007

Cyclone II Device Handbook, Volume 1

Configuration & Testing

Cyclone II 
Automated 
Single Event 
Upset Detection

Cyclone II devices offer on-chip circuitry for automated checking of 
single event upset (SEU) detection. Some applications that require the 
device to operate error free at high elevations or in close proximity to 
earth’s North or South Pole require periodic checks to ensure continued 
data integrity. The error detection cyclic redundancy code (CRC) feature 
controlled by the 

Device & Pin Options

 dialog box in the Quartus II 

software uses a 32-bit CRC circuit to ensure data reliability and is one of 
the best options for mitigating SEU.

You can implement the error detection CRC feature with existing circuitry 
in Cyclone II devices, eliminating the need for external logic. For 
Cyclone II devices, the CRC is pre-computed by Quartus II software and 
then sent to the device as part of the POF file header. The 

CRC_ERROR

 pin 

reports a soft error when configuration SRAM data is corrupted, 
indicating to the user to preform a device reconfiguration.

Custom-Built Circuitry 

Dedicated circuitry in the Cyclone II devices performs error detection 
automatically. This error detection circuitry in Cyclone II devices 
constantly checks for errors in the configuration SRAM cells while the 
device is in user mode. You can monitor one external pin for the error and 
use it to trigger a re-configuration cycle. You can select the desired time 
between checks by adjusting a built-in clock divider.

Software Interface

In the Quartus II software version 4.1 and later, you can turn on the 
automated error detection CRC feature in the Device & Pin Options 
dialog box. This dialog box allows you to enable the feature and set the 
internal frequency of the CRC checker between 400 kHz to 80 MHz. This 
controls the rate that the CRC circuitry verifies the internal configuration 
SRAM bits in the FPGA device.

f

For more information on CRC, refer to 

AN: 357 Error Detection Using CRC 

in Altera FPGAs

.

ac/package_outlines/cyc_c52006-html.html
background image

3–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

Document 
Revision History

Table 3–5

 shows the revision history for this document.

Table 3–5. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v2.2

Added document revision history.

Added new handpara nore in 

“IEEE Std. 1149.1 (JTAG) 

Boundary Scan Support”

 section.

Updated 

“Cyclone II Automated Single Event Upset 

Detection”

 section.

Added information about 
limitation of cascading 
multi devices in the same 
JTAG chain.

Corrected information on 
CRC calculation.

July 2005 v2.0

Updated technical content.

February 2005 
v1.2

Updated information on JTAG chain limitations.

November 2004 
v1.1

Updated 

Table 3–4

.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

4–1

February 2007

4. Hot Socketing & Power-On

Reset

Introduction

Cyclone

®

II devices offer hot socketing (also known as hot plug-in, hot 

insertion, or hot swap) and power sequencing support without the use of 
any external devices. You can insert or remove a Cyclone II board in a 
system during system operation without causing undesirable effects to 
the board or to the running system bus. 

The hot-socketing feature lessens the board design difficulty when using 
Cyclone II devices on printed circuit boards (PCBs) that also contain a 
mixture of 3.3-, 2.5-, 1.8-, and 1.5-V devices. With the Cyclone II 
hot-socketing feature, you no longer need to ensure a proper power-up 
sequence for each device on the board. 

The Cyclone II hot-socketing feature provides:

Board or device insertion and removal without external components 
or board manipulation 

Support for any power-up sequence

Non-intrusive I/O buffers to system buses during hot insertion

This chapter also discusses the power-on reset (POR) circuitry in 
Cyclone II devices. The POR circuitry keeps the devices in the reset state 
until the V

CC

 is within operating range. 

Cyclone II 
Hot-Socketing 
Specifications

Cyclone II devices offer hot-socketing capability with all three features 
listed above without any external components or special design 
requirements. The hot-socketing feature in Cyclone II devices offers the 
following:

The device can be driven before power-up without any damage to 
the device itself.

I/O pins remain tri-stated during power-up. The device does not 
drive out before or during power-up, thereby affecting other buses 
in operation.

CII51004-3.1

ac/package_outlines/cyc_c52006-html.html
background image

4–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Hot-Socketing Specifications

Devices Can Be Driven before Power-Up

You can drive signals into the I/O pins, dedicated input pins, and 
dedicated clock pins of Cyclone II devices before or during power-up or 
power-down without damaging the device. Cyclone II devices support 
any power-up or power-down sequence (V

CCIO

 and V

CCINT

) to simplify 

system level design.

I/O Pins Remain Tri-Stated during Power-Up

A device that does not support hot socketing may interrupt system 
operation or cause contention by driving out before or during power-up. 
In a hot-socketing situation, the Cyclone II device’s output buffers are 
turned off during system power-up or power-down. The Cyclone II 
device also does not drive out until the device is configured and has 
attained proper operating conditions. The I/O pins are tri-stated until the 
device enters user mode with a weak pull-up resistor (R) to 3.3V. Refer to 

Figure 4–1

 for more information.

1

You can power up or power down the V

CCIO 

and V

CCINT

 pins in 

any sequence. The V

CCIO 

and V

CCINT

 must have monotonic rise 

to their steady state levels. (Refer to 

Figure 4–3

 for more 

information.) The power supply ramp rates can range from 
100 µs to 100 ms for non “A” devices. Both V

CC

 supplies must 

power down within 100 ms of each other to prevent I/O pins 
from driving out. During hot socketing, the I/O pin capacitance 
is less than 15 pF and the clock pin capacitance is less than 20 pF. 
Cyclone II devices meet the following hot-socketing 
specification.

The hot-socketing DC specification is | I

IOPIN

 | < 300 µA.

The hot-socketing AC specification is | I

IOPIN

 | < 8 mA for 10 ns or 

less.

This specification takes into account the pin capacitance but not board 
trace and external loading capacitance. You must consider additional 
capacitance for trace, connector, and loading separately.

I

IOPIN

 is the current at any user I/O pin on the device. The DC 

specification applies when all V

CC

 supplies to the device are stable in the 

powered-up or powered-down conditions. For the AC specification, the 
peak current duration due to power-up transients is 10 ns or less.

A possible concern for semiconductor devices in general regarding hot 
socketing is the potential for latch-up. Latch-up can occur when electrical 
subsystems are hot socketed into an active system. During hot socketing, 
the signal pins may be connected and driven by the active system before 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

4–3

February 2007

Cyclone II Device Handbook, Volume 1

Hot Socketing & Power-On Reset

the power supply can provide current to the device’s V

CC

 and ground 

planes. This condition can lead to latch-up and cause a low-impedance 
path from V

CC

 to ground within the device. As a result, the device extends 

a large amount of current, possibly causing electrical damage.

Altera has ensured by design of the I/O buffers and hot-socketing 
circuitry, that Cyclone II devices are immune to latch-up during hot 
socketing.

Hot-Socketing 
Feature 
Implementation 
in Cyclone II 
Devices

The hot-socketing feature turns off the output buffer during power up 
(either V

CCINT

 or V

CCIO

 supplies) or power down. The hot-socket circuit 

generates an internal 

HOTSCKT

 signal when either V

CCINT

 or V

CCIO

 is 

below the threshold voltage. Designs cannot use the 

HOTSCKT

 signal for 

other purposes. The 

HOTSCKT

 signal cuts off the output buffer to ensure 

that no DC current (except for weak pull-up leakage current) leaks 
through the pin. When V

CC

 ramps up slowly, V

CC

 is still relatively low 

even after the internal 

POR

 signal (not available to the FPGA fabric used 

by customer designs) is released and the configuration is finished. The 

CONF_DONE

nCEO

, and 

nSTATUS

 pins fail to respond, as the output 

buffer cannot drive out because the hot-socketing circuitry keeps the I/O 
pins tristated at this low V

CC

 voltage. Therefore, the hot-socketing circuit 

has been removed on these configuration output or bidirectional pins to 
ensure that they are able to operate during configuration. These pins are 
expected to drive out during power-up and power-down sequences.

Each I/O pin has the circuitry shown in 

Figure 4–1

ac/package_outlines/cyc_c52006-html.html
background image

4–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Hot-Socketing Feature Implementation in Cyclone II Devices

Figure 4–1. Hot-Socketing Circuit Block Diagram for Cyclone II Devices

The POR circuit monitors V

CCINT

 voltage level and keeps I/O pins 

tri-stated until the device is in user mode. The weak pull-up resistor (R) 
from the I/O pin to V

CCIO

 keeps the I/O pins from floating. The voltage 

tolerance control circuit permits the I/O pins to be driven by 3.3 V before 
V

CCIO

 and/or V

CCINT

 are powered, and it prevents the I/O pins from 

driving out when the device is not in user mode.

f

For more information, see the 

DC Characteristics & Timing Specifications 

chapter in Volume  1 of the 

Cyclone II Device Handbook

 for the value of the 

internal weak pull-up resistors. 

Figure 4–2

 shows a transistor level cross section of the Cyclone II device 

I/O buffers. This design ensures that the output buffers do not drive 
when V

CCIO

 is powered before V

CCINT

 or if the I/O pad voltage is higher 

than V

CCIO

. This also applies for sudden voltage spikes during hot 

socketing. The V

PAD

 leakage current charges the voltage tolerance control 

circuit capacitance.

Output Enable

Output

Hot Socket

Output

Pre-Driver

Voltage

Tolerance

Control

Power-On

Reset

Monitor

Weak

Pull-Up

Resistor

PAD

Input Buffer
to Logic Array

R

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

4–5

February 2007

Cyclone II Device Handbook, Volume 1

Hot Socketing & Power-On Reset

Figure 4–2. Transistor Level Diagram of FPGA Device I/O Buffers

Notes to 

Figure 4–2

:

(1)

This is the logic array signal or the larger of either the V

CCIO

 or V

PAD

 signal.

(2)

This is the larger of either the V

CCIO

 or V

PAD

 signal.

Power-On Reset 
Circuitry

Cyclone II devices contain POR circuitry to keep the device in a reset state 
until the power supply voltage levels have stabilized during power-up. 
The POR circuit monitors the V

CCINT

 voltage levels and tri-states all user 

I/O pins until the V

CC

 reaches the recommended operating levels. In 

addition, the POR circuitry also monitors the V

CCIO

 level of the two I/O 

banks that contains configuration pins (I/O banks 1 and 3 for EP2C5 and 
EP2C8, I/O banks 2 and 6 for EP2C15A, EP2C20, EP2C35, EP2C50, and 
EP2C70) and tri-states all user I/O pins until the V

CC

 reaches the 

recommended operating levels.

After the Cyclone II device enters user mode, the POR circuit continues to 
monitor the V

CCINT

 voltage level so that a brown-out condition during 

user mode can be detected. If the V

CCINT

 voltage sags below the POR trip 

point during user mode, the POR circuit resets the device. If the V

CCIO

 

voltage sags during user mode, the POR circuit does not reset the device.

"Wake-up" Time for Cyclone II Devices

In some applications, it may be necessary for a device to wake up very 
quickly in order to begin operation. The Cyclone II device family offers 
the Fast-On feature to support fast wake-up time applications. Devices 
that support the Fast-On feature are designated with an “A” in the 
ordering code and have stricter power up requirements compared to non-
A devices.

Logic Array

Signal

(1)

(2)

V

CCIO

V

PAD

n+

n+

n-well

n+

p+

p+

p-well

p-substrate

ac/package_outlines/cyc_c52006-html.html
background image

4–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Power-On Reset Circuitry

For Cyclone II devices, wake-up time consists of power-up, POR, 
configuration, and initialization. The device must properly go through all 
four stages to configure correctly and begin operation. You can calculate 
wake-up time using the following equation:

Figure 4–3

 illustrates the components of wake up time. 

Figure 4–3. Cyclone II Wake-Up Time

Note to 

Figure 4–3

:

(1)

V

CC 

ramp must be monotonic.

The V

CC

 ramp time and POR time will depend on the device 

characteristics and the power supply used in your system. The fast-on 
devices require a maximum V

CC

 ramp time of 2 ms and have a maximum 

POR time of 12 ms.

Configuration time will depend on the configuration mode chosen and 
the configuration file size. You can calculate configuration time by 
multiplying the number of bits in the configuration file with the period of 
the configuration clock. For fast configuration times, you should use 
Passive Serial (PS) configuration mode with maximum DCLK frequency 
of 100 MHz. In addition, you can use compression to reduce the 
configuration file size and speed up the configuration time.  The t

CD2UM 

or t

CD2UMC

 parameters will determine the initialization time.

1

For more information on the t

CD2UM 

or t

CD2UMC

 parameters, refer 

to the 

Configuring Cyclone II Devices

 chapter in the 

Cyclone II 

Device Handbook

Wake-Up Time = V

CC

 Ramp Time + POR Time + Configuration Time + Initialization Time

V

CC

 Ramp

Time

POR Time

Configuration Time

Initialization

Time

V

CC 

Minimum

Voltage

Time

User

Mode

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

4–7

February 2007

Cyclone II Device Handbook, Volume 1

Hot Socketing & Power-On Reset

If you cannot meet the maximum V

CC

 ramp time requirement, you must 

use an external component to hold 

nCONFIG

 low until the power supplies 

have reached their minimum recommend operating levels. Otherwise, 
the device may not properly configure and enter user mode.

Conclusion

Cyclone II devices are hot socketable and support all power-up and 
power-down sequences with the one requirement that V

CCIO

 and V

CCINT

 

be powered up and down within 100 ms of each other to keep the I/O 
pins from driving out. Cyclone II devices do not require any external 
devices for hot socketing and power sequencing.

Document 
Revision History

Table 4–1

 shows the revision history for this document.

Table 4–1. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v3.1

Added document revision history.

Updated 

“I/O Pins Remain Tri-Stated during Power-Up”

 

section.

Updated 

“Power-On Reset Circuitry”

 section.

Added footnote to 

Figure 4–3

.

Specified V

CCIO 

and V

CCINT

 

supplies must be GND 
when "not powered".

Added clarification about 
input-tristate behavior.

Added infomation on V

CC

 

monotonic ramp.

July 2005 v2.0

Updated technical content throughout.

February 2005 
v1.1

Removed ESD section.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

4–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

5–1

February 2008

5. DC Characteristics and

Timing Specifications

Operating 
Conditions

Cyclone

®

II devices are offered in commercial, industrial, automotive, 

and extended temperature grades. Commercial devices are offered in –6 
(fastest), –7, and –8 speed grades.

All parameter limits are representative of worst-case supply voltage and 
junction temperature conditions. Unless otherwise noted, the parameter 
values in this chapter apply to all Cyclone II devices. AC and DC 
characteristics are specified using the same numbers for commercial, 
industrial, and automotive grades. All parameters representing voltages 
are measured with respect to ground.

Tables 5–1

 through 

5–4

 provide information on absolute maximum 

ratings.

Table 5–1. Cyclone II Device Absolute Maximum Ratings

Notes (1)

(2)

Symbol

Parameter

Conditions

Minimum Maximum

Unit

V

CCINT

Supply voltage

With respect to ground

–0.5

1.8

V

V

CCIO

Output supply voltage

–0.5

4.6

V

V

CCA

_

PLL

 [1..4] PLL supply voltage

–0.5

1.8

V

V

IN

DC input voltage 

(3)

–0.5

4.6

V

I

OUT

DC output current, per pin

–25

40

mA

T

STG

Storage temperature

No bias

–65

150

°C

T

J

Junction temperature

BGA packages under bias

125

°C

Notes to 

Table 5–1

:

(1)

Conditions beyond those listed in this table cause permanent damage to a device. These are stress ratings only. 
Functional operation at these levels or any other conditions beyond those specified in this chapter is not implied. 
Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse 
effect on the device reliability.

(2)

Refer to the 

Operating Requirements for Altera Devices Data Sheet

 for more information.

(3)

During transitions, the inputs may overshoot to the voltage shown in 

Table 5–4

 based upon the input duty cycle. 

The DC case is equivalent to 100% duty cycle. During transition, the inputs may undershoot to –2.0 V for input 
currents less than 100 mA and periods shorter than 20 ns.

CII51005-4.0

ac/package_outlines/cyc_c52006-html.html
background image

5–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Operating Conditions

Table 5–2

 specifies the recommended operating conditions for Cyclone II 

devices. It shows the allowed voltage ranges for V

CCINT

, V

CCIO

, and the 

operating junction temperature (T

J

). The LVTTL and LVCMOS inputs are 

powered by V

CCIO

 only. The LVDS and LVPECL input buffers on 

dedicated clock pins are powered by V

CCINT

. The SSTL, HSTL, LVDS 

input buffers are powered by both V

CCINT

 and V

CCIO

.

Table 5–2. Recommended Operating Conditions

Symbol

Parameter

Conditions

Minimum

 Maximum

Unit

V

CCINT

Supply voltage for internal 
logic and input buffers

(1)

1.15

1.25

V

V

CCIO 

(2)

Supply voltage for output 
buffers, 3.3-V operation

(1)

3.135 (3.00)

3.465 (3.60) 

(3)

V

Supply voltage for output 
buffers, 2.5-V operation

(1)

2.375

2.625

V

Supply voltage for output 
buffers, 1.8-V operation

(1)

1.71

1.89

V

Supply voltage for output 
buffers, 1.5-V operation

(1)

1.425

1.575

V

T

J

 Operating 

junction 

temperature

For commercial use

0

85

°C

For industrial use

–40

100

°C

For extended 
temperature use

–40

125

°C

For automotive use

–40

125

°C

Notes to 

Table 5–2

:

(1)

The V

CC

 must rise monotonically. The maximum V

CC

 (both V

CCIO

 and V

CCINT

) rise time is 100 ms for non-A devices 

and 2 ms for A devices.

(2)

The V

CCIO

 range given here spans the lowest and highest operating voltages of all supported I/O standards. The 

recommended V

CCIO

 range specific to each of the single-ended I/O standards is given in 

Table 5–6

, and those 

specific to the differential standards is given in 

Table 5–8

.

(3)

The minimum and maximum values of 3.0 V and 3.6 V, respectively, for V

CCIO

 only applies to the PCI and PCI-X 

I/O standards. Refer to 

Table 5–6

 for the voltage range of other I/O standards.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–3

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Table 5–3. DC Characteristics for User I/O, Dual-Purpose, and Dedicated Pins  (Part 1 of 2)

Symbol

Parameter

Conditions

Minimum

Typical

Maximum Unit

V

IN

Input voltage

(1)

(2)

–0.5

4.0

V

I

i

Input pin leakage 
current

V

IN

 = V

CCIOmax

 to 0 V 

(3)

–10

10

μ

A

V

OUT

Output voltage

0

V

C C I O

V

I

OZ

Tri-stated I/O pin 
leakage current

V

OUT

 = V

CCIOmax

 to 0 V 

(3)

–10

10

μ

A

I

C C I N T 0

V

CCINT

 supply 

current (standby) 

V

IN

 = ground, 

no load, no 
toggling inputs
T

J

 = 25° C 

Nominal 
V

C C I N T

EP2C5/A

0.010

(4)

A

EP2C8/A

0.017

(4)

A

EP2C15A

0.037

(4)

A

EP2C20/A

0.037

(4)

A

EP2C35

0.066

(4)

A

EP2C50

0.101

(4)

A

EP2C70

0.141

(4)

A

I

C C I O 0

V

CCIO

 supply current 

(standby) 

V

IN

 = ground, 

no load, no 
toggling inputs
T

J

 = 25° C

V

C C I O

 = 2.5 V

EP2C5/A

0.7

(4)

mA

EP2C8/A

0.8

(4)

mA

EP2C15A

0.9

(4)

mA

EP2C20/A

0.9

(4)

mA

EP2C35

1.3

(4)

mA

EP2C50

1.3

(4)

mA

EP2C70

1.7

(4)

mA

ac/package_outlines/cyc_c52006-html.html
background image

5–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Operating Conditions

Table 5–4

 shows the maximum V

IN

 overshoot voltage and the 

dependency on the duty cycle of the input signal. Refer to 

Table 5–3

 fo

more information.

R

CONF 

(5)

 

(6)

Value of I/O pin 
pull-up resistor 
before and during 
configuration

V

IN

 = 0 V; V

CCIO

 = 3.3 V

10

25

50

k

Ω

V

IN

 = 0 V; V

CCIO

 = 2.5 V

15

35

70

k

Ω

V

IN

 = 0 V; V

CCIO

 = 1.8 V

30

50

100

k

Ω

V

IN

 = 0 V; V

CCIO

 = 1.5 V

40

75

150

k

Ω

V

IN

 = 0 V; V

CCIO

 = 1.2 V

50

90

170

k

Ω

Recommended 
value of I/O pin 
external pull-down 
resistor before and 
during configuration

(7)

 

1

2

k

Ω

Notes to 

Table 5–3

:

(1)

All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V

CCINT

 and V

CCIO

 are 

powered.

(2)

The minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to the 
voltages shown in 

Table 5–4

, based on input duty cycle for input currents less than 100 mA. The overshoot is 

dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

(3)

This value is specified for normal device operation. The value may vary during power-up. This applies for all V

CCIO

 

settings (3.3, 2.5, 1.8, and 1.5 V).

(4)

Maximum values depend on the actual T

J

 and design utilization. See the Excel-based PowerPlay Early Power 

Estimator (

www.altera.com

) or the Quartus II PowerPlay Power Analyzer feature for maximum values. Refer to 

“Power Consumption” on page 5–13

 for more information.

(5)

R

CONF

 values are based on characterization.  R

CONF

 = V

CCIO

/I

RCONF

. R

CONF

 values may be different if V

IN

 value is 

not 0 V. Pin pull-up resistance values will be lower if an external source drives the pin higher than V

CCIO

.

(6)

Minimum condition at –40°C and high V

CC

, typical condition at 25°C and nominal V

CC

 and maximum condition at 

125°C and low V

CC

 for R

CONF

 values.

(7)

These values apply to all V

CCIO

 settings.

Table 5–3. DC Characteristics for User I/O, Dual-Purpose, and Dedicated Pins  (Part 2 of 2)

Symbol

Parameter

Conditions

Minimum

Typical

Maximum Unit

Table 5–4. V

IN

 Overshoot Voltage for All Input Buffers

Maximum V

IN

 (V)

Input Signal Duty Cycle

4.0

100% (DC)

4.1

90%

4.2

50%

4.3

30%

4.4

17%

4.5

10%

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–5

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Single-Ended I/O Standards

Tables 5–6

 and 

5–7

 provide operating condition information when using 

single-ended I/O standards with Cyclone II devices. 

Table 5–5

 provides 

descriptions for the voltage and current symbols used in 

Tables 5–6

 and 

5–7

.

Table 5–5. Voltage and Current Symbol Definitions

Symbol

Definition

V

C C I O

Supply voltage for single-ended inputs and for output drivers

V

R E F

Reference voltage for setting the input switching threshold

V

I L

Input voltage that indicates a low logic level

V

I H

Input voltage that indicates a high logic level

V

O L

Output voltage that indicates a low logic level

V

O H

Output voltage that indicates a high logic level

I

O L

Output current condition under which V

O L

 is tested

I

O H

Output current condition under which V

O H

 is tested

V

T T

Voltage applied to a resistor termination as specified by 
HSTL and SSTL standards

Table 5–6. Recommended Operating Conditions for User I/O Pins Using Single-Ended I/O Standards 

Note (1)

(Part 1 of 2)

I/O Standard

V

CCIO

 (V)

V

REF

 (V)

V

IL 

(V)

V

IH 

(V)

Min

Typ

Max

Min

Typ

Max

Max

Min

3.3-V LVTTL and 
LVCMOS

3.135

3.3

3.465

0.8

1.7

2.5-V LVTTL and 
LVCMOS

2.375

2.5

2.625

0.7

1.7

1.8-V LVTTL and 
LVCMOS

1.710

1.8

1.890

0.35 × V

C C I O

0.65 × V

C C I O

1.5-V LVCMOS

1.425

1.5

1.575

0.35 × V

C C I O

0.65 × V

C C I O

PCI and PCI-X

3.000

3.3

3.600

0.3 × V

C C I O

0.5 × V

C C I O

SSTL-2 class I

2.375

2.5

2.625

1.19

1.25

1.31

V

R E F

 – 0.18 (DC)

V

R E F

 – 0.35 (AC)

V

R E F

 + 0.18 (DC)

V

R E F

 + 0.35 (AC)

SSTL-2 class II

2.375

2.5

2.625

1.19

1.25

1.31

V

R E F

 – 0.18 (DC)

V

R E F

 – 0.35 (AC)

V

R E F

 + 0.18 (DC)

V

R E F

 + 0.35 (AC)

SSTL-18 class I

1.7

1.8

1.9

0.833

0.9

0.969

V

R E F

 – 0.125 (DC)

V

R E F

 – 0.25 (AC)

V

R E F

 + 0.125 (DC)

V

R E F

 + 0.25 (AC)

ac/package_outlines/cyc_c52006-html.html
background image

5–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Operating Conditions

SSTL-18 class II

1.7

1.8

1.9

0.833

0.9

0.969

V

R E F

 – 0.125 (DC)

V

R E F

 – 0.25 (AC)

V

R E F

 + 0.125 (DC)

V

R E F

 + 0.25 (AC)

1.8-V HSTL 
class I

1.71

1.8

1.89

0.85

0.9

0.95

V

R E F

 – 0.1 (DC)

V

R E F

 – 0.2 (AC)

V

R E F

 + 0.1 (DC)

V

R E F

 + 0.2 (AC)

1.8-V HSTL 
class II

1.71

1.8

1.89

0.85

0.9

0.95

V

R E F

 – 0.1 (DC)

V

R E F

 – 0.2 (AC)

V

R E F

 + 0.1 (DC)

V

R E F

 + 0.2 (AC)

1.5-V HSTL 
class I

1.425

1.5

1.575

0.71

0.75

0.79

V

R E F

 – 0.1 (DC)

V

R E F

 – 0.2 (AC)

V

R E F

 + 0.1 (DC)

V

R E F

 + 0.2 (AC)

1.5-V HSTL 
class II

1.425

1.5

1.575

0.71

0.75

0.79

V

R E F

 – 0.1 (DC)

V

R E F

 – 0.2 (AC)

V

R E F

 + 0.1 (DC)

V

R E F

 + 0.2 (AC)

Note to 

Table 5–6

:

(1)

Nominal values (Nom) are for T

A

 = 25° C, V

CCINT

 = 1.2 V, and V

CCIO

 = 1.5, 1.8, 2.5, and 3.3 V.

Table 5–7. DC Characteristics of User I/O Pins Using Single-Ended Standards

Notes (1)

(2)

(Part 1 of 2)

I/O Standard 

Test Conditions 

Voltage Thresholds

I

OL

 (mA)

I

OH

 (mA)

Maximum V

OL

 (V)

Minimum V

OH

 (V)

3.3-V LVTTL

4

–4

0.45

2.4

3.3-V LVCMOS

0.1

–0.1

0.2

V

C C I O

 – 0.2

2.5-V LVTTL and 
LVCMOS

1

–1

0.4

2.0

1.8-V LVTTL and 
LVCMOS

2

–2

0.45

V

C C I O

 – 0.45

1.5-V LVTTL and 
LVCMOS

2

–2

0.25  ×  V

C C I O

0.75 × V

C C I O

PCI and PCI-X

1.5

–0.5

0.1 × V

C C I O

0.9 × V

C C I O

SSTL-2 class I

8.1

–8.1

V

TT

 – 0.57

V

TT

 + 0.57

SSTL-2 class II

16.4

–16.4

V

TT

 – 0.76

V

TT

 + 0.76

SSTL-18 class I

6.7

–6.7

V

TT

 – 0.475

V

TT

 + 0.475

SSTL-18 class II

13.4

–13.4

0.28

V

C C I O

 – 0.28

1.8-V HSTL class I

8

–8

0.4

V

C C I O

 – 0.4

1.8-V HSTL class II

16

–16

0.4

V

C C I O

 – 0.4

Table 5–6. Recommended Operating Conditions for User I/O Pins Using Single-Ended I/O Standards 

Note (1)

(Part 2 of 2)

I/O Standard

V

CCIO

 (V)

V

REF

 (V)

V

IL 

(V)

V

IH 

(V)

Min

Typ

Max

Min

Typ

Max

Max

Min

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–7

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Differential I/O Standards

The RSDS and mini-LVDS I/O standards are only supported on output 
pins. The LVDS I/O standard is supported on both receiver input pins 
and transmitter output pins.

1

For more information on how these differential I/O standards 
are implemented, refer to the 

High-Speed Differential Interfaces in 

Cyclone II Devices

 chapter of the 

Cyclone II Device Handbook

.

Figure 5–1

 shows the receiver input waveforms for all differential I/O 

standards (LVDS, LVPECL, differential 1.5-V HSTL class I and II, 
differential 1.8-V HSTL class I and II, differential SSTL-2 class I and II, and 
differential SSTL-18 class I and II).

1.5-V HSTL class I

8

–8

0.4

V

C C I O

 – 0.4

1.5V HSTL class II

16

–16

0.4

V

C C I O

 – 0.4

Notes to 

Table 5–7

:

(1)

The values in this table are based on the conditions listed in 

Tables 5–2

 and 

5–6

.

(2)

This specification is supported across all the programmable drive settings available as shown in the 

Cyclone II 

Architecture

 chapter of the 

Cyclone II Device Handbook

.

Table 5–7. DC Characteristics of User I/O Pins Using Single-Ended Standards

Notes (1)

(2)

(Part 2 of 2)

I/O Standard 

Test Conditions 

Voltage Thresholds

I

OL

 (mA)

I

OH

 (mA)

Maximum V

OL

 (V)

Minimum V

OH

 (V)

ac/package_outlines/cyc_c52006-html.html
background image

5–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Operating Conditions

Figure 5–1. Receiver Input Waveforms for Differential I/O Standards

Notes to 

Figure 5–1

:

(1)

V

ID

 is the differential input voltage. V

ID

 = |p – n|.

(2)

V

ICM

 is the input common mode voltage. V

ICM

 = (p + n)/2.

(3)

The p – n waveform is a function of the positive channel (p) and the negative channel (n).

Sin

g

le-Ended Waveform

Differential Waveform (Mathematical Function of Positive and Ne

g

ative Channel)

Positi

v

e Channel (p) = 

V

IH

N

egati

v

e Channel (n) = 

V

IL

Gro

u

nd

V

ID 

(1)

V

ID 

(1)

V

ID 

(1)

V

ICM 

(2)

V

− 

(3)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–9

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Table 5–8

 shows the recommended operating conditions for user I/O 

pins with differential I/O standards.

Table 5–8. Recommended Operating Conditions for User I/O Pins Using Differential Signal I/O Standards

I/O 

Standard

V

CCIO

 (V)

V

ID

 (V) 

(1)

V

ICM

 (V)

V

IL

 (V)

V

IH

 (V)

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Min

Max

Min

Max

LVDS

2.375

2.5

2.625

0.1

0.65 0.1

2.0

Mini-LVDS 

(2)

2.375

2.5

2.625

RSDS 

(2)

2.375

2.5

2.625

LVPECL

(3)

 

(6)

3.135

3.3

3.465

0.1

0.6

0.95

0

2.2

2.1

2.88

Differential 
1.5-V HSTL 
class I 
and II 

(4)

1.425

1.5

1.575

0.2

V

C C I O

 

+ 0.6

0.68

0.9

V

R E F

 

– 0.20

V

R E F

 

+ 0.20

Differential 
1.8-V HSTL 
class I 
and II 

(4)

1.71

1.8

1.89

V

R E F

 

– 0.20

V

R E F

 

+ 0.20

Differential 
SSTL-2 
class I 
and II 

(5)

2.375

2.5

2.625

0.36

V

C C I O

 

+ 0.6

0.5 × 

V

C C I O

 

– 0.2

0.5 × 

V

C C I O

0.5 × 

V

C C I O

 

+ 0.2

V

R E F

 

– 0.35

V

R E F

 

+ 0.35

Differential 
SSTL-18 
class I 
and II 

(5)

1.7

1.8

1.9

0.25

V

C C I O

 

+ 0.6

0.5 × 

V

C C I O

 

– 0.2

0.5 × 

V

C C I O

0.5 × 

V

C C I O

 

+ 0.2

V

R E F

 

– 0.25

V

R E F

 

+ 0.25

Notes to 

Table 5–8

:

(1)

Refer to the 

High-Speed Differential Interfaces in Cyclone II Devices

 chapter of the 

Cyclone II Device Handbook

 for 

measurement conditions on V

ID

.

(2)

The RSDS and mini-LVDS I/O standards are only supported on output pins.

(3)

The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output 
pins.

(4)

The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock 
pins.

(5)

The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock 
pins.

(6)

The LVPECL clock inputs are powered by V

CCINT

 and support all V

CCIO

 settings. However, it is recommended to 

connect V

CCIO

 to typical value of 3.3V.

ac/package_outlines/cyc_c52006-html.html
background image

5–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Operating Conditions

Figure 5–2

 shows the transmitter output waveforms for all supported 

differential output standards (LVDS, mini-LVDS, RSDS, differential 1.5-V 
HSTL class I and II, differential 1.8-V HSTL class I and II, differential 
SSTL-2 class I and II, and differential SSTL-18 class I and II).

Figure 5–2. Transmitter Output Waveforms for Differential I/O Standards

Notes to 

Figure 5–2

:

(1)

V

OD

 is the output differential voltage. V

OD

 = |p – n|.

(2)

V

OCM

 is the output common mode voltage. V

OCM

 = (p + n)/2.

(3)

The p – n waveform is a function of the positive channel (p) and the negative channel (n).

Table 5–9

 shows the DC characteristics for user I/O pins with differential 

I/O standards.

Sin

g

le-Ended Waveform

Differential Waveform (Mathematical Function of Positive and Ne

g

ative Channel)

Positi

v

e Channel (p) = 

V

OH

N

egati

v

e Channel (n) = 

V

OL

Gro

u

nd

V

OD 

(1)

V

OD 

(1)

V

OD 

(1)

V

V

OCM 

(2)

− 

n

 

(3)

Table 5–9. DC Characteristics for User I/O Pins Using Differential I/O Standards

Note (1)

(Part 1 of 2)

I/O Standard

V

OD

 (mV)

Δ

V

OD

 (mV)

V

OCM

 (V)

V

OH

 (V)

V

OL

 (V)

Min

Typ

Max

Min Max

Min

Typ

Max

Min

Max

Min

Max

LVDS

250

600

50

1.125

1.25

1.375

mini-LVD

(2)

300

600

50

1.125

1.25

1.375

RSDS 

(2)

100

600

1.125

1.25

1.375

Differential 1.5-V 
HSTL class I 
and II 

(3)

V

C C I O

 

– 0.4

0.4

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–11

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

DC 
Characteristics 
for Different Pin 
Types

Table 5–10

 shows the types of pins that support bus hold circuitry.

Differential 1.8-V 
HSTL class I 
and II 

(3)

V

C C I O

 

– 0.4

0.4

Differential 
SSTL-2 class I 

(4)

V

T T

 + 

0.57

V

T T

 – 

0.57

Differential 
SSTL-2 class II 

(4)

V

T T

 + 

0.76

V

T T

 – 

0.76

Differential 
SSTL-18 class I 

(4)

0.5 × 

V

C C I O

 

– 

0.125

0.5 × 

V

C C I O

0.5 × 

V

C C I O

 

0.125

V

T T

 + 

0.475

V

T T

 – 

0.475

Differential 
SSTL-18 class II 

(4)

0.5 × 

V

C C I O

 

– 

0.125

0.5 × 

V

C C I O

0.5 × 

V

C C I O

 

0.125

V

C C I O

 

– 0.28

0.28

Notes to 

Table 5–9

:

(1)

The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output 
pins.

(2)

The RSDS and mini-LVDS I/O standards are only supported on output pins.

(3)

The differential 1.8-V HSTL and differential 1.5-V HSTL I/O standards are only supported on clock input pins and 
PLL output clock pins.

(4)

The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock 
pins.

Table 5–9. DC Characteristics for User I/O Pins Using Differential I/O Standards

Note (1)

(Part 2 of 2)

I/O Standard

V

OD

 (mV)

Δ

V

OD

 (mV)

V

OCM

 (V)

V

OH

 (V)

V

OL

 (V)

Min

Typ

Max

Min Max

Min

Typ

Max

Min

Max

Min

Max

Table 5–10. Bus Hold Support

Pin Type

Bus Hold

I/O pins using single-ended I/O standards

Yes

I/O pins using differential I/O standards

No

Dedicated clock pins

No

JTAG

No

Configuration pins

No

ac/package_outlines/cyc_c52006-html.html
background image

5–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

DC Characteristics for Different Pin Types

Table 5–11

 specifies the bus hold parameters for general I/O pins.

On-Chip Termination Specifications

Table 5–12

 defines the specifications for internal termination resistance 

tolerance when using series or differential on-chip termination.

Table 5–11. Bus Hold Parameters

Note (1)

Parameter

Conditions

V

CCIO

 Level

Unit

1.8 V

2.5 V

3.3 V

Min

Max

Min

Max

Min

Max

Bus-hold low, sustaining 
current

V

I N

 > 

V

I L

(maximum)

30

50

70

μ

A

Bus-hold high, sustaining 
current

V

I N

 < 

V

I L

(minimum)

–30

–50

–70

μ

A

Bus-hold low, overdrive 
current

0 V < V

I N

 < V

C C I O

200

300

500

μ

A

Bus-hold high, overdrive 
current

0 V < V

I N

 < V

C C I O

–200

–300

–500

μ

A

Bus-hold trip point 

(2)

0.68

1.07

0.7

1.7

0.8

2.0

V

Notes to 

Table 5–11

:

(1)

There is no specification for bus-hold at V

CCIO

 = 1.5 V for the HSTL I/O standard.

(2)

The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

Table 5–12. Series On-Chip Termination Specifications

Symbol

Description

Conditions

Resistance Tolerance

Commercial 

Max

Industrial

Max

Extended/

Automotive 

Temp Max

Unit

25-

Ω

 R

S

Internal series termination without 
calibration (25-

Ω

 setting

)

V

C C I O

 = 3.3V

±30

±30

±40

%

50-

Ω

 R

S

Internal series termination without 
calibration (50-

Ω

 setting

)

V

C C I O

 = 2.5V

±30

±30

±40

%

50-

Ω

 R

S

 

Internal series termination without 
calibration (50-

Ω

 setting

)

V

C C I O

 = 1.8V

±30 

(1)

±40

±50

%

Note to 

Table 5–12

:

(1)

For commercial –8 devices, the tolerance is ±40%.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–13

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Table 5–13

 shows the Cyclone II device pin capacitance for different I/O 

pin types.

Power 
Consumption

You can calculate the power usage for your design using the PowerPlay 
Early Power Estimator and the PowerPlay Power Analyzer feature in the 
Quartus

®

II software.

The interactive PowerPlay Early Power Estimator is typically used 
during the early stages of FPGA design, prior to finalizing the project, to 
get a magnitude estimate of the device power. The Quartus II software 
PowerPlay Power Analyzer feature is typically used during the later 
stages of FPGA design. The PowerPlay Power Analyzer also allows you 
to apply test vectors against your design for more accurate power 
consumption modeling.

In both cases, only use these calculations as an estimation of power, not 
as a specification. For more information on PowerPlay tools, refer to the 

PowerPlay Early Power Estimator User Guide

 and the

 

Power Estimation and 

Analysis

 

section in volume 3 of the 

Quartus II Handbook.

1

You can obtain the Excel-based PowerPlay Early Power 
Estimator at 

www.altera.com

. Refeto 

Table 5–3 on page 5–3

 for 

typical I

CC

 standby specifications.

The power-up current required by Cyclone II devices does not exceed the 
maximum static current. The rate at which the current increases is a 
function of the system power supply. The exact amount of current 
consumed varies according to the process, temperature, and power ramp 
rate. The duration of the I

CCINT

 power-up requirement depends on the 

V

CCINT

 voltage supply rise time.

Table 5–13. Device Capacitance

Note (1)

Symbol

Parameter

Typical

Unit

C

I O

Input capacitance for user I/O pin.

pF

C

L V D S

Input capacitance for dual-purpose 
LVDS/user I/O pin.

6 pF

C

V R E F

Input capacitance for dual-purpose 

VREF

 

pin when used as 

VREF

 or user I/O pin.

21 pF

C

C L K

Input capacitance for clock pin.

pF

Note to 

Table 5–13

:

(1)

Capacitance is sample-tested only. Capacitance is measured using time-domain 
reflectometry (TDR). Measurement accuracy is within ±0.5 pF.

ac/package_outlines/cyc_c52006-html.html
background image

5–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

You should select power supplies and regulators that can supply the 
amount of current required when designing with Cyclone II devices.

Altera recommends using the Cyclone II PowerPlay Early Power 
Estimator to estimate the user-mode I

CCINT

 consumption and then select 

power supplies or regulators based on the values obtained.

Timing 
Specifications

The DirectDrive™ technology and MultiTrack™ interconnect ensure 
predictable performance, accurate simulation, and accurate timing 
analysis across all Cyclone II device densities and speed grades. This 
section describes and specifies the performance, internal, external, 
high-speed I/O, JTAG, and PLL timing specifications. 

This section shows the timing models for Cyclone II devices. Commercial 
devices meet this timing over the commercial temperature range. 
Industrial devices meet this timing over the industrial temperature range. 
Automotive devices meet this timing over the automotive temperature 
range. Extended devices meet this timing over the extended temperature 
range. All specifications are representative of worst-case supply voltage 
and junction temperature conditions.

Preliminary and Final Timing Specifications

Timing models can have either preliminary or final status. The Quartus II 
software issues an informational message during the design compilation 
if the timing models are preliminary. 

Table 5–14

 shows the status of the 

Cyclone II device timing models.

Preliminary status means the timing model is subject to change. Initially, 
timing numbers are created using simulation results, process data, and 
other known parameters. These tests are used to make the preliminary 
numbers as close to the actual timing parameters as possible. 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–15

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Final timing numbers are based on actual device operation and testing. 
These numbers reflect the actual performance of the device under 
worst-case voltage and junction temperature conditions.

Performance

Table 5–15

 shows Cyclone II performance for some common designs. All 

performance values were obtained with Quartus II software compilation 
of LPM, or MegaCore functions for the FIR and FFT designs.

Table 5–14. Cyclone II Device Timing Model Status

Device

Speed Grade

Preliminary

Final

EP2C5/A

Commercial/Industrial

v

Automotive

v

EP2C8/A

Commercial/Industrial

v

Automotive

v

EP2C15A

Commercial/Industrial

v

Automotive

v

EP2C20/A

Commercial/Industrial

v

Automotive

v

EP2C35

Commercial/Industrial

v

EP2C50

Commercial/Industrial

v

EP2C70

Commercial/Industrial

v

Table 5–15. Cyclone II Performance (Part 1 of 4)

Applications

Resources Used

Performance (MHz)

LEs

M4K 

Memory 

Blocks

DSP 

Blocks

–6 

Speed 

Grade

–7

Speed 

Grade 

(6)

–7

Speed 

Grade 

(7)

–8 

Speed 

Grade

LE

16-to-1 multiplexer 

(1)

21

0

0

385.35

313.97

270.85

286.04

32-to-1 multiplexer 

(1)

38

0

0

294.2

260.75

228.78

191.02

16-bit counter

16

0

0

401.6

349.4

310.65

310.65

64-bit counter

64

0

0

157.15

137.98

126.08

126.27

ac/package_outlines/cyc_c52006-html.html
background image

5–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

Memory
M4K 
block

Simple dual-port RAM 128 × 36 bit 

(3)

(5)

0

1

0

235.29

194.93

163.13

163.13

True dual-port RAM 128 × 18 bit

(3)

(5)

0

1

0

235.29

194.93

163.13

163.13

FIFO 128 × 16 bit

(5)

32

1

0

235.29

194.93

163.13

163.13

Simple dual-port RAM 128 × 36 bit 

(4)

,

(5)

0

1

0

210.08

195.0

163.02

163.02

True dual-port RAM 128x18 bit 

(4)

,

(5)

0

1

0

163.02

163.02

163.02

163.02

DSP 
block

9 × 9-bit multiplier 

(2)

0

0

1

260.01

216.73

180.57

180.57

18 × 18-bit multiplier 

(2)

0

0

1

260.01

216.73

180.57

180.57

18-bit, 4 tap FIR filter

113

0

8

182.74

147.47

127.74

122.98

Larger 
Designs

8-bit, 16 tap parallel FIR filter

52

0

4

153.56

131.25

110.44

110.57

8-bit, 1024 pt, Streaming,
3 Mults/5 Adders FFT function

3191

22

9

235.07

195.0

147.51

163.02

8-bit, 1024 pt, Streaming,
4 Mults/2 Adders FFT function

3041

22

12

235.07

195.0

146.3

163.02

8-bit, 1024 pt, Single Output,
1 Parallel FFT Engine, Burst,
3 Mults/5 Adders FFT function

1056

5

3

235.07

195.0

147.84

163.02

8-bit, 1024 pt, Single Output,
1 Parallel FFT Engine, Burst,
4 Mults/2 Adders FFT function

1006

5

4

235.07

195.0

149.99

163.02

8-bit, 1024 pt, Single Output,
2 Parallel FFT Engines, Burst,
3 Mults/5 Adders FFT function

1857

10

6

200.0

195.0

149.61

163.02

8-bit, 1024 pt, Single Output,
2 Parallel FFT Engines, Burst,
4 Mults/2 Adders FFT function

1757

10

8

200.0

195.0

149.34

163.02

8-bit, 1024 pt, Quad Output,
1 Parallel FFT Engine, Burst,
3 Mults/5 Adders FFT function

2550

10

9

235.07

195.0

148.21

163.02

Table 5–15. Cyclone II Performance (Part 2 of 4)

Applications

Resources Used

Performance (MHz)

LEs

M4K 

Memory 

Blocks

DSP 

Blocks

–6 

Speed 

Grade

–7

Speed 

Grade 

(6)

–7

Speed 

Grade 

(7)

–8 

Speed 

Grade

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–17

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Larger 
Designs

8-bit, 1024 pt, Quad Output,
1 Parallel FFT Engine, Burst,
4 Mults/2 Adders FFT function

2400

10

12

235.07

195.0

140.11

163.02

8-bit, 1024 pt, Quad Output,
2 Parallel FFT Engines, Burst,
3 Mults/5 Adders FFT function

4343

14

18

200.0

195.0

152.67

163.02

8-bit, 1024 pt, Quad Output,
2 Parallel FFT Engines, Burst,
4 Mults/2 Adders FFT function

4043

14

24

200.0

195.0

149.72

163.02

8-bit, 1024 pt, Quad Output,
4 Parallel FFT Engines, Burst,
3 Mults/5 Adders FFT function

7496

28

36

200.0

195.0

150.01

163.02

8-bit, 1024 pt, Quad Output,
4 Parallel FFT Engines, Burst,
4 Mults/2 Adders FFT function

6896

28

48

200.0

195.0

151.33

163.02

8-bit, 1024 pt, Quad Output,
1 Parallel FFT Engine, Buffered 
Burst,
3 Mults/5 Adders FFT function

2934

18

9

235.07

195.0

148.89

163.02

8-bit, 1024 pt, Quad Output,
1 Parallel FFT Engine, Buffered 
Burst,
4 Mults/2 Adders FFT function

2784

18

12

235.07

195.0

151.51

163.02

8-bit, 1024 pt, Quad Output,
2 Parallel FFT Engines, Buffered 
Burst,
3 Mults/5 Adders FFT function

4720

30

18

200.0

195.0

149.76

163.02

8-bit, 1024 pt, Quad Output,
2 Parallel FFT Engines, Buffered 
Burst,
4 Mults/2 Adders FFT function

4420

30

24

200.0

195.0

151.08

163.02

Table 5–15. Cyclone II Performance (Part 3 of 4)

Applications

Resources Used

Performance (MHz)

LEs

M4K 

Memory 

Blocks

DSP 

Blocks

–6 

Speed 

Grade

–7

Speed 

Grade 

(6)

–7

Speed 

Grade 

(7)

–8 

Speed 

Grade

ac/package_outlines/cyc_c52006-html.html
background image

5–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

Internal Timing

Refer to 

Tables 5–16

 through 

5–19

 for the internal timing parameters.

Larger 
Designs

8-bit, 1024 pt, Quad Output,
4 Parallel FFT Engines, Buffered 
Burst, 3 Mults/5 Adders FFT 
function

8053

60

36

200.0

195.0

149.23

163.02

8-bit, 1024 pt, Quad Output,
4 Parallel FFT Engines, Buffered 
Burst, 4 Mults/2 Adders FFT 
function

7453

60

48

200.0

195.0

151.28

163.02

Notes to 

Table 5–15

 :

(1)

This application uses registered inputs and outputs.

(2)

This application uses registered multiplier input and output stages within the DSP block.

(3)

This application uses the same clock source for both A and B ports.

(4)

This application uses independent clock sources for A and B ports.

(5)

This application uses PLL clock outputs that are globally routed to connect and drive M4K clock ports. Use of 
non-PLL clock sources or local routing to drive M4K clock ports may result in lower performance numbers than 
shown here. Refer to the Quartus II timing report for actual performance numbers.

(6)

These numbers are for commercial devices.

(7)

These numbers are for automotive devices. 

Table 5–15. Cyclone II Performance (Part 4 of 4)

Applications

Resources Used

Performance (MHz)

LEs

M4K 

Memory 

Blocks

DSP 

Blocks

–6 

Speed 

Grade

–7

Speed 

Grade 

(6)

–7

Speed 

Grade 

(7)

–8 

Speed 

Grade

Table 5–16. LE_FF Internal Timing Microparameters  (Part 1 of 2)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

TSU

–36

–40

–40

ps

–38

–40

ps

TH

266

306

306

ps

286

306

ps

TCO

141

250

135

277

135

304

ps

141

141

ps

TCLR

191

244

244

ps

217

244

ps

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–19

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

TPRE

191

244

244

ps

217

244

ps

TCLKL

1000

1242

1242

ps

1111

1242

ps

TCLKH

1000

1242

1242

ps

1111

1242

ps

tLUT

180

438

172

545

172

651

ps

180

180

ps

Notes to 

Table 5–16

:

(1)

For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices 
offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.

(2)

For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing 
parameter for automotive devices. The second row represents the minimum timing parameter for commercial 
devices.

(3)

For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing 
parameter for industrial devices. The second row represents the minimum timing parameter for commercial 
devices.

Table 5–17. IOE Internal Timing Microparameters  (Part 1 of 2)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

TSU

76

101

101

ps

89

101

ps

TH

88

106

106

ps

97

106

ps

TCO

99

155

95

171

95

187

ps

99

99

ps

TPIN2COMBOUT_R

384

762

366

784

366

855

ps

384

384

ps

TPIN2COMBOUT_C

385

760

367

783

367

854

ps

385

385

ps

TCOMBIN2PIN_R

1344

2490

1280

2689

1280

2887

ps

1344

1344

ps

Table 5–16. LE_FF Internal Timing Microparameters  (Part 2 of 2)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

ac/package_outlines/cyc_c52006-html.html
background image

5–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

TCOMBIN2PIN_C

1418

2622

1352

2831

1352

3041

ps

1418

1418

ps

TCLR

137

165

165

ps

151

165

ps

TPRE

192

233

233

ps

212

233

ps

TCLKL

1000

1242

1242

ps

1111

1242

ps

TCLKH

1000

1242

1242

ps

1111

1242

ps

Notes to 

Table 5–17

:

(1)

For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices 
offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.

(2)

For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing 
parameter for automotive devices. The second row represents the minimum timing parameter for commercial 
devices.

(3)

For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing 
parameter for industrial devices. The second row represents the minimum timing parameter for commercial 
devices.

Table 5–18. DSP Block Internal Timing Microparameters  (Part 1 of 2)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

TSU

47

62

62

ps

54

62

ps

TH

110

113

113

ps

111

113

ps

TCO

0

0

0

0

0

0

ps

0

0

ps

TINREG2PIPE9

652

1379

621

1872

621

2441

ps

652

652

ps

TINREG2PIPE18

652

1379

621

1872

621

2441

ps

652

652

ps

Table 5–17. IOE Internal Timing Microparameters  (Part 2 of 2)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–21

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

TPIPE2OUTREG

47

104

45

142

45

185

ps

47

47

ps

TPD9

529

2470

505

3353

505

4370

ps

529

529

ps

TPD18

425

2903

406

3941

406

5136

ps

425

425

ps

TCLR

2686

3572

3572

ps

3129

3572

ps

TCLKL

1923

2769

2769

ps

2307

2769

ps

TCLKH

1923

2769

2769

ps

2307

2769

ps

Notes to 

Table 5–18

:

(1)

For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices 
offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.

(2)

For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing 
parameter for automotive devices. The second row represents the minimum timing parameter for commercial 
devices.

(3)

For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing 
parameter for industrial devices. The second row represents the minimum timing parameter for commercial 
devices.

Table 5–19. M4K Block Internal Timing Microparameters  (Part 1 of 3)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

TM4KRC

2387

3764

2275

4248

2275

4736

ps

2387

2387

ps

TM4KWERESU

35

46

46

ps

40

46

ps

TM4KWEREH

234

267

267

ps

250

267

ps

TM4KBESU

35

46

46

ps

40

46

ps

Table 5–18. DSP Block Internal Timing Microparameters  (Part 2 of 2)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

ac/package_outlines/cyc_c52006-html.html
background image

5–22

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

TM4KBEH

234

267

267

ps

250

267

ps

TM4KDATAASU

35

46

46

ps

40

46

ps

TM4KDATAAH

234

267

267

ps

250

267

ps

TM4KADDRASU

35

46

46

ps

40

46

ps

TM4KADDRAH

234

267

267

ps

250

267

ps

TM4KDATABSU

35

46

46

ps

40

46

ps

TM4KDATABH

234

267

267

ps

250

267

ps

TM4KRADDRBSU

35

46

46

ps

40

46

ps

TM4KRADDRBH

234

267

267

ps

250

267

ps

TM4KDATACO1

466

724

445

826

445

930

ps

466

466

ps

TM4KDATACO2

2345

3680

2234

4157

2234

4636

ps

2345

2345

ps

TM4KCLKH

1923

2769

2769

ps

2307

2769

ps

TM4KCLKL

1923

2769

2769

ps

2307

2769

ps

Table 5–19. M4K Block Internal Timing Microparameters  (Part 2 of 3)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–23

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Cyclone II Clock Timing Parameters

Refer to 

Tables 5–20

 through 

5–34

 for Cyclone II clock timing parameters.

EP2C5/A Clock Timing Parameters

Tables 5–21

 and 

5–22

 show the clock timing parameters for EP2C5/A 

devices. 

TM4KCLR

191

244

244

ps

217

244

ps

Notes to 

Table 5–19

:

(1)

For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices 
offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.

(2)

For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing 
parameter for automotive devices. The second row represents the minimum timing parameter for commercial 
devices.

(3)

For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing 
parameter for industrial devices. The second row represents the minimum timing parameter for commercial 
devices.

Table 5–19. M4K Block Internal Timing Microparameters  (Part 3 of 3)

Parameter

–6 Speed Grade 

(1)

–7 Speed Grade 

(2)

–8 Speed Grade 

(3)

Unit

Min

Max

Min

Max

Min

Max

Table 5–20. Cyclone II Clock Timing Parameters

Symbol

Parameter

t

C I N

Delay from clock pad to I/O input register

t

C O U T

Delay from clock pad to I/O output register

t

P L L C I N

Delay from PLL 

inclk

 pad to I/O input register

t

P L L C O U T

Delay from PLL 

inclk

 pad to I/O output register

Table 5–21. EP2C5/A Column Pins Global Clock Timing Parameters (Part 1 of 2)

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

t

C I N

1.283

1.343

2.329

2.484

2.688

2.688

ns

t

C O U T

1.297

1.358

2.363

2.516

2.717

2.717

ns

t

P L L C I N

–0.188

–0.201

0.076

0.038

0.042

0.052

ns

ac/package_outlines/cyc_c52006-html.html
background image

5–24

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

EP2C8/A Clock Timing Parameters

Tables 5–23

 and 

5–24

 show the clock timing parameters for EP2C8/A 

devices.

t

P L L C O U T

–0.174

–0.186

0.11

0.07

0.071

0.081

ns

Notes to 

Table 5–21

:

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices. 

Table 5–22. EP2C5/A Row Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

t

C I N

1.212

1.267

2.210

2.351

2.54

2.540

ns

t

C O U T

1.214

1.269

2.226

2.364

2.548

2.548

ns

t

P L L C I N

–0.259

–0.277

–0.043

–0.095

–0.106

–0.096

ns

t

P L L C O U T

–0.257

–0.275

–0.027

–0.082

–0.098

–0.088

ns

Notes to 

Table 5–22

:

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices. 

Table 5–21. EP2C5/A Column Pins Global Clock Timing Parameters (Part 2 of 2)

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

Table 5–23. EP2C8/A Column Pins Global Clock Timing Parameters (Part 1 of 2)

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

t

C I N

1.339

1.404

2.405

2.565

2.764

2.774

ns

t

C O U T

1.353

1.419

2.439

2.597

2.793

2.803

ns

t

P L L C I N

–0.193

–0.204

0.055

0.015

0.016

0.026

ns

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–25

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

EP2C15A Clock Timing Parameters

Tables 5–25

 and 

5–26

 show the clock timing parameters for EP2C15A 

devices.

t

P L L C O U T

–0.179

–0.189

0.089

0.047

0.045

0.055

ns

Notes to 

Table 5–23

:

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices. 

Table 5–24. EP2C8/A Row Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

t

C I N

1.256

1.314

2.270

2.416

2.596

2.606

ns

t

C O U T

1.258

1.316

2.286

2.429

2.604

2.614

ns

t

P L L C I N

–0.276

–0.294

–0.08

–0.134

–0.152

–0.142

ns

t

P L L C O U T

–0.274

–0.292

–0.064

–0.121

–0.144

–0.134

ns

Notes to 

Table 5–24

:

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices. 

Table 5–23. EP2C8/A Column Pins Global Clock Timing Parameters (Part 2 of 2)

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

Table 5–25. EP2C15A Column Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

t

C I N

1.621

1.698

2.590

2.766

3.009

2.989

ns

t

C O U T

1.635

1.713

2.624

2.798

3.038

3.018

ns

t

P L L C I N

–0.351

–0.372

0.045

0.008

0.046

0.016

ns

ac/package_outlines/cyc_c52006-html.html
background image

5–26

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

EP2C20/A Clock Timing Parameters

Tables 5–27

 and 

5–28

 show the clock timing parameters for EP2C20/A 

devices.

t

P L L C O U T

–0.337

–0.357

0.079

0.04

0.075

0.045

ns

Notes to 

Table 5–25

:

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices.

Table 5–26. EP2C15A Row Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

t

C I N

1.542

1.615

2.490

2.651

2.886

2.866

ns

t

C O U T

1.544

1.617

2.506

2.664

2.894

2.874

ns

t

P L L C I N

–0.424

–0.448

–0.057

–0.107

–0.077

–0.107

ns

t

P L L C O U T

–0.422

–0.446

–0.041

–0.094

–0.069

–0.099

ns

Notes to 

Table 5–26

:

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices.

Table 5–25. EP2C15A Column Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

Table 5–27. EP2C20/A Column Pins Global Clock Timing Parameters (Part 1 of 2)

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

t

C I N

1.621

1.698

2.590

2.766

3.009

2.989

ns

t

C O U T

1.635

1.713

2.624

2.798

3.038

3.018

ns

t

P L L C I N

–0.351

–0.372

0.045

0.008

0.046

0.016

ns

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–27

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

EP2C35 Clock Timing Parameters

Tables 5–29

 and 

5–30

 show the clock timing parameters for EP2C35 

devices.

t

P L L C O U T

–0.337

–0.357

0.079

0.04

0.075

0.045

ns

Notes to 

Table 5–27

:

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices.

Table 5–28. EP2C20/A Row Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

t

C I N

1.542

1.615

2.490

2.651

2.886

2.866

ns

t

C O U T

1.544

1.617

2.506

2.664

2.894

2.874

ns

t

P L L C I N

–0.424

–0.448

–0.057

–0.107

–0.077

–0.107

ns

t

P L L C O U T

–0.422

–0.446

–0.041

–0.094

–0.069

–0.099

ns

Notes to 

Table 5–28

:

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices.

Table 5–27. EP2C20/A Column Pins Global Clock Timing Parameters (Part 2 of 2)

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

(1)

–7 Speed 

Grade

(2)

–8 Speed 

Grade

Unit

Industrial/

Automotive

Commercial

Table 5–29. EP2C35 Column Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

–8 Speed 

Grade

Unit

Industrial

Commercial

t

C I N

1.499

1.569

2.652

2.878

3.155

ns

t

C O U T

1.513

1.584

2.686

2.910

3.184

ns

t

P L L C I N

–0.026

–0.032

0.272

0.316

0.41

ns

t

P L L C O U T

–0.012

–0.017

0.306

0.348

0.439

ns

ac/package_outlines/cyc_c52006-html.html
background image

5–28

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

EP2C50 Clock Timing Parameters

Tables 5–31

 and 

5–32

 show the clock timing parameters for EP2C50 

devices. 

Table 5–30. EP2C35 Row Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

–8 Speed 

Grade

Unit

Industrial

Commercial

t

C I N

1.410

1.476

2.514

2.724

2.986

ns

t

C O U T

1.412

1.478

2.530

2.737

2.994

ns

t

P L L C I N

–0.117

–0.127

0.134

0.162

0.241

ns

t

P L L C O U T

–0.115

–0.125

0.15

0.175

0.249

ns

Table 5–31. EP2C50 Column Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

–8 Speed 

Grade

Unit

Industrial

Commercial

t

C I N

1.575

1.651

2.759

2.940

3.174

ns

t

C O U T

1.589

1.666

2.793

2.972

3.203

ns

t

P L L C I N

–0.149

–0.158

0.113

0.075

0.089

ns

t

P L L C O U T

–0.135

–0.143

0.147

0.107

0.118

ns

Table 5–32. EP2C50 Row Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

–8 Speed 

Grade

Unit

Industrial

Commercial

t

C I N

1.463

1.533

2.624

2.791

3.010

ns

t

C O U T

1.465

1.535

2.640

2.804

3.018

ns

t

P L L C I N

–0.261

–0.276

–0.022

–0.074

–0.075

ns

t

P L L C O U T

–0.259

–0.274

–0.006

–0.061

–0.067

ns

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–29

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

EP2C70 Clock Timing Parameters

Tables 5–33

 and 

5–34

 show the clock timing parameters for EP2C70 

devices

.

Clock Network Skew Adders

Table 5–35

 shows the clock network specifications.

Table 5–33. EP2C70 Column Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

–8 Speed 

Grade

Unit

Industrial

Commercial

t

C I N

1.575

1.651

2.914

3.105

3.174

ns

t

C O U T

1.589

1.666

2.948

3.137

3.203

ns

t

P L L C I N

–0.149

–0.158

0.27

0.268

0.089

ns

t

P L L C O U T

–0.135

–0.143

0.304

0.3

0.118

ns

Table 5–34. EP2C70 Row Pins Global Clock Timing Parameters

Parameter

Fast Corner

–6 Speed 

Grade

–7 Speed 

Grade

–8 Speed 

Grade

Unit

Industrial

Commercial

t

C I N

1.463

1.533

2.753

2.927

3.010

ns

t

C O U T

1.465

1.535

2.769

2.940

3.018

ns

t

P L L C I N

–0.261

–0.276

0.109

0.09

–0.075

ns

t

P L L C O U T

–0.259

–0.274

0.125

0.103

–0.067

ns

Table 5–35. Clock Network Specifications 

Name

Description

Max

Unit

Clock skew adder 
EP2C5/A, EP2C8/A 

(1)

Inter-clock network, same bank

±88

ps

Inter-clock network, same side and 
entire chip

±88

ps

Clock skew adder 
EP2C15A, EP2C20/A, 
EP2C35, EP2C50, 
EP2C70 

(1)

Inter-clock network, same bank

±118

ps

Inter-clock network, same side and 
entire chip

±138

ps

Note to 

Table 5–35

:

(1)

This is in addition to intra-clock network skew, which is modeled in the 
Quartus II software.

ac/package_outlines/cyc_c52006-html.html
background image

5–30

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

IOE Programmable Delay

Refer to 

Table 5–36

 and 

5–37

 for IOE programmable delay.

Table 5–36. Cyclone II IOE Programmable Delay on Column Pins

Notes (1)

(2)

Parameter Paths Affected

Number 

of 

Settings

Fast Corner 

(3)

–6 Speed 

Grade

–7 Speed 

Grade

(4)

–8 Speed 

Grade

Unit

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Input Delay 
from Pin to 
Internal 
Cells

Pad -> I/O 
dataout to core

7

0

2233

0

3827

0

4232

0

4349

ps

0

2344

0

4088

ps

Input Delay 
from Pin to 
Input 
Register

Pad -> I/O 
input register

8

0

2656

0

4555

0

4914

0

4940

ps

0

2788

0

4748

ps

Delay from 
Output 
Register to 
Output Pin

I/O output 
register -> Pad

2

0

303

0

563

0

638

0

670

ps

0

318

0

617

ps

Notes to 

Table 5–36

:

(1)

The incremental values for the settings are generally linear. For exact values of each setting, use the latest version 
of the Quartus II software.

(2)

The minimum and maximum offset timing numbers are in reference to setting “0” as available in the Quartus II 
software.

(3)

The value in the first row for each parameter represents the fast corner timing parameter for industrial and 
automotive devices. The second row represents the fast corner timing parameter for commercial devices.

(4)

The value in the first row is for automotive devices. The second row is for commercial devices.

Table 5–37. Cyclone II IOE Programmable Delay on Row Pins

Notes (1)

(2)

(Part 1 of 2)

Parameter

Paths 

Affected

Number 

of 

Settings

Fast Corner 

(3)

–6 Speed 

Grade

–7 Speed 
Grade 

(4)

–8 Speed Grade

Unit

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Input Delay 
from Pin to 
Internal 
Cells

Pad -> 
I/O 
dataout 
to core

7

0

2240

0

3776

0

4174

0

4290

ps

0

2352

0

4033

ps

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–31

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Default Capacitive Loading of Different I/O Standards

Refer to 

Table 5–38

 for default capacitive loading of different I/O 

standards.

Input Delay 
from Pin to 
Input 
Register

Pad -> 
I/O input 
register

8

0

2669

0

4482

0

4834

0

4859

ps

0

2802

0

4671

ps

Delay from 
Output 
Register to 
Output Pin

I/O 
output 
register -
> Pad

2

0

308

0

572

0

648

0

682

ps

0

324

0

626

ps

Notes to 

Table 5–37

 :

(1)

The incremental values for the settings are generally linear. For exact values of each setting, use the latest version 
of the Quartus II software.

(2)

The minimum and maximum offset timing numbers are in reference to setting “0” as available in the Quartus II 
software.

(3)

The value in the first row represents the fast corner timing parameter for industrial and automotive devices. The 
second row represents the fast corner timing parameter for commercial devices.

(4)

The value in the first row is for automotive devices. The second row is for commercial devices.

Table 5–37. Cyclone II IOE Programmable Delay on Row Pins

Notes (1)

(2)

(Part 2 of 2)

Parameter

Paths 

Affected

Number 

of 

Settings

Fast Corner 

(3)

–6 Speed 

Grade

–7 Speed 
Grade 

(4)

–8 Speed Grade

Unit

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Min 

Offset

Max 

Offset

Table 5–38. Default Loading of Different I/O Standards for Cyclone II Device 

(Part 1 of 2)

I/O Standard

Capacitive Load

Unit

LVTTL

0

pF

LVCMOS

0

pF

2.5V

0

pF

1.8V

0

pF

1.5V

0

pF

PCI

10

pF

PCI-X

10

pF

SSTL_2_CLASS_I

0

pF

SSTL_2_CLASS_II

0

pF

SSTL_18_CLASS_I

0

pF

ac/package_outlines/cyc_c52006-html.html
background image

5–32

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

SSTL_18_CLASS_II

0

pF

1.5V_HSTL_CLASS_I

0

pF

1.5V_HSTL_CLASS_II

0

pF

1.8V_HSTL_CLASS_I

0

pF

1.8V_HSTL_CLASS_II

0

pF

DIFFERENTIAL_SSTL_2_CLASS_I

0

pF

DIFFERENTIAL_SSTL_2_CLASS_II

0

pF

DIFFERENTIAL_SSTL_18_CLASS_I

0

pF

DIFFERENTIAL_SSTL_18_CLASS_II

0

pF

1.5V_DIFFERENTIAL_HSTL_CLASS_I

0

pF

1.5V_DIFFERENTIAL_HSTL_CLASS_II

0

pF

1.8V_DIFFERENTIAL_HSTL_CLASS_I

0

pF

1.8V_DIFFERENTIAL_HSTL_CLASS_II

0

pF

LVDS

0

pF

1.2V_HSTL

0

pF

1.2V_DIFFERENTIAL_HSTL

0

pF

Table 5–38. Default Loading of Different I/O Standards for Cyclone II Device 

(Part 2 of 2)

I/O Standard

Capacitive Load

Unit

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–33

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

I/O Delays

Refer to 

Tables 5–39

 through 

5–43

 for I/O delays.

Table 5–39. I/O Delay Parameters

Symbol

Parameter

t

D I P

Delay from I/O datain to output pad

t

O P

Delay from I/O output register to output pad

t

P C O U T

Delay from input pad to I/O dataout to core

t

P I

Delay from input pad to I/O input register

Table 5–40. Cyclone II I/O Input Delay for Column Pins  (Part 1 of 3)

I/O Standard

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(1)

–7 

Speed 

Grade

(2)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

LVTTL

t

P I

581

609

1222

1228

1282

1282

ps

t

P C O U T

367

385

760

783

854

854

ps

2.5V

t

P I

624

654

1192

1238

1283

1283

ps

t

P C O U T

410

430

730

793

855

855

ps

1.8V

t

P I

725

760

1372

1428

1484

1484

ps

t

P C O U T

511

536

910

983

1056

1056

ps

1.5V

t

P I

790

828

1439

1497

1556

1556

ps

t

P C O U T

576

604

977

1052

1128

1128

ps

LVCMOS

t

P I

581

609

1222

1228

1282

1282

ps

t

P C O U T

367

385

760

783

854

854

ps

SSTL_2_CLASS_I

t

P I

533

558

990

1015

1040

1040

ps

t

P C O U T

319

334

528

570

612

612

ps

SSTL_2_CLASS_II

t

P I

533

558

990

1015

1040

1040

ps

t

P C O U T

319

334

528

570

612

612

ps

SSTL_18_CLASS_I

t

P I

577

605

1027

1035

1045

1045

ps

t

P C O U T

363

381

565

590

617

617

ps

SSTL_18_CLASS_II

t

P I

577

605

1027

1035

1045

1045

ps

t

P C O U T

363

381

565

590

617

617

ps

ac/package_outlines/cyc_c52006-html.html
background image

5–34

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

1.5V_HSTL_CLASS_I

t

P I

589

617

1145

1176

1208

1208

ps

t

P C O U T

375

393

683

731

780

780

ps

1.5V_HSTL_CLASS_II

t

P I

589

617

1145

1176

1208

1208

ps

t

P C O U T

375

393

683

731

780

780

ps

1.8V_HSTL_CLASS_I

t

P I

577

605

1027

1035

1045

1045

ps

t

P C O U T

363

381

565

590

617

617

ps

1.8V_HSTL_CLASS_II

t

P I

577

605

1027

1035

1045

1045

ps

t

P C O U T

363

381

565

590

617

617

ps

DIFFERENTIAL_SSTL_2_
CLASS_I

t

P I

533

558

990

1015

1040

1040

ps

t

P C O U T

319

334

528

570

612

612

ps

DIFFERENTIAL_SSTL_2_
CLASS_II

t

P I

533

558

990

1015

1040

1040

ps

t

P C O U T

319

334

528

570

612

612

ps

DIFFERENTIAL_SSTL_18_
CLASS_I

t

P I

577

605

1027

1035

1045

1045

ps

t

P C O U T

363

381

565

590

617

617

ps

DIFFERENTIAL_SSTL_18_
CLASS_II

t

P I

577

605

1027

1035

1045

1045

ps

t

P C O U T

363

381

565

590

617

617

ps

1.8V_DIFFERENTIAL_HSTL_
CLASS_I

t

P I

577

605

1027

1035

1045

1045

ps

t

P C O U T

363

381

565

590

617

617

ps

1.8V_DIFFERENTIAL_HSTL_
CLASS_II

t

P I

577

605

1027

1035

1045

1045

ps

t

P C O U T

363

381

565

590

617

617

ps

1.5V_DIFFERENTIAL_HSTL_
CLASS_I

t

P I

589

617

1145

1176

1208

1208

ps

t

P C O U T

375

393

683

731

780

780

ps

1.5V_DIFFERENTIAL_HSTL_
CLASS_II

t

P I

589

617

1145

1176

1208

1208

ps

t

P C O U T

375

393

683

731

780

780

ps

LVDS

t

P I

623

653

1072

1075

1078

1078

ps

t

P C O U T

409

429

610

630

650

650

ps

1.2V_HSTL

t

P I

570

597

1263

1324

1385

1385

ps

t

P C O U T

356

373

801

879

957

957

ps

Table 5–40. Cyclone II I/O Input Delay for Column Pins  (Part 2 of 3)

I/O Standard

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(1)

–7 

Speed 

Grade

(2)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–35

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

1.2V_DIFFERENTIAL_HSTL

t

P I

570

597

1263

1324

1385

1385

ps

t

P C O U T

356

373

801

879

957

957

ps

Notes to 

Table 5–40

 :

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices.

Table 5–41. Cyclone II I/O Input Delay for Row Pins  (Part 1 of 2)

I/O Standard

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(1)

–7 

Speed 

Grade

(2)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

LVTTL

t

P I

583

611

1129

1160

1240

1240

ps

t

P C O U T

366

384

762

784

855

855

ps

2.5V

t

P I

629

659

1099

1171

1244

1244

ps

t

P C O U T

412

432

732

795

859

859

ps

1.8V

t

P I

729

764

1278

1360

1443

1443

ps

t

P C O U T

512

537

911

984

1058

1058

ps

1.5V

t

P I

794

832

1345

1429

1513

1513

ps

t

P C O U T

577

605

978

1053

1128

1128

ps

LVCMOS

t

P I

583

611

1129

1160

1240

1240

ps

t

P C O U T

366

384

762

784

855

855

ps

SSTL_2_CLASS_I

t

P I

536

561

896

947

998

998

ps

t

P C O U T

319

334

529

571

613

613

ps

SSTL_2_CLASS_II

t

P I

536

561

896

947

998

998

ps

t

P C O U T

319

334

529

571

613

613

ps

SSTL_18_CLASS_I

t

P I

581

609

933

967

1004

1004

ps

t

P C O U T

364

382

566

591

619

619

ps

SSTL_18_CLASS_II

t

P I

581

609

933

967

1004

1004

ps

t

P C O U T

364

382

566

591

619

619

ps

1.5V_HSTL_CLASS_I

t

P I

593

621

1051

1109

1167

1167

ps

t

P C O U T

376

394

684

733

782

782

ps

Table 5–40. Cyclone II I/O Input Delay for Column Pins  (Part 3 of 3)

I/O Standard

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(1)

–7 

Speed 

Grade

(2)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

ac/package_outlines/cyc_c52006-html.html
background image

5–36

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

1.5V_HSTL_CLASS_II

t

P I

593

621

1051

1109

1167

1167

ps

t

P C O U T

376

394

684

733

782

782

ps

1.8V_HSTL_CLASS_I

t

P I

581

609

933

967

1004

1004

ps

t

P C O U T

364

382

566

591

619

619

ps

1.8V_HSTL_CLASS_II

t

P I

581

609

933

967

1004

1004

ps

t

P C O U T

364

382

566

591

619

619

ps

DIFFERENTIAL_SSTL_2_
CLASS_I

t

P I

536

561

896

947

998

998

ps

t

P C O U T

319

334

529

571

613

613

ps

DIFFERENTIAL_SSTL_2_
CLASS_II

t

P I

536

561

896

947

998

998

ps

t

P C O U T

319

334

529

571

613

613

ps

DIFFERENTIAL_SSTL_18_
CLASS_I

t

P I

581

609

933

967

1004

1004

ps

t

P C O U T

364

382

566

591

619

619

ps

DIFFERENTIAL_SSTL_18_
CLASS_II

t

P I

581

609

933

967

1004

1004

ps

t

P C O U T

364

382

566

591

619

619

ps

1.8V_DIFFERENTIAL_HSTL_
CLASS_I

t

P I

581

609

933

967

1004

1004

ps

t

P C O U T

364

382

566

591

619

619

ps

1.8V_DIFFERENTIAL_HSTL_
CLASS_II

t

P I

581

609

933

967

1004

1004

ps

t

P C O U T

364

382

566

591

619

619

ps

1.5V_DIFFERENTIAL_HSTL_
CLASS_I

t

P I

593

621

1051

1109

1167

1167

ps

t

P C O U T

376

394

684

733

782

782

ps

1.5V_DIFFERENTIAL_HSTL_
CLASS_II

t

P I

593

621

1051

1109

1167

1167

ps

t

P C O U T

376

394

684

733

782

782

ps

LVDS

t

P I

651

682

1036

1075

1113

1113

ps

t

P C O U T

434

455

669

699

728

728

ps

PCI

t

P I

595

623

1113

1156

1232

1232

ps

t

P C O U T

378

396

746

780

847

847

ps

PCI-X

t

P I

595

623

1113

1156

1232

1232

ps

t

P C O U T

378

396

746

780

847

847

ps

Notes to 

Table 5–41

 :

(1)

These numbers are for commercial devices.

(2)

These numbers are for automotive devices.

Table 5–41. Cyclone II I/O Input Delay for Row Pins  (Part 2 of 2)

I/O Standard

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(1)

–7 

Speed 

Grade

(2)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–37

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Table 5–42. Cyclone II I/O Output Delay for Column Pins  (Part 1 of 6)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

LVTTL

4 mA

t

O P

1524

1599

2903

3125

3341

3348

ps

t

D I P

1656

1738

3073

3319

3567

3567

ps

8 mA

t

O P

1343

1409

2670

2866

3054

3061

ps

t

D I P

1475

1548

2840

3060

3280

3280

ps

12 mA

t

O P

1287

1350

2547

2735

2917

2924

ps

t

D I P

1419

1489

2717

2929

3143

3143

ps

16 mA

t

O P

1239

1299

2478

2665

2844

2851

ps

t

D I P

1371

1438

2648

2859

3070

3070

ps

20 mA

t

O P

1228

1288

2456

2641

2820

2827

ps

t

D I P

1360

1427

2626

2835

3046

3046

ps

24 mA

(1)

t

O P

1220

1279

2452

2637

2815

2822

ps

t

D I P

1352

1418

2622

2831

3041

3041

ps

LVCMOS

4 mA

t

O P

1346

1412

2509

2695

2873

2880

ps

t

D I P

1478

1551

2679

2889

3099

3099

ps

8 mA

t

O P

1240

1300

2473

2660

2840

2847

ps

t

D I P

1372

1439

2643

2854

3066

3066

ps

12 mA

t

O P

1221

1280

2428

2613

2790

2797

ps

t

D I P

1353

1419

2598

2807

3016

3016

ps

16 mA

t

O P

1203

1262

2403

2587

2765

2772

ps

t

D I P

1335

1401

2573

2781

2991

2991

ps

20 mA

t

O P

1194

1252

2378

2562

2738

2745

ps

t

D I P

1326

1391

2548

2756

2964

2964

ps

24 mA

(1)

t

O P

1192

1250

2382

2566

2742

2749

ps

t

D I P

1324

1389

2552

2760

2968

2968

ps

ac/package_outlines/cyc_c52006-html.html
background image

5–38

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

2.5V

4 mA

t

O P

1208

1267

2478

2614

2743

2750

ps

t

D I P

1340

1406

2648

2808

2969

2969

ps

8 mA

t

O P

1190

1248

2307

2434

2554

2561

ps

t

D I P

1322

1387

2477

2628

2780

2780

ps

12 mA

t

O P

1154

1210

2192

2314

2430

2437

ps

t

D I P

1286

1349

2362

2508

2656

2656

ps

16 mA

(1)

t

O P

1140

1195

2152

2263

2375

2382

ps

t

D I P

1272

1334

2322

2457

2601

2601

ps

1.8V

2 mA

t

O P

1682

1765

3988

4279

4563

4570

ps

t

D I P

1814

1904

4158

4473

4789

4789

ps

4 mA

t

O P

1567

1644

3301

3538

3768

3775

ps

t

D I P

1699

1783

3471

3732

3994

3994

ps

6 mA

t

O P

1475

1547

2993

3195

3391

3398

ps

t

D I P

1607

1686

3163

3389

3617

3617

ps

8 mA

t

O P

1451

1522

2882

3074

3259

3266

ps

t

D I P

1583

1661

3052

3268

3485

3485

ps

10 mA

t

O P

1438

1508

2853

3041

3223

3230

ps

t

D I P

1570

1647

3023

3235

3449

3449

ps

12 mA

(1)

t

O P

1438

1508

2853

3041

3223

3230

ps

t

D I P

1570

1647

3023

3235

3449

3449

ps

1.5V

2 mA

t

O P

2083

2186

4477

4870

5256

5263

ps

t

D I P

2215

2325

4647

5064

5482

5482

ps

4 mA

t

O P

1793

1881

3649

3965

4274

4281

ps

t

D I P

1925

2020

3819

4159

4500

4500

ps

6 mA

t

O P

1770

1857

3527

3823

4112

4119

ps

t

D I P

1902

1996

3697

4017

4338

4338

ps

8 mA

(1)

t

O P

1703

1787

3537

3827

4111

4118

ps

t

D I P

1835

1926

3707

4021

4337

4337

ps

Table 5–42. Cyclone II I/O Output Delay for Column Pins  (Part 2 of 6)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–39

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

SSTL_2_
CLASS_I

8 mA

t

O P

1196

1254

2388

2516

2638

2645

ps

t

D I P

1328

1393

2558

2710

2864

2864

ps

12 mA

(1)

t

O P

1174

1231

2277

2401

2518

2525

ps

t

D I P

1306

1370

2447

2595

2744

2744

ps

SSTL_2_
CLASS_II

16 mA

t

O P

1158

1214

2245

2365

2479

2486

ps

t

D I P

1290

1353

2415

2559

2705

2705

ps

20 mA

t

O P

1152

1208

2231

2351

2464

2471

ps

t

D I P

1284

1347

2401

2545

2690

2690

ps

24 mA

(1)

t

O P

1152

1208

2225

2345

2458

2465

ps

t

D I P

1284

1347

2395

2539

2684

2684

ps

SSTL_18_
CLASS_I

6 mA

t

O P

1472

1544

3140

3345

3542

3549

ps

t

D I P

1604

1683

3310

3539

3768

3768

ps

8 mA

t

O P

1469

1541

3086

3287

3482

3489

ps

t

D I P

1601

1680

3256

3481

3708

3708

ps

10 mA

t

O P

1466

1538

2980

3171

3354

3361

ps

t

D I P

1598

1677

3150

3365

3580

3580

ps

12 mA

(1)

t

O P

1466

1538

2980

3171

3354

3361

ps

t

D I P

1598

1677

3150

3365

3580

3580

ps

SSTL_18_
CLASS_II

16 mA

t

O P

1454

1525

2905

3088

3263

3270

ps

t

D I P

1586

1664

3075

3282

3489

3489

ps

18 mA

(1)

t

O P

1453

1524

2900

3082

3257

3264

ps

t

D I P

1585

1663

3070

3276

3483

3483

ps

1.8V_HSTL_
CLASS_I

8 mA

t

O P

1460

1531

3222

3424

3618

3625

ps

t

D I P

1592

1670

3392

3618

3844

3844

ps

10 mA

t

O P

1462

1534

3090

3279

3462

3469

ps

t

D I P

1594

1673

3260

3473

3688

3688

ps

12 mA

(1)

t

O P

1462

1534

3090

3279

3462

3469

ps

t

D I P

1594

1673

3260

3473

3688

3688

ps

Table 5–42. Cyclone II I/O Output Delay for Column Pins  (Part 3 of 6)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

ac/package_outlines/cyc_c52006-html.html
background image

5–40

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

1.8V_HSTL_
CLASS_II

16 mA

t

O P

1449

1520

2936

3107

3271

3278

ps

t

D I P

1581

1659

3106

3301

3497

3497

ps

18 mA

t

O P

1450

1521

2924

3101

3272

3279

ps

t

D I P

1582

1660

3094

3295

3498

3498

ps

20 mA

(1)

t

O P

1452

1523

2926

3096

3259

3266

ps

t

D I P

1584

1662

3096

3290

3485

3485

ps

1.5V_HSTL_
CLASS_I

8 mA

t

O P

1779

1866

4292

4637

4974

4981

ps

t

D I P

1911

2005

4462

4831

5200

5200

ps

10 mA

t

O P

1784

1872

4031

4355

4673

4680

ps

t

D I P

1916

2011

4201

4549

4899

4899

ps

12 mA

(1)

t

O P

1784

1872

4031

4355

4673

4680

ps

t

D I P

1916

2011

4201

4549

4899

4899

ps

1.5V_HSTL_
CLASS_II

16 mA

(1)

t

O P

1750

1836

3844

4125

4399

4406

ps

t

D I P

1882

1975

4014

4319

4625

4625

ps

DIFFERENTIAL_
SSTL_2_CLASS_I

8 mA

t

O P

1196

1254

2388

2516

2638

2645

ps

t

D I P

1328

1393

2558

2710

2864

2864

ps

12 mA

(1)

t

O P

1174

1231

2277

2401

2518

2525

ps

t

D I P

1306

1370

2447

2595

2744

2744

ps

DIFFERENTIAL_
SSTL_2_CLASS_II

16 mA

t

O P

1158

1214

2245

2365

2479

2486

ps

t

D I P

1290

1353

2415

2559

2705

2705

ps

20 mA

t

O P

1152

1208

2231

2351

2464

2471

ps

t

D I P

1284

1347

2401

2545

2690

2690

ps

24 mA

(1)

t

O P

1152

1208

2225

2345

2458

2465

ps

t

D I P

1284

1347

2395

2539

2684

2684

ps

Table 5–42. Cyclone II I/O Output Delay for Column Pins  (Part 4 of 6)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–41

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

DIFFERENTIAL_
SSTL_18_CLASS_I

6 mA

t

O P

1472

1544

3140

3345

3542

3549

ps

t

D I P

1604

1683

3310

3539

3768

3768

ps

8 mA

t

O P

1469

1541

3086

3287

3482

3489

ps

t

D I P

1601

1680

3256

3481

3708

3708

ps

10 mA

t

O P

1466

1538

2980

3171

3354

3361

ps

t

D I P

1598

1677

3150

3365

3580

3580

ps

12 mA

(1)

t

O P

1466

1538

2980

3171

3354

3361

ps

t

D I P

1598

1677

3150

3365

3580

3580

ps

DIFFERENTIAL_
SSTL_18_CLASS_II

16 mA

t

O P

1454

1525

2905

3088

3263

3270

ps

t

D I P

1586

1664

3075

3282

3489

3489

ps

18 mA

(1)

t

O P

1453

1524

2900

3082

3257

3264

ps

t

D I P

1585

1663

3070

3276

3483

3483

ps

1.8V_DIFFERENTIAL
_HSTL_CLASS_I

8 mA

t

O P

1460

1531

3222

3424

3618

3625

ps

t

D I P

1592

1670

3392

3618

3844

3844

ps

10 mA

t

O P

1462

1534

3090

3279

3462

3469

ps

t

D I P

1594

1673

3260

3473

3688

3688

ps

12 mA

(1)

t

O P

1462

1534

3090

3279

3462

3469

ps

t

D I P

1594

1673

3260

3473

3688

3688

ps

1.8V_DIFFERENTIAL
_HSTL_CLASS_II

16 mA

t

O P

1449

1520

2936

3107

3271

3278

ps

t

D I P

1581

1659

3106

3301

3497

3497

ps

18 mA

t

O P

1450

1521

2924

3101

3272

3279

ps

t

D I P

1582

1660

3094

3295

3498

3498

ps

20 mA 

(1)

t

O P

1452

1523

2926

3096

3259

3266

ps

t

D I P

1584

1662

3096

3290

3485

3485

ps

1.5V_DIFFERENTIAL
_HSTL_CLASS_I

8 mA

t

O P

1779

1866

4292

4637

4974

4981

ps

t

D I P

1911

2005

4462

4831

5200

5200

ps

10 mA

t

O P

1784

1872

4031

4355

4673

4680

ps

t

D I P

1916

2011

4201

4549

4899

4899

ps

12 mA

(1)

t

O P

1784

1872

4031

4355

4673

4680

ps

t

D I P

1916

2011

4201

4549

4899

4899

ps

Table 5–42. Cyclone II I/O Output Delay for Column Pins  (Part 5 of 6)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

ac/package_outlines/cyc_c52006-html.html
background image

5–42

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

1.5V_DIFFERENTIAL
_HSTL_CLASS_II

16 mA

(1)

t

O P

1750

1836

3844

4125

4399

4406

ps

t

D I P

1882

1975

4014

4319

4625

4625

ps

LVDS

t

O P

1258

1319

2243

2344

2438

2445

ps

t

D I P

1390

1458

2413

2538

2664

2664

ps

RSDS

t

O P

1258

1319

2243

2344

2438

2445

ps

t

D I P

1390

1458

2413

2538

2664

2664

ps

MINI_LVDS

t

O P

1258

1319

2243

2344

2438

2445

ps

t

D I P

1390

1458

2413

2538

2664

2664

ps

SIMPLE_RSDS

t

O P

1221

1280

2258

2435

2605

2612

ps

t

D I P

1353

1419

2428

2629

2831

2831

ps

1.2V_HSTL

t

O P

2403

2522

4635

5344

6046

6053

ps

t

D I P

2535

2661

4805

5538

6272

6272

ps

1.2V_DIFFERENTIAL
_HSTL

t

O P

2403

2522

4635

5344

6046

6053

ps

t

D I P

2535

2661

4805

5538

6272

6272

ps

Notes to 

Table 5–42

:

(1)

This is the default setting in the Quartus II software.

(2)

These numbers are for commercial devices.

(3)

These numbers are for automotive devices.

Table 5–42. Cyclone II I/O Output Delay for Column Pins  (Part 6 of 6)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial/

Automotive

Commer

-cial

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–43

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Table 5–43. Cyclone II I/O Output Delay for Row Pins  (Part 1 of 4)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial

/Auto-

motive

Commer-

cial

LVTTL

4 mA

t

O P

1343

1408

2539

2694

2885

2891

ps

t

D I P

1467

1540

2747

2931

3158

3158

ps

8 mA

t

O P

1198

1256

2411

2587

2756

2762

ps

t

D I P

1322

1388

2619

2824

3029

3029

ps

12 mA

t

O P

1156

1212

2282

2452

2614

2620

ps

t

D I P

1280

1344

2490

2689

2887

2887

ps

16 mA

t

O P

1124

1178

2286

2455

2618

2624

ps

t

D I P

1248

1310

2494

2692

2891

2891

ps

20 mA

t

O P

1112

1165

2245

2413

2574

2580

ps

t

D I P

1236

1297

2453

2650

2847

2847

ps

24 mA

(1)

t

O P

1105

1158

2253

2422

2583

2589

ps

t

D I P

1229

1290

2461

2659

2856

2856

ps

LVCMOS

4 mA

t

O P

1200

1258

2231

2396

2555

2561

ps

t

D I P

1324

1390

2439

2633

2828

2828

ps

8 mA

t

O P

1125

1179

2260

2429

2591

2597

ps

t

D I P

1249

1311

2468

2666

2864

2864

ps

12 mA

(1)

t

O P

1106

1159

2217

2383

2543

2549

ps

t

D I P

1230

1291

2425

2620

2816

2816

ps

2.5V

4 mA

t

O P

1126

1180

2350

2477

2598

2604

ps

t

D I P

1250

1312

2558

2714

2871

2871

ps

8 mA

(1)

t

O P

1105

1158

2177

2296

2409

2415

ps

t

D I P

1229

1290

2385

2533

2682

2682

ps

ac/package_outlines/cyc_c52006-html.html
background image

5–44

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

1.8V

2 mA

t

O P

1503

1576

3657

3927

4190

4196

ps

t

D I P

1627

1708

3865

4164

4463

4463

ps

4 mA

t

O P

1400

1468

3010

3226

3434

3440

ps

t

D I P

1524

1600

3218

3463

3707

3707

ps

6 mA

t

O P

1388

1455

2857

3050

3236

3242

ps

t

D I P

1512

1587

3065

3287

3509

3509

ps

8 mA

t

O P

1347

1412

2714

2897

3072

3078

ps

t

D I P

1471

1544

2922

3134

3345

3345

ps

10 mA

t

O P

1347

1412

2714

2897

3072

3078

ps

t

D I P

1471

1544

2922

3134

3345

3345

ps

12 mA

(1)

t

O P

1332

1396

2678

2856

3028

3034

ps

t

D I P

1456

1528

2886

3093

3301

3301

ps

1.5V

2 mA

t

O P

1853

1943

4127

4492

4849

4855

ps

t

D I P

1977

2075

4335

4729

5122

5122

ps

4 mA

t

O P

1694

1776

3452

3747

4036

4042

ps

t

D I P

1818

1908

3660

3984

4309

4309

ps

6 mA 

(1)

t

O P

1694

1776

3452

3747

4036

4042

ps

t

D I P

1818

1908

3660

3984

4309

4309

ps

SSTL_2_
CLASS_I

8 mA

t

O P

1090

1142

2152

2268

2376

2382

ps

t

D I P

1214

1274

2360

2505

2649

2649

ps

12 mA

(1)

t

O P

1097

1150

2131

2246

2354

2360

ps

t

D I P

1221

1282

2339

2483

2627

2627

ps

SSTL_2_
CLASS_II

16 mA

(1)

t

O P

1068

1119

2067

2177

2281

2287

ps

t

D I P

1192

1251

2275

2414

2554

2554

ps

SSTL_18_
CLASS_I

6 mA

t

O P

1371

1437

2828

3018

3200

3206

ps

t

D I P

1495

1569

3036

3255

3473

3473

ps

8 mA

t

O P

1365

1431

2832

3024

3209

3215

ps

t

D I P

1489

1563

3040

3261

3482

3482

ps

10 mA

(1)

t

O P

1374

1440

2806

2990

3167

3173

ps

t

D I P

1498

1572

3014

3227

3440

3440

ps

Table 5–43. Cyclone II I/O Output Delay for Row Pins  (Part 2 of 4)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial

/Auto-

motive

Commer-

cial

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–45

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

1.8V_HSTL_
CLASS_I

8 mA

t

O P

1364

1430

2853

3017

3178

3184

ps

t

D I P

1488

1562

3061

3254

3451

3451

ps

10 mA

t

O P

1332

1396

2842

3011

3173

3179

ps

t

D I P

1456

1528

3050

3248

3446

3446

ps

12 mA 

(1)

t

O P

1332

1396

2842

3011

3173

3179

ps

t

D I P

1456

1528

3050

3248

3446

3446

ps

1.5V_HSTL_
CLASS_I

8 mA

(1)

t

O P

1657

1738

3642

3917

4185

4191

ps

t

D I P

1781

1870

3850

4154

4458

4458

ps

DIFFERENTIAL_
SSTL_2_
CLASS_I

8 mA

t

O P

1090

1142

2152

2268

2376

2382

ps

t

D I P

1214

1274

2360

2505

2649

2649

ps

12 mA

(1)

t

O P

1097

1150

2131

2246

2354

2360

ps

t

D I P

1221

1282

2339

2483

2627

2627

ps

DIFFERENTIAL_
SSTL_2_
CLASS_II

16 mA

(1)

t

O P

1068

1119

2067

2177

2281

2287

ps

t

D I P

1192

1251

2275

2414

2554

2554

ps

DIFFERENTIAL_
SSTL_18_
CLASS_I

6 mA

t

O P

1371

1437

2828

3018

3200

3206

ps

t

D I P

1495

1569

3036

3255

3473

3473

ps

8 mA

t

O P

1365

1431

2832

3024

3209

3215

ps

t

D I P

1489

1563

3040

3261

3482

3482

ps

10 mA

(1)

t

O P

1374

1440

2806

2990

3167

3173

ps

t

D I P

1498

1572

3014

3227

3440

3440

ps

1.8V_
DIFFERENTIAL_
HSTL_
CLASS_I

8 mA

t

O P

1364

1430

2853

3017

3178

3184

ps

t

D I P

1488

1562

3061

3254

3451

3451

ps

10 mA

t

O P

1332

1396

2842

3011

3173

3179

ps

t

D I P

1456

1528

3050

3248

3446

3446

ps

12 mA

(1)

t

O P

1332

1396

2842

3011

3173

3179

ps

t

D I P

1456

1528

3050

3248

3446

3446

ps

1.5V_
DIFFERENTIAL_
HSTL_
CLASS_I

8 mA

(1)

t

O P

1657

1738

3642

3917

4185

4191

ps

t

D I P

1781

1870

3850

4154

4458

4458

ps

Table 5–43. Cyclone II I/O Output Delay for Row Pins  (Part 3 of 4)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial

/Auto-

motive

Commer-

cial

ac/package_outlines/cyc_c52006-html.html
background image

5–46

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

Maximum Input and Output Clock Rate

Maximum clock toggle rate is defined as the maximum frequency 
achievable for a clock type signal at an I/O pin. The I/O pin can be a 
regular I/O pin or a dedicated clock I/O pin.

The maximum clock toggle rate is different from the maximum data bit 
rate. If the maximum clock toggle rate on a regular I/O pin is 300 MHz, 
the maximum data bit rate for dual data rate (DDR) could be potentially 
as high as 600 Mbps on the same I/O pin.

Table 5–44

 specifies the maximum input clock toggle rates. 

Table 5–45

 

specifies the maximum output clock toggle rates at default load. 

Table 5–46

 specifies the derating factors for the output clock toggle rate 

for non-default load.

To calculate the output toggle rate for a non-default load, use this 
formula:

The toggle rate for a non-default load

LVDS

t

O P

1216

1275

2089

2184

2272

2278

ps

t

D I P

1340

1407

2297

2421

2545

2545

ps

RSDS

t

O P

1216

1275

2089

2184

2272

2278

ps

t

D I P

1340

1407

2297

2421

2545

2545

ps

MINI_LVDS

t

O P

1216

1275

2089

2184

2272

2278

ps

t

D I P

1340

1407

2297

2421

2545

2545

ps

PCI

t

O P

989

1036

2070

2214

2352

2358

ps

t

D I P

1113

1168

2278

2451

2625

2625

ps

PCI-X

t

O P

989

1036

2070

2214

2352

2358

ps

t

D I P

1113

1168

2278

2451

2625

2625

ps

Notes to 

Table 5–43

:

(1)

This is the default setting in the Quartus II software.

(2)

These numbers are for commercial devices.

(3)

These numbers are for automotive devices.

Table 5–43. Cyclone II I/O Output Delay for Row Pins  (Part 4 of 4)

I/O Standard

Drive 

Strength

Parameter

Fast Corner

–6 

Speed 

Grade

–7 

Speed 

Grade

(2)

–7 

Speed 

Grade

(3)

–8 

Speed 

Grade

Unit

Industrial

/Auto-

motive

Commer-

cial

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–47

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

= 1000 / (1000/toggle rate at default load + derating factor * load 
value in pF/1000)

For example, the output toggle rate at 0 pF (default) load for SSTL-18 
Class II 18mA I/O standard is 270 MHz on a 

6 device column I/O pin. 

The derating factor is 29 ps/pF. For a 10pF load, the toggle rate is 
calculated as:

1000 / (1000/270 + 29 × 10/1000) = 250 (MHz)

Tables 5–44

 through 

5–46

 show the I/O toggle rates for Cyclone II 

devices.

Table 5–44. Maximum Input Clock Toggle Rate on Cyclone II Devices  (Part 1 of 2)

I/O Standard

Maximum Input Clock Toggle Rate on Cyclone II Devices (MHz)

Column I/O Pins

Row I/O Pins

Dedicated Clock 

Inputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

LVTTL

450

405

360

450

405

360

420

380

340

2.5V

450

405

360

450

405

360

450

405

360

1.8V

450

405

360

450

405

360

450

405

360

1.5V

300

270

240

300

270

240

300

270

240

LVCMOS

450

405

360

450

405

360

420

380

340

SSTL_2_CLASS_I

500

500

500

500

500

500

500

500

500

SSTL_2_CLASS_II

500

500

500

500

500

500

500

500

500

SSTL_18_CLASS_I

500

500

500

500

500

500

500

500

500

SSTL_18_CLASS_II

500

500

500

500

500

500

500

500

500

1.5V_HSTL_CLASS_I

500

500

500

500

500

500

500

500

500

1.5V_HSTL_CLASS_II

500

500

500

500

500

500

500

500

500

1.8V_HSTL_CLASS_I

500

500

500

500

500

500

500

500

500

1.8V_HSTL_CLASS_II

500

500

500

500

500

500

500

500

500

PCI

350

315

280

350

315

280

PCI-X

350

315

280

350

315

280

DIFFERENTIAL_SSTL_2_
CLASS_I

500

500

500

500

500

500

500

500

500

DIFFERENTIAL_SSTL_2_
CLASS_II

500

500

500

500

500

500

500

500

500

ac/package_outlines/cyc_c52006-html.html
background image

5–48

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

DIFFERENTIAL_SSTL_18_
CLASS_I

500

500

500

500

500

500

500

500

500

DIFFERENTIAL_SSTL_18_
CLASS_II

500

500

500

500

500

500

500

500

500

1.8V_DIFFERENTIAL_HSTL_
CLASS_I

500

500

500

500

500

500

500

500

500

1.8V_DIFFERENTIAL_HSTL_
CLASS_II

500

500

500

500

500

500

500

500

500

1.5V_DIFFERENTIAL_HSTL_
CLASS_I

500

500

500

500

500

500

500

500

500

1.5V_DIFFERENTIAL_HSTL_
CLASS_II

500

500

500

500

500

500

500

500

500

LVPECL

402

402

402

LVDS

402

402

402

402

402

402

402

402

402

1.2V_HSTL

110

90

80

110

90

80

1.2V_DIFFERENTIAL_HSTL

110

90

80

110

90

80

Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices  (Part 1 of 4)

I/O Standard

Drive 

Strength

Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)

Column I/O Pins 

(1)

Row I/O Pins 

(1)

Dedicated Clock 

Outputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

LVTTL

4 mA

120

100

80

120

100

80

120

100

80

8 mA

200

170

140

200

170

140

200

170

140

12 mA

280

230

190

280

230

190

280

230

190

16 mA

290

240

200

290

240

200

290

240

200

20 mA

330

280

230

330

280

230

330

280

230

24 mA

360

300

250

360

300

250

360

300

250

Table 5–44. Maximum Input Clock Toggle Rate on Cyclone II Devices  (Part 2 of 2)

I/O Standard

Maximum Input Clock Toggle Rate on Cyclone II Devices (MHz)

Column I/O Pins

Row I/O Pins

Dedicated Clock 

Inputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–49

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

LVCMOS

4 mA

250

210

170

250

210

170

250

210

170

8 mA

280

230

190

280

230

190

280

230

190

12 mA

310

260

210

310

260

210

310

260

210

16  mA

320

270

220

20  mA

350

290

240

24  mA

370

310

250

2.5V

4 mA

180

150

120

180

150

120

180

150

120

8 mA

280

230

190

280

230

190

280

230

190

12  mA

440

370

300

16  mA

450

405

350

1.8V

2 mA

120

100

80

120

100

80

120

100

80

4 mA

180

150

120

180

150

120

180

150

120

6 mA

220

180

150

220

180

150

220

180

150

8 mA

240

200

160

240

200

160

240

200

160

10 mA

300

250

210

300

250

210

300

250

210

12 mA

350

290

240

350

290

240

350

290

240

1.5V

2 mA

80

60

50

80

60

50

80

60

50

4 mA

130

110

90

130

110

90

130

110

90

6 mA

180

150

120

180

150

120

180

150

120

8  mA

230

190

160

SSTL_2_CLASS_I

8 mA

400

340

280

400

340

280

400

340

280

12 mA

400

340

280

400

340

280

400

340

280

SSTL_2_CLASS_II

16 mA

350

290

240

350

290

240

350

290

240

20  mA

400

340

280

24  mA

400

340

280

SSTL_18_ 
CLASS_I

6 mA

260

220

180

260

220

180

260

220

180

8 mA

260

220

180

260

220

180

260

220

180

10 mA

270

220

180

270

220

180

270

220

180

12  mA

280

230

190

Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices  (Part 2 of 4)

I/O Standard

Drive 

Strength

Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)

Column I/O Pins 

(1)

Row I/O Pins 

(1)

Dedicated Clock 

Outputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

ac/package_outlines/cyc_c52006-html.html
background image

5–50

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

SSTL_18_ CLASS_II

16 mA

260

220

180

18  mA

270

220

180

1.8V_HSTL_ CLASS_I

8 mA

260

220

180

260

220

180

260

220

180

10 mA

300

250

210

300

250

210

300

250

210

12 mA

320

270

220

320

270

220

320

270

220

1.8V_HSTL_ CLASS_II 16 mA

230

190

160

18  mA

240

200

160

20  mA

250

210

170

1.5V_HSTL_ CLASS_I

8 mA

210

170

140

210

170

140

210

170

140

10  mA

220

180

150

12  mA

230

190

160

1.5V_HSTL_ CLASS_II 16 mA

210

170

140

DIFFERENTIAL_
SSTL_2_CLASS_I

8 mA

400

340

280

400

340

280

400

340

280

12 mA

400

340

280

400

340

280

400

340

280

DIFFERENTIAL_
SSTL_2_CLASS_II

16 mA

350

290

240

350

290

240

350

290

240

20  mA

400

340

280

24  mA

400

340

280

DIFFERENTIAL_
SSTL_18_CLASS_I

6 mA

260

220

180

260

220

180

260

220

180

8 mA

260

220

180

260

220

180

260

220

180

10 mA

270

220

180

270

220

180

270

220

180

12  mA

280

230

190

DIFFERENTIAL_SSTL
_18_CLASS_II

16  mA

260

220

180

18  mA

270

220

180

1.8V_ 
DIFFERENTIAL_HSTL
_CLASS_I

8 mA

260

220

180

260

220

180

260

220

180

10 mA

300

250

210

300

250

210

300

250

210

12 mA

320

270

220

320

270

220

320

270

220

1.8V_ 
DIFFERENTIAL_HSTL
_CLASS_II

16  mA

230

190

160

18  mA

240

200

160

20  mA

250

210

170

Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices  (Part 3 of 4)

I/O Standard

Drive 

Strength

Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)

Column I/O Pins 

(1)

Row I/O Pins 

(1)

Dedicated Clock 

Outputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–51

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

1.5V_ 
DIFFERENTIAL_HSTL
_CLASS_I

8 mA

210

170

140

210

170

140

210

170

140

10  mA

220

180

150

12  mA

230

190

160

1.5V_ 
DIFFERENTIAL_HSTL
_CLASS_II

16  mA

210

170

140

LVDS

400

340

280

400

340

280

400

340

280

RSDS

400

340

280

400

340

280

400

340

280

MINI_LVDS

400

340

280

400

340

280

400

340

280

SIMPLE_RSDS

380

320

260

380

320

260

380

320

260

1.2V_HSTL

80

80

80

1.2V_ 
DIFFERENTIAL_HSTL

80

80

80

PCI

350

315

280

350

315

280

PCI-X

350

315

280

350

315

280

LVTTL

OCT_25_
OHMS

360

300

250

360

300

250

360

300

250

LVCMOS

OCT_25_
OHMS

360

300

250

360

300

250

360

300

250

2.5V

OCT_50_
OHMS

240

200

160

240

200

160

240

200

160

1.8V

OCT_50_
OHMS

290

240

200

290

240

200

290

240

200

SSTL_2_CLASS_I

OCT_50_
OHMS

240

200

160

240

200

160

SSTL_18_CLASS_I

OCT_50_
OHMS

290

240

200

290

240

200

Note to 

Table 5–45

:

(1)

This is based on single data rate I/Os.

Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices  (Part 4 of 4)

I/O Standard

Drive 

Strength

Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz)

Column I/O Pins 

(1)

Row I/O Pins 

(1)

Dedicated Clock 

Outputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

ac/package_outlines/cyc_c52006-html.html
background image

5–52

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

Table 5–46. Maximum Output Clock Toggle Rate Derating Factors (Part 1 of 4)

I/O Standard

Drive 

Strength

Maximum Output Clock Toggle Rate Derating Factors (ps/pF)

Column I/O Pins

Row I/O Pins

Dedicated Clock 

Outputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

LVTTL

4 mA

438

439

439

338

362

387

338

362

387

8 mA

306

321

336

267

283

299

267

283

299

12 mA

139

179

220

193

198

202

193

198

202

16 mA

145

158

172

139

147

156

139

147

156

20 mA

65

77

90

74

79

84

74

79

84

24 mA

19

20

21

14

18

22

14

18

22

LVCMOS

4 mA

298

305

313

197

205

214

197

205

214

8 mA

190

205

219

112

118

125

112

118

125

12 mA

43

72

101

27

31

35

27

31

35

16  mA

87

99

110

20  mA

36

46

56

24  mA

24

25

27

2.5V

4 mA

228

233

237

270

306

343

270

306

343

8 mA

173

177

180

191

199

208

191

199

208

12  mA

119

121

123

16  mA

64

65

66

1.8V

2 mA

452

457

461

332

367

403

332

367

403

4 mA

321

347

373

244

291

337

244

291

337

6 mA

227

255

283

178

222

266

178

222

266

8 mA

37

118

199

58

133

207

58

133

207

10 mA

41

72

103

46

85

123

46

85

123

12 mA

7

8

10

13

28

44

13

28

44

1.5V

2 mA

738

764

789

540

604

669

540

604

669

4 mA

499

518

536

300

354

408

300

354

408

6 mA

261

271

282

60

103

146

60

103

146

8  mA

22

25

29

SSTL_2_CLASS_I

8 mA

46

47

49

25

40

56

25

40

56

12 mA

67

69

70

23

42

60

23

42

60

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–53

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

SSTL_2_CLASS_II

16 mA

42

43

45

15

29

42

15

29

42

20  mA

41

42

44

24  mA

40

42

43

SSTL_18_ 
CLASS_I

6 mA

20

22

24

46

47

49

46

47

49

8 mA

20

22

24

47

49

51

47

49

51

10 mA

20

22

25

23

25

27

23

25

27

12  mA

19

23

26

SSTL_18_ CLASS_II

16 mA

30

33

36

18  mA

29

29

29

1.8V_HSTL_ CLASS_I

8 mA

26

28

29

59

61

63

59

61

63

10 mA

46

47

48

65

66

68

65

66

68

12 mA

67

67

67

71

71

72

71

71

72

1.8V_HSTL_ CLASS_II

16 mA

62

65

68

18  mA

59

62

65

20  mA

57

59

62

1.5V_HSTL_ CLASS_I

8 mA

40

40

41

28

32

36

28

32

36

10  mA

41

42

42

12  mA

43

43

43

1.5V_HSTL_ CLASS_II

16 mA

18

20

21

DIFFERENTIAL_SSTL_2
_CLASS_I

8 mA

46

47

49

25

40

56

25

40

56

12 mA

67

69

70

23

42

60

23

42

60

DIFFERENTIAL_SSTL_2
_CLASS_II

16 mA

42

43

45

15

29

42

15

29

42

20  mA

41

42

44

24  mA

40

42

43

DIFFERENTIAL_SSTL_
18_CLASS_I

6 mA

20

22

24

46

47

49

46

47

49

8 mA

20

22

24

47

49

51

47

49

51

10 mA

20

22

25

23

25

27

23

25

27

12  mA

19

23

26

Table 5–46. Maximum Output Clock Toggle Rate Derating Factors (Part 2 of 4)

I/O Standard

Drive 

Strength

Maximum Output Clock Toggle Rate Derating Factors (ps/pF)

Column I/O Pins

Row I/O Pins

Dedicated Clock 

Outputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

ac/package_outlines/cyc_c52006-html.html
background image

5–54

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

DIFFERENTIAL_SSTL_
18_CLASS_II

16  mA

30

33

36

18  mA

29

29

29

1.8V_ 
DIFFERENTIAL_HSTL_
CLASS_I

8 mA

26

28

29

59

61

63

59

61

63

10 mA

46

47

48

65

66

68

65

66

68

12 mA

67

67

67

71

71

72

71

71

72

1.8V_ 
DIFFERENTIAL_HSTL_
CLASS_II

16  mA

62

65

68

18  mA

59

62

65

20  mA

57

59

62

1.5V_ 
DIFFERENTIAL_HSTL_
CLASS_I

8 mA

40

40

41

28

32

36

28

32

36

10  mA

41

42

42

12  mA

43

43

43

1.5V_ 
DIFFERENTIAL_HSTL_
CLASS_II

16  mA

18

20

21

LVDS

11

13

16

11

13

15

11

13

15

RSDS

11

13

16

11

13

15

11

13

15

MINI_LVDS

11

13

16

11

13

15

11

13

15

SIMPLE_RSDS

15

19

23

15

19

23

15

19

23

1.2V_HSTL

130

132

133

1.2V_ 
DIFFERENTIAL_HSTL

130

132

133

PCI

99

120

142

99

120

142

PCI-X

99

121

143

99

121

143

LVTTL

OCT_25
_OHMS

13

14

14

21

27

33

21

27

33

LVCMOS

OCT_25
_OHMS

13

14

14

21

27

33

21

27

33

2.5V

OCT_50
_OHMS

346

369

392

324

326

327

324

326

327

1.8V

OCT_50
_OHMS

198

203

209

202

203

204

202

203

204

Table 5–46. Maximum Output Clock Toggle Rate Derating Factors (Part 3 of 4)

I/O Standard

Drive 

Strength

Maximum Output Clock Toggle Rate Derating Factors (ps/pF)

Column I/O Pins

Row I/O Pins

Dedicated Clock 

Outputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–55

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

High Speed I/O Timing Specifications

The timing analysis for LVDS, mini-LVDS, and RSDS is different 
compared to other I/O standards because the data communication is 
source-synchronous.

You should also consider board skew, cable skew, and clock jitter in your 
calculation. This section provides details on the timing parameters for 
high-speed I/O standards in Cyclone II devices.

Table 5–47

 defines the parameters of the timing diagram shown in 

Figure 5–3

.

SSTL_2_CLASS_I

OCT_50
_OHMS

67

69

70

25

42

60

25

42

60

SSTL_18_CLASS_I

OCT_50
_OHMS

30

33

36

47

49

51

47

49

51

Table 5–46. Maximum Output Clock Toggle Rate Derating Factors (Part 4 of 4)

I/O Standard

Drive 

Strength

Maximum Output Clock Toggle Rate Derating Factors (ps/pF)

Column I/O Pins

Row I/O Pins

Dedicated Clock 

Outputs

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

–6 

Speed 

Grade

–7 

Speed 

Grade

–8 

Speed 

Grade

Table 5–47. High-Speed I/O Timing Definitions (Part 1 of 2)

Parameter

Symbol

Description

High-speed clock

f

H S C K L K

High-speed receiver and transmitter input and output clock frequency.

Duty cycle

t

D U T Y

Duty cycle on high-speed transmitter output clock.

High-speed I/O data rate

HSIODR

High-speed receiver and transmitter input and output data rate.

Time unit interval

TUI

TUI = 1/HSIODR.

Channel-to-channel skew

TCCS

The timing difference between the fastest and slowest output edges, 
including t

CO

 variation and clock skew. The clock is included in the 

TCCS measurement.
TCCS = TUI – SW – (2 × RSKM)

ac/package_outlines/cyc_c52006-html.html
background image

5–56

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

Figure 5–3. High-Speed I/O Timing Diagram

Figure 5–4

 shows the high-speed I/O timing budget.

Sampling window

SW

The period of time during which the data must be valid in order for you 
to capture it correctly. Sampling window is the sum of the setup time, 
hold time, and jitter. The window of t

SU

 + t

is expected to be centered 

in the sampling window.
SW = TUI – TCCS – (2 × RSKM)

Receiver input skew 
margin

RSKM

RSKM is defined by the total margin left after accounting for the 
sampling window and TCCS. 
RSKM = (TUI – SW – TCCS) / 2

Input jitter (peak to peak)

Peak-to-peak input jitter on high-speed PLLs.

Output jitter (peak to peak)

Peak-to-peak output jitter on high-speed PLLs.

Signal rise time

t

R I S E

Low-to-high transmission time.

Signal fall time

t

FA L L

High-to-low transmission time.

Lock time

t

L O C K

Lock time for high-speed transmitter and receiver PLLs.

Table 5–47. High-Speed I/O Timing Definitions (Part 2 of 2)

Parameter

Symbol

Description

Sampling Window (SW)

Time Unit Interval (TUI)

RSKM

TCCS

RSKM

TCCS

Internal Clock

External 

Input Clock

Receiver 

Input Data

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–57

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Figure 5–4. High-Speed I/O Timing Budget

Note (1)

Note to 

Figure 5–4

:

(1)

The equation for the high-speed I/O timing budget is: 
period = TCCS + RSKM + SW + RSKM.

Table 5–48

 shows the RSDS timing budget for Cyclone II devices at 

311 Mbps. RSDS is supported for transmitting from Cyclone II devices. 
Cyclone II devices cannot receive RSDS data because the devices are 
intended for applications where they will be driving display drivers. 
Cyclone II devices support a maximum RSDS data rate of 311 Mbps using 
DDIO registers. Cyclone II devices support RSDS only in the commercial 
temperature range.

Internal Clock Period

RSKM      

0.5 

×

 TCCS

RSKM      0.5 

×

 TCCS

S

W

Table 5–48. RSDS Transmitter Timing Specification (Part 1 of 2)

Symbol

Conditions

–6 Speed Grade

–7 Speed Grade

–8 Speed Grade

Unit

Min

Typ

Max

(1)

Min

Typ

Max

(1)

Min

Typ

Max

(1)

f

H S C L K

 

(input 
clock 
frequency)

×10

10

155.5

10

155.5

10

155.5

MHz

×8

10

155.5

10

155.5

10

155.5

MHz

×7

10

155.5

10

155.5

10

155.5

MHz

×4

10

155.5

10

155.5

10

155.5

MHz

×2

10

155.5

10

155.5

10

155.5

MHz

×1

10

311

10

311

10

311

MHz

Device 
operation 
in Mbps

×10

100

311

100

311

100

311

Mbps

×8

80

311

80

311

80

311

Mbps

×7

70

311

70

311

70

311

Mbps

×4

40

311

40

311

40

311

Mbps

×2

20

311

20

311

20

311

Mbps

×1

10

311

10

311

10

311

Mbps

t

D U T Y

45

55

45

55

45

55

%

ac/package_outlines/cyc_c52006-html.html
background image

5–58

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

In order to determine the transmitter timing requirements, RSDS receiver 
timing requirements on the other end of the link must be taken into 
consideration. RSDS receiver timing parameters are typically defined as 
t

SU

 and t

H

 requirements. Therefore, the transmitter timing parameter 

specifications are t

CO

 (minimum) and t

CO

 (maximum). Refer to 

Figure 5–4

 

for the timing budget.

The AC timing requirements for RSDS are shown in 

Figure 5–5

.

TCCS

200

 200

 200

ps

Output 
jitter (peak 
to peak)

500

500

500

ps

t

R I S E

20–80%, 
C

L O A D

 = 5 pF

500

500

500

ps

t

F A L L

80–20%, 
C

L O A D

 = 5 pF

500

500

500

ps

t

L O C K

100

100

100

μ

s

Note to 

Table 5–48

:

(1)

These specifications are for a three-resistor RSDS implementation. For single-resistor RSDS in ×10 through ×2 
modes, the maximum data rate is 170 Mbps and the corresponding maximum input clock frequency is 85 MHz. 
For single-resistor RSDS in ×1 mode, the maximum data rate is 170 Mbps, and the maximum input clock frequency 
is 170 MHz. For more information about the different RSDS implementations, refer to the 

High-Speed Differential 

Interfaces in Cyclone II Devices

 chapter of the Cyclone II Device Handbook.

Table 5–48. RSDS Transmitter Timing Specification (Part 2 of 2)

Symbol

Conditions

–6 Speed Grade

–7 Speed Grade

–8 Speed Grade

Unit

Min

Typ

Max

(1)

Min

Typ

Max

(1)

Min

Typ

Max

(1)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–59

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Figure 5–5. RSDS Transmitter Clock to Data Relationship

Table 5–49

 shows the mini-LVDS transmitter timing budget for Cyclone II 

devices at 311 Mbps. Cyclone II devices cannot receive mini-LVDS data 
because the devices are intended for applications where they will be 
driving display drivers. A maximum mini-LVDS data rate of 311 Mbps is 
supported for Cyclone II devices using DDIO registers. Cyclone II 
devices support mini-LVDS only in the commercial temperature range.

Transmitter

Valid

Data

Transmitter

Valid

Data

Valid

Data

Total

Skew

Valid

Data

t

SU

 (2 ns)

t

H

 (2 ns)

Channel-to-Channel

Skew (1.68 ns)

Transmitter

Clock (5.88 ns)

At transmitter

tx_data[11..0]

At receiver

rx_data[11..0]

Table 5–49. Mini-LVDS Transmitter Timing Specification (Part 1 of 2)

Symbol

Conditions

–6 Speed Grade

–7 Speed Grade

–8 Speed Grade

Unit

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

f

H S C L K

 

(input 
clock 
frequency)

×10

10

155.5

10

155.5

10

155.5

MHz

×8

10

155.5

10

155.5

10

155.5

MHz

×7

10

155.5

10

155.5

10

155.5

MHz

×4

10

155.5

10

155.5

10

155.5

MHz

×2

10

155.5

10

155.5

10

155.5

MHz

×1

10

311

10

311

10

311

MHz

ac/package_outlines/cyc_c52006-html.html
background image

5–60

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

In order to determine the transmitter timing requirements, mini-LVDS 
receiver timing requirements on the other end of the link must be taken 
into consideration. The mini-LVDS receiver timing parameters are 
typically defined as t

SU

 and t

H

 requirements. Therefore, the transmitter 

timing parameter specifications are t

CO

 (minimum) and t

CO

 (maximum). 

Refer to 

Figure 5–4

 for the timing budget.

The AC timing requirements for mini-LVDS are shown in 

Figure 5–6

.

Figure 5–6. mini-LVDS Transmitter AC Timing Specification

Notes to 

Figure 5–6

:

(1)

The data setup time, t

SU

, is 0.225 × TUI.

(2)

The data hold time, t

H

, is 0.225 × TUI.

Device 
operation 
in Mbps

×10

100

311

100

311

100

311

Mbps

×8

80

311

80

311

80

311

Mbps

×7

70

311

70

311

70

311

Mbps

×4

40

311

40

311

40

311

Mbps

×2

20

311

20

311

20

311

Mbps

×1

10

311

10

311

10

311

Mbps

t

D U T Y

45

55

45

55

45

55

%

TCCS

200

 200

 200

ps

Output 
jitter (peak 
to peak)

500

500

500

ps

t

R I S E

20–80%

500

500

500

ps

t

F A L L

80–20%

500

500

500

ps

t

L O C K

100

100

100

μ

s

Table 5–49. Mini-LVDS Transmitter Timing Specification (Part 2 of 2)

Symbol

Conditions

–6 Speed Grade

–7 Speed Grade

–8 Speed Grade

Unit

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

t

SU

 (1)

t

H

 (2)

TUI

t

SU

 (1)

t

H

 (2)

LVDSCLK[]n

LVDSCLK[]p

LVDS[]p

LVDS[]n

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–61

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Tables 5–50

 and 

5–51

 show the LVDS timing budget for Cyclone II 

devices. Cyclone II devices support LVDS receivers at data rates up to 
805 Mbps, and LVDS transmitters at data rates up to 640 Mbps.

Table 5–50. LVDS Transmitter Timing Specification (Part 1 of 2)

Symbol

Conditions

–6 Speed Grade

–7 Speed Grade

–8 Speed Grade

Unit

Min

Typ

Max

 

(1)

Max

 

(2)

Min

Typ

Max

 

(1)

Max

 

(2)

Min

Typ

Max

 

(1)

Max

 

(2)

f

H S C L K

 

(input 
clock
fre-
quency)

×10

10

320

320

10

275

320

10

155.5 

(4)

320 

(6)

MHz

×8

10

320

320

10

275

320

10

155.5 

(4)

320 

(6)

MHz

×7

10

320

320

10

275

320

10

155.5 

(4)

320 

(6)

MHz

×4

10

320

320

10

275

320

10

155.5 

(4)

320 

(6)

MHz

×2

10

320

320

10

275

320

10

155.5 

(4)

320 

(6)

MHz

×1

10

402.5

402.5

10

402.5

402.5

10

402.5

(8)

402.5

(8)

MHz

HSIODR

×10

100

640

640

100

550

640

100

311

(5)

550

(7)

Mbps

×8

80

640

640

80

550

640

80

311

(5)

550

(7)

Mbps

×7

70

640

640

70

550

640

70

311

(5)

550

(7)

Mbps

×4

40

640

640

40

550

640

40

311

(5)

550

(7)

Mbps

×2

20

640

640

20

550

640

20

311

(5)

550

(7)

Mbps

×1

10

402.5

402.5

10

402.5

402.5

10

402.5

(9)

402.5

(9)

Mbps

t

D U T Y

45

55

45

55

45

55

%

160

312.5

363.6

ps

TCCS 

(3)

200

 200

 200

ps

Output 
jitter 
(peak to 
peak)

500

500

550 

(10)

ps

t

R I S E

20–80%

150

200

250

150

200

250

150

200

250 

(11)

ps

ac/package_outlines/cyc_c52006-html.html
background image

5–62

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

t

F A L L

80–20%

150

200

250

150

200

250

150

200

250 

(11)

ps

t

L O C K

100

100

100 

(12)

μ

s

Notes to 

Table 5–50

:

(1)

The maximum data rate that complies with duty cycle distortion of 45–55%.

(2)

The maximum data rate when taking duty cycle in absolute ps into consideration that may not comply with 45–55% 
duty cycle distortion. If the downstream receiver can handle duty cycle distortion beyond the 45–55% range, you 
may use the higher data rate values from this column. You can calculate the duty cycle distortion as a percentage 
using the absolute ps value. For example, for a data rate of 640 Mbps (UI = 1562.5 ps) and a t

D U T Y

 of 250 ps, the 

duty cycle distortion is ± t

D U T Y

/(UI*2) *100% = ± 250 ps/(1562.5 *2) * 100% = ± 8%, which gives you a duty cycle 

distortion of 42–58%.

(3)

The TCCS specification applies to the entire bank of LVDS, as long as the SERDES logic is placed within the LAB 
adjacent to the output pins.

(4)

For extended temperature devices, the maximum input clock frequency for ×10 through ×2 modes is 137.5 MHz.

(5)

For extended temperature devices, the maximum data rate for ×10 through ×2 modes is 275 Mbps.

(6)

For extended temperature devices, the maximum input clock frequency for ×10 through ×2 modes is 200 MHz.

(7)

For extended temperature devices, the maximum data rate for ×10 through ×2 modes is 400 Mbps.

(8)

For extended temperature devices, the maximum input clock frequency for ×1 mode is 340 MHz.

(9)

For extended temperature devices, the maximum data rate for ×1 mode is 340 Mbps.

(10) For extended temperature devices, the maximum output jitter (peak to peak) is 600 ps.
(11) For extended temperature devices, the maximum t

R I S E

 and t

FA L L

 are 300 ps.

(12) For extended temperature devices, the maximum lock time is 500 us.

Table 5–50. LVDS Transmitter Timing Specification (Part 2 of 2)

Symbol

Conditions

–6 Speed Grade

–7 Speed Grade

–8 Speed Grade

Unit

Min

Typ

Max

 

(1)

Max

 

(2)

Min

Typ

Max

 

(1)

Max

 

(2)

Min

Typ

Max

 

(1)

Max

 

(2)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–63

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

External Memory Interface Specifications

Table 5–52

 shows the DQS bus clock skew adder specifications.

Table 5–51. LVDS Receiver Timing Specification

Symbol

Conditions

–6 Speed Grade

–7 Speed Grade

–8 Speed Grade

Unit

Min Typ

Max

Min

Typ

Max

Min

Typ

Max

f

H S C L K

 

(input clock 
frequency)

×10

10

402.5

10

320

10

320 

(1)

MHz

×8

10

402.5

10

320

10

320 

(1)

MHz

×7

10

402.5

10

320

10

320 

(1)

MHz

×4

10

402.5

10

320

10

320 

(1)

MHz

×2

10

402.5

10

320

10

320 

(1)

MHz

×1

10

402.5

10

402.5

10

402.5 

(3)

MHz

HSIODR  

×10

100

805

100

640

100

640 

(2)

Mbps

×8

80

805

80

640

80

640 

(2)

Mbps

×7

70

805

70

640

70

640 

(2)

Mbps

×4

40

805

40

640

40

640 

(2)

Mbps

×2

20

805

20

640

20

640 

(2)

Mbps

×1

10

402.5

10

402.5

10

402.5 

(4)

Mbps

SW —

300

400

400

ps

Input jitter 
tolerance 

500

500

550

ps

t

L O C K

100

100

100 

(5)

ps

Notes to 

Table 5–51

:

(1)

For extended temperature devices, the maximum input clock frequency for x10 through x2 modes is 275 MHz.

(2)

For extended temperature devices, the maximum data rate for x10 through x2 modes is 550 Mbps.

(3)

For extended temperature devices, the maximum input clock frequency for x1 mode is 340 MHz.

(4)

For extended temperature devices, the maximum data rate for x1 mode is 340 Mbps.

(5)

For extended temperature devices, the maximum lock time is 500 us.

Table 5–52. DQS Bus Clock Skew Adder Specifications 

Mode

DQS Clock Skew Adder

Unit

×9

155

ps

×18

190

ps

Note to 

Table 5–52

:

(1)

This skew specification is the absolute maximum and minimum skew. For 
example, skew on a ×9 DQ group is 155 ps or ±77.5 ps.

ac/package_outlines/cyc_c52006-html.html
background image

5–64

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

JTAG Timing Specifications

Figure 5–7

 shows the timing requirements for the JTAG signals.

Figure 5–7. Cyclone II JTAG Waveform

TDO

TCK

t

JPZX

t

JPCO

t

JPH

t

JPXZ

 t

JCP

 t

JPSU

 t

JCL

 t

JCH

TDI

TMS

Signal

to be

Captured

Signal

to be

Driven

t

JSZX

t

JSSU

t

JSH

t

JSCO

t

JSXZ

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–65

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Table 5–53

 shows the JTAG timing parameters and values for Cyclone II 

devices.

1

Cyclone II devices must be within the first 17 devices in a JTAG 
chain. All of these devices have the same JTAG controller. If any 
of the Cyclone II devices are in the 18th position or after they will 
fail configuration. This does not affect the SignalTap

®

 II logic 

analyzer.

f

For more information on JTAG, refer to the 

IEEE 1149.1 (JTAG) 

Boundary-Scan Testing for Cyclone II Devices

 chapter in the 

Cyclone II 

Handbook

.

Table 5–53. Cyclone II JTAG Timing Parameters and Values

Symbol

Parameter

Min

Max

Unit

t

J C P

TCK

 clock period

 40

ns

t

J C H

TCK

 clock high time

20

ns

t

J C L

TCK

 clock low time

20

ns

t

J P S U

JTAG port setup time 

(2)

5

ns

t

J P H

JTAG port hold time

10

ns

t

J P C O

JTAG port clock to output 

(2)

13

ns

t

J P Z X

JTAG port high impedance to valid outpu

(2)

13

ns

t

J P X Z

JTAG port valid output to high impedance 

(2)

13

ns

t

J S S U

Capture register setup time 

(2)

5

ns

t

J S H

Capture register hold time

10

ns

t

J S C O

Update register clock to output

25

ns

t

J S Z X

Update register high impedance to valid output

25

ns

t

J S X Z

Update register valid output to high impedance

25

ns

Notes to 

Table 5–53

:

(1)

This information is preliminary.

(2)

This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 
1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the JTAG port and capture register clock setup time is 3 ns and port 
clock to output time is 15 ns.

ac/package_outlines/cyc_c52006-html.html
background image

5–66

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Timing Specifications

PLL Timing Specifications

Table 5–54

 describes the Cyclone II PLL specifications when operating in 

the commercial junction temperature range (0° to 85° C), the industrial 
junction temperature range (–40° to 100° C), the automotive junction 
temperature range (–40° to 125° C), and the extended temperature range 
(–40° to 125° C). Follow the PLL specifications for –8 speed grade devices 
when operating in the industrial, automotive, or extended temperature 
range. 

Table 5–54. PLL Specifications

Note (1)

(Part 1 of 2)

Symbol

Parameter

Min

Typ

Max

Unit

f

I N

Input clock frequency (–6 speed grade)

10

(4)

MHz

Input clock frequency (–7 speed grade)

10

(4)

MHz

Input clock frequency (–8 speed grade)

10

(4)

MHz

f

I N P F D

PFD input frequency (–6 speed grade)

10

402.5

MHz

PFD input frequency (–7 speed grade)

10

402.5

MHz

PFD input frequency (–8 speed grade)

10

402.5

MHz

f

I N D U T Y

Input clock duty cycle

40

60

%

t

I N J I T T E R

 

(5)

Input clock period jitter

200

ps

f

O U T _ E X T

 (external 

clock output)

PLL output frequency (–6 speed grade)

10

(4)

MHz

PLL output frequency (–7 speed grade)

10

(4)

MHz

PLL output frequency (–8 speed grade)

10

(4)

MHz

f

O U T

 (to global clock)

PLL output frequency (–6 speed grade)

10

500

MHz

PLL output frequency (–7 speed grade)

10

450

MHz

PLL output frequency (–8 speed grade)

10

402.5

MHz

t

O U T D U T Y  

Duty cycle for external clock output (when 
set to 50%)

45

55

%

t

J I T T E R

 (p-p) 

(2)

Period jitter for external clock output 
f

O U T _ E X T

 > 100 MHz

 

300

ps

f

O U T _ E X T

 

≤ 

100 MHz

30

mUI

t

L O C K

 

Time required to lock from end of device 
configuration 

100 

(6)

μ

s

t

PLL_PSERR

Accuracy of PLL phase shift

±60

ps

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–67

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Duty Cycle 
Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a 
clock is off from its ideal position. The ideal position is when both the 
clock high time (CLKH) and the clock low time (CLKL) equal half of the 
clock period (T), as shown in 

Figure 5–8

. DCD is the deviation of the 

non-ideal falling edge from the ideal falling edge, such as D1 for the 
falling edge A and D2 for the falling edge B (

Figure 5–8

). The maximum 

DCD for a clock is the larger value of D1 and D2.

Figure 5–8. Duty Cycle Distortion

DCD expressed in absolution derivation, for example, D1 or D2 in 

Figure 5–8

, is clock-period independent. DCD can also be expressed as a 

percentage, and the percentage number is clock-period dependent. DCD 
as a percentage is defined as:

f

V C O

 

(3)

PLL internal VCO operating range

300

1,000

MHz

t

A R E S E T

Minimum pulse width on 

areset

 signal.

10

ns

Notes to 

Table 5–54

:

(1)

These numbers are preliminary and pending silicon characterization.

(2)

The t

JITTER

 specification for the 

PLL[4..1]_OUT

 pins are dependent on the I/O pins in its 

VCCIO

 bank, how many 

of them are switching outputs, how much they toggle, and whether or not they use programmable current strength.

(3)

If the VCO post-scale counter = 2, a 300- to 500-MHz internal VCO frequency is available.

(4)

This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency 
is different for each I/O standard.

(5)

Cyclone II PLLs can track a spread-spectrum input clock that has an input jitter within ±200 ps.

(6)

For extended temperature devices, the maximum lock time is 500 us.

Table 5–54. PLL Specifications

Note (1)

(Part 2 of 2)

Symbol

Parameter

Min

Typ

Max

Unit

CLKH = T/2

CLKL = T/2

D1

D2

Falling Edge A

Ideal Falling Edge

Clock Period (T)

Falling Edge B

ac/package_outlines/cyc_c52006-html.html
background image

5–68

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Duty Cycle Distortion

(T/2 – D1) / T (the low percentage boundary)

(T/2 + D2) / T (the high percentage boundary)

DCD Measurement Techniques

DCD is measured at an FPGA output pin driven by registers inside the 
corresponding I/O element (IOE) block. When the output is a single data 
rate signal (non-DDIO), only one edge of the register input clock (positive 
or negative) triggers output transitions (

Figure 5–9

). Therefore, any DCD 

present on the input clock signal, or caused by the clock input buffer, or 
different input I/O standard, does not transfer to the output signal.

Figure 5–9. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs

However, when the output is a double data rate input/output (DDIO) 
signal, both edges of the input clock signal (positive and negative) trigger 
output transitions (

Figure 5–10

). Therefore, any distortion on the input 

clock and the input clock buffer affect the output DCD.

D

Q

DFF

clk

output

IOE

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–69

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

Figure 5–10. DCD Measurement Technique for DDIO (Double-Data Rate) Outputs

When an FPGA PLL generates the internal clock, the PLL output clocks 
the IOE block. As the PLL only monitors the positive edge of the reference 
clock input and internally re-creates the output clock signal, any DCD 
present on the reference clock is filtered out. Therefore, the DCD for a 
DDIO output with PLL in the clock path is better than the DCD for a 
DDIO output without PLL in the clock path.

Tables 5–55

 through 

5–58

 give the maximum DCD in absolution 

derivation for different I/O standards on Cyclone II devices. Examples 
are also provided that show how to calculate DCD as a percentage.

D

Q

PRN

CLRN

DFF

INPUT
VCC

clk

output

D

Q

PRN

CLRN

DFF

V

CC

GND

1
0

Table 5–55. Maximum DCD for Single Data Outputs (SDR) on Row I/O 
Pins

Notes (1)

(2)

  (Part 1 of 2)

Row I/O Output Standard

C6

C7

C8

Unit

LVCMOS

165

230

230

ps

LVTTL

195

255

255

ps

2.5-V

120

120

135

ps

1.8-V

115

115

175

ps

1.5-V

130

130

135

ps

SSTL-2 Class I

60

90

90

ps

SSTL-2 Class II

65

75

75

ps

SSTL-18 Class I

90

165

165

ps

HSTL-15 Class I

145

145

205

ps

HSTL-18 Class I

85

155

155

ps

ac/package_outlines/cyc_c52006-html.html
background image

5–70

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Duty Cycle Distortion

Here is an example for calculating the DCD as a percentage for an SDR 
output on a row I/O on a –6 device:

If the SDR output I/O standard is SSTL-2 Class II, the maximum DCD is 
65 ps (refer to 

Table 5–55

). If the clock frequency is 167 MHz, the clock 

period T is:

T = 1/ f = 1 / 167 MHz = 6 ns = 6000 ps

To calculate the DCD as a percentage:

(T/2 – DCD) / T = (6000 ps/2 – 65 ps) / 6000 ps = 48.91% (for low 
boundary)

(T/2 + DCD) / T = (6000 ps/2 + 65 ps) / 6000ps = 51.08% (for high 
boundary

Differential SSTL-2 Class I

60

90

90

ps

Differential SSTL-2 Class II

65

75

75

ps

Differential SSTL-18 Class I

90

165

165

ps

Differential HSTL-18 Class I

85

155

155

ps

Differential HSTL-15 Class I

145

145

205

ps

LVDS

60

60

60

ps

Simple RSDS

60

60

60

ps

Mini LVDS

60

60

60

ps

PCI

195

255

255

ps

PCI-X

195

255

255

ps

Notes to 

Table 5–55

:

(1)

The DCD specification is characterized using the maximum drive strength 
available for each I/O standard.

(2)

Numbers are applicable for commercial, industrial, and automotive devices.

Table 5–56. Maximum DCD for SDR Output on Column I/O

Notes (1)

(2)

 

(Part 1 of 2)

Column I/O Output Standard

C6

C7

C8

Unit

LVCMOS

195

285

285

ps

LVTTL

210

305

305

ps

Table 5–55. Maximum DCD for Single Data Outputs (SDR) on Row I/O 
Pins

Notes (1)

(2)

  (Part 2 of 2)

Row I/O Output Standard

C6

C7

C8

Unit

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–71

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

2.5-V

140

140

155

ps

1.8-V

115

115

165

ps

1.5-V

745

745

770

ps

SSTL-2 Class I

60

60

75

ps

SSTL-2 Class II

60

60

80

ps

SSTL-18 Class I

60

130

130

ps

SSTL-18 Class II

60

135

135

ps

HSTL-18 Class I

60

115

115

ps

HSTL-18 Class II

75

75

100

ps

HSTL-15 Class I

150

150

150

ps

HSTL-15 Class II

135

135

155

ps

Differential SSTL-2 Class I

60

60

75

ps

Differential SSTL-2 Class II

60

60

80

ps

Differential SSTL-18 Class I

60

130

130

ps

Differential SSTL-18 Class II

60

135

135

ps

Differential HSTL-18 Class I

60

115

115

ps

Differential HSTL-18 Class II

75

75

100

ps

Differential HSTL-15 Class I

150

150

150

ps

Differential HSTL-15 Class II

135

135

155

ps

LVDS

60

60

60

ps

Simple RSDS

60

70

70

ps

Mini-LVDS

60

60

60

ps

Notes to 

Table 5–56

:

(1)

The DCD specification is characterized using the maximum drive strength 
available for each I/O standard. 

(2)

Numbers are applicable for commercial, industrial, and automotive devices. 

Table 5–57. Maximum for DDIO Output on Row Pins with PLL in the Clock 
Path  

Notes (1)

(2)

  (Part 1 of 2)

Row Pins with PLL in the Clock Path

C6

C7

C8

Unit

LVCMOS

270

310

310

ps

LVTTL

285

305

335

ps

2.5-V

180

180

220

ps

1.8-V

165

175

205

ps

Table 5–56. Maximum DCD for SDR Output on Column I/O

Notes (1)

(2)

 

(Part 2 of 2)

Column I/O Output Standard

C6

C7

C8

Unit

ac/package_outlines/cyc_c52006-html.html
background image

5–72

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Duty Cycle Distortion

For DDIO outputs, you can calculate actual half period from the 
following equation:

Actual half period = ideal half period – maximum DCD

For example, if the DDR output I/O standard is SSTL-2 Class II, the 
maximum DCD for a –5 device is 155 ps (refer to 

Table 5–57

). If the clock 

frequency is 167 MHz, the half-clock period T/2 is:

T/2 = 1/(2* f )= 1 /(2*167 MHz) = 3 ns = 3000 ps

1.5-V

280

280

280

ps

SSTL-2 Class I

150

190

230

ps

SSTL-2 Class II

155

200

230

ps

SSTL-18 Class I

180

240

260

ps

HSTL-18 Class I

180

235

235

ps

HSTL-15 Class I

205

220

220

ps

Differential SSTL-2 Class I

150

190

230

ps

Differential SSTL-2 Class II

155

200

230

ps

Differential SSTL-18 Class I

180

240

260

ps

Differential HSTL-18 Class I

180

235

235

ps

Differential HSTL-15 Class I

205

220

220

ps

LVDS

95

110

120

ps

Simple RSDS

100

155

155

ps

Mini LVDS

95

110

120

ps

PCI

285

305

335

ps

PCI-X

285

305

335

ps

Notes to 

Table 5–57

:

(1)

The DCD specification is characterized using the maximum drive strength 
available for each I/O standard. 

(2)

Numbers are applicable for commercial, industrial, and automotive devices. 

Table 5–57. Maximum for DDIO Output on Row Pins with PLL in the Clock 
Path  

Notes (1)

(2)

  (Part 2 of 2)

Row Pins with PLL in the Clock Path

C6

C7

C8

Unit

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–73

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

The actual half period is then = 3000 ps – 155 ps = 2845 ps

Table 5–58. Maximum DCD for DDIO Output on Column I/O Pins with PLL in 
the Clock Path

Notes (1)

(2)

Column I/O Pins in the Clock Path

C6

C7

C8

Unit

LVCMOS

285

400

445

ps

LVTTL

305

405

460

ps

2.5-V

175

195

285

ps

1.8-V

190

205

260

ps

1.5-V

605

645

645

ps

SSTL-2 Class I

125

210

245

ps

SSTL-2 Class II

195

195

195

ps

SSTL-18 Class I

130

240

245

ps

SSTL-18 Class II

135

270

330

ps

HSTL-18 Class I

135

240

240

ps

HSTL-18 Class II

165

240

285

ps

HSTL-15 Class I

220

335

335

ps

HSTL-15 Class II

190

210

375

ps

Differential SSTL-2 Class I

125

210

245

ps

Differential SSTL-2 Class II

195

195

195

ps

Differential SSTL-18 Class I

130

240

245

ps

Differential SSTL-18 Class II

132

270

330

ps

Differential HSTL-18 Class I

135

240

240

ps

Differential HSTL-18 Class II

165

240

285

ps

Differential HSTL-15 Class I

220

335

335

ps

Differential HSTL-15 Class II

190

210

375

ps

LVDS

110

120

125

ps

Simple RSDS

125

125

275

ps

Mini-LVDS

110

120

125

ps

Notes to 

Table 5–58

:

(1)

The DCD specification is characterized using the maximum drive strength 
available for each I/O standard. 

(2)

Numbers are applicable for commercial, industrial, and automotive devices. 

ac/package_outlines/cyc_c52006-html.html
background image

5–74

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Referenced Documents

Referenced 
Documents

This chapter references the following documents:

Cyclone II Architecture

 chapter in 

Cyclone II Device Handbook

High-Speed Differential Interfaces in Cyclone II Devices

 chapter of the 

Cyclone II Device Handbook

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

 

chapter in the 

Cyclone II Handbook

Operating Requirements for Altera Devices Data Sheet

PowerPlay Early Power Estimator User Guide

PowerPlay Power Analysis

 

chapters in volume 3 of the 

Quartus II 

Handbook

Document 
Revision History

Table 5–59

 shows the revision history for this document.

Table 5–59. Document Revision History

Date and 

Document 

Version

Changes Made

Summary of Changes

February 2008
v4.0

Updated the following tables with I/O timing 
numbers for automotive-grade devices:

Tables 5–2

5–12

5–13

5–15

5–16

5–17

5–18

5–19

5–21

5–22

5–23

5–25

5–26

5–27

5–28

5–36

5–37

5–40

5–41

5–42

5–43

5–55

5–56

5–57

, and 

5–58

.

Added 

“Referenced Documents”

.

Added I/O timing numbers for 
automotive-grade devices.

April 2007
v3.2

Updated 

Table 5–3

. Updated 

R

CONF 

typical and maximum 

values in 

Table 5–3

.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

5–75

February 2008

Cyclone II Device Handbook, Volume 1

DC Characteristics and Timing Specifications

February 2007 
v3.1

Added document revision history.

Added V

CCA

 minimum and maximum limitations in 

Table 5–1

.

Updated 

Note (1)

 in 

Table 5–2

.

Updated the maximum V

CC 

rise time for Cyclone II 

“A” devices in 

Table 5–2

.

Updated R

CONF 

information in 

Table 5–3

.

Changed V

to I

i

 in 

Table 5–3

.

Updated LVPECL clock inputs in 

Note (6)

 to 

Table 5–8

.

Updated 

Note (1)

 to 

Table 5–12

.

Updated C

V R E F

 capacitance description in 

Table 5–13

.

Updated 

“Timing Specifications”

 section.

Updated 

Table 5–45

.

Added 

Table 5–46

 with information on toggle rate 

derating factors.

Corrected calculation of the period based on a 
640 Mbps data rate as 1562.5 ps in 

Note (2)

 to 

Table 5–50

Updated 

“PLL Timing Specifications”

 section.

Updated V

CO

 range of 300–500 MHz in 

Note (3)

 to 

Table 5–54

.

Updated chapter with extended temperature 
information.

December 2005 
v2.2

Updated PLL Timing Specifications

November 2005 
v2.1

Updated technical content throughout.

July 2005
v2.0

Updated technical content throughout.

November 2004 
v1.1

Updated the 

“Differential I/O Standards”

 section.

Updated 

Table 5–54

.

June 2004
v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

5–76

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Document Revision History

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

6–1

February 2007

6. Reference & Ordering

Information

Software

Cyclone

®

II devices are supported by the Altera

®

 Quartus

®

II design 

software, which provides a comprehensive environment for 
system-on-a-programmable-chip (SOPC) design. The Quartus II software 
includes HDL and schematic design entry, compilation and logic 
synthesis, full simulation and advanced timing analysis, SignalTap

®

 II 

logic analyzer, and device configuration. See the 

Quartus II Handbook

 for 

more information on the Quartus II software features.

The free Quartus II Web Edition software, available at 

www.Altera.com

supports Microsoft Windows XP and Windows 2000. The full version of 
Quartus II software is available through the Altera subscription program. 
The full version of Quartus II software supports all Altera devices, is 
available for Windows XP, Windows 2000, Sun Solaris, and Red Hat 
Linux operating systems, and includes a free suite of popular IP 
MegaCore

®

 functions for DSP applications and interfacing to external 

memory devices. Quartus II software and Quartus II Web Edition 
software support seamless integration with your favorite third party 
EDA tools.

Device Pin-Outs

Device pin-outs for Cyclone II devices are available on the Altera web site 
(

www.altera.com

). For more information contact Altera Applications.

Ordering 
Information

Figure 6–1

 describes the ordering codes for Cyclone II devices. For more 

information on a specific package, contact Altera Applications.

CII51006-1.4

ac/package_outlines/cyc_c52006-html.html
background image

6–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

Figure 6–1. Cyclone II Device Packaging Ordering Information

Document 
Revision History

Table 6–1

 shows the revision history for this document.

Device Type

Packa

g

e Type

6, 7, or 

8

w

ith 6 

b

eing the fastest

Nu

m

b

er of pins for a partic

u

lar package

ES:

T:
Q:
F:
U:

Thin 

qu

ad flat pack (TQFP)

Plastic 

qu

ad flat pack (PQFP)

FineLine BGA
Ultra FineLine BGA

EP2C: Cyclone II

5

8

15
20
35
50
70

C: Commercial temperat

u

re (t

J

 = 0

°

 C to 

8

5

°

 C)

Ind

u

strial temperat

u

re (t

J

 = -40

°

 C to 100

°

 C)

Optional Suffix

Family Si

g

nature

Operatin

g

 Temperature

Speed Grade

Pin Count

Engineering sample

7

EP2C

70

C

324

F

ES

Indicates specific de

v

ice options or 

shipment method.

N

: Lead-free de

v

ices

I:

A

Fast-On

Indicates de

v

ices 

w

ith fast 

POR (Po

w

er on Reset) time.

Table 6–1. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v1.5

Added document revision history.

Updated 

Figure 6–1

.

Added Ultra FineLine BGA 
detail in UBGA Package 
information in 

Figure 6–1

.

November 2005 
v1.2

Updated software introduction.

November 2004 
v1.1

Updated 

Figure 6–1

.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

Section II–1

Preliminary

Section II. Clock

Management

This section provides information on the phase-locked loops (PLLs). 
Cyclone

®

II PLLs offer general-purpose clock management with 

multiplication and phase shifting and also have the ability to drive off 
chip to control system-level clock networks. This section contains 
detailed information on the features, the interconnections to the logic 
array and off chip, and the specifications for Cyclone II PLLs.

This section includes the following chapter:

Chapter 7, PLLs in Cyclone II Devices

Revision History 

Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Section II–2

 

Altera Corporation

Preliminary

Revision History

Cyclone II Device Handbook, Volume 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

7–1

February 2007

7. PLLs in Cyclone II Devices

Introduction

Cyclone

®

II devices have up to four phase-locked loops (PLLs) that 

provide robust clock management and synthesis for device clock 
management, external system clock management, and I/O interfaces. 
Cyclone II PLLs are versatile and can be used as a zero delay buffer, a 
jitter attenuator, a low skew fan out buffer, or a frequency synthesizer. 

Each Cyclone II device has up to four PLLs, supporting advanced 
capabilities such as clock switchover and programmable switchover. 
These PLLs offer clock multiplication and division, phase shifting, and 
programmable duty cycle and can be used to minimize clock delay and 
clock skew, and to reduce or adjust clock-to-out (t

CO

) and set-up (t

SU

times.

Cyclone II devices also support a power-down mode where unused clock 
networks can be turned off. The Altera

®

 Quartus

®

II software enables the 

PLLs and their features without requiring any external devices.

1

Cyclone II PLLs have been characterized to operate in the 
commercial junction temperature range (0° to 85° C), the 
industrial junction temperature range (-40° to 100° C) and the 
extended temperature range (-40° to 125° C).

Table 7–1

 shows the PLLs available in each Cyclone II device.

Table 7–1. Cyclone II Device PLL Availability

Device

PLL1 PLL2 PLL3 PLL4

EP2C5

v

v

EP2C8

v

v

EP2C15

v

v

v

v

EP2C20

v

v

v

v

EP2C35

v

v

v

v

EP2C50

v

v

v

v

EP2C70

v

v

v

v

CII51007-3.1

ac/package_outlines/cyc_c52006-html.html
background image

7–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II PLL Hardware Overview

Table 7–2

 provides an overview of the Cyclone II PLL features.

Cyclone II PLL 
Hardware 
Overview

Cyclone II devices contain up to four PLLs that are arranged in the four 
corners of the Cyclone II device as shown in 

Figure 7–1

, which shows a 

top-level diagram of the Cyclone II device and the PLL locations. 

Table 7–2. Cyclone II PLL Features

Feature

Description

Clock multiplication and division 

m

 / (

n

 × post-scale counter) 

(1)

Phase shift

Down to 125-ps increments 

(2)

(3)

Programmable duty cycle

v

Number of internal clock outputs

Up to three per PLL 

(4)

Number of external clock outputs

One per PLL 

(4)

Locked port can feed logic array

v

PLL clock outputs can feed logic array

v

Manual clock switchover

v

Gated lock

v

Notes to 

Table 7–2

:

(1)

m

 and post-scale counter values range from 1 to 32. 

n

 ranges from 1 to 4.

(2)

The smallest phase shift is determined by the voltage control oscillator (VCO) 
period divided by 8.

(3)

For degree increments, Cyclone II devices can shift output frequencies in 
increments of at least 45°. Smaller degree increments are possible depending on 
the VCO frequency.

(4)

The Cyclone II PLL has three output counters that drive the global clock network. 
One of these output counters (c2) can also drive a dedicated external I/O pin 
(single ended or differential). This counter output can also drive the external clock 
output (

PLL

<#>

_OUT

) and internal global clock network at the same time.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–3

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Figure 7–1. Cyclone II Device PLL Locations

Note (1)

Note to 

Figure 7–1

:

(1)

This figure shows the PLL and clock inputs in the EP2C15 through EP2C70 devices. The EP2C5 and EP2C8 devices 
only have eight global clocks (

CLK[0..3]

 and 

CLK[4..7]

) and PLLs 1 and 2.

The main purpose of a PLL is to synchronize the phase and frequency of 
the VCO to an input reference clock. There are a number of components 
that comprise a PLL to achieve this phase alignment.

The PLL compares the rising edge of the reference input clock to a 
feedback clock using a phase-frequency detector (PFD). The PFD 
produces an up or down signal that determines whether the VCO needs 
to operate at a higher or lower frequency. The PFD output is applied to 
the charge pump and loop filter, which produces a control voltage for 
setting the frequency of the VCO. If the PFD transitions the up signal 
high, then the VCO frequency increases. If the PFD transitions the down 
signal high, then the VCO frequency decreases. 

CLK[0..3]

CLK[8..11]

GCLK[0..3]

GCLK[4..7]

GCLK[12..15]

GCLK[8..11]

CLK[12..15]

CLK[4..7]

PLL

1

PLL

4

PLL

2

PLL

3

I/O Bank 3

I/O Bank 4

I/O Bank 8

I/O Bank 7

I/O Bank 6

I/O Bank 5

I/O Bank 1

I/O Bank 2

ac/package_outlines/cyc_c52006-html.html
background image

7–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II PLL Hardware Overview

The loop filter converts these up and down signals to a voltage that is 
used to bias the VCO. If the charge pump receives a logic high on the up 
signal, current is driven into the loop filter. If the charge pump receives a 
logic high on the down signal, current is drawn from the loop filter. The 
loop filter filters out glitches from the charge pump and prevents voltage 
over-shoot, which minimizes the jitter on the VCO.

The voltage from the charge pump determines how fast the VCO 
operates. The VCO is implemented as an four-stage differential ring 
oscillator. A divide counter, 

m

, is inserted in the feedback loop to increase 

the VCO frequency above the input reference frequency, making the VCO 
frequency f

VCO

 = 

m

 × f

REF

. Therefore, the feedback clock, f

FB

, applied to 

one input of the PFD, is locked to the input reference clock, f

REF

 (f

IN

/

n

), 

applied to the other input of the PFD.

The VCO output can feed up to three post-scale counters (c0, c1, and c2). 
These post-scale counters allow a number of harmonically related 
frequencies to be produced by the PLL.

Additionally, Cyclone II PLLs have internal delay elements to 
compensate for routing on the global clock networks and I/O buffers. 
These internal delays are fixed and not accessible to the user. 

Figure 7–2

 shows a simplified block diagram of the major components of 

a Cyclone II device PLL. 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–5

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Figure 7–2. Cyclone II PLL Block Diagram

Notes to 

Figure 7–2

:

(1)

This input can be single-ended or differential. If you are using a differential I/O standard, then the design uses two 
clock pins. LVDS input is supported via the secondary function of the dedicated clock pins. For example, the 

CLK0

 

pin’s secondary function is 

LVDSCLK1p

 and the 

CLK1

 pin’s secondary function is 

LVDSCLK1n

Figure 7–2

 shows 

the possible clock input connections to PLL 1.

(2)

This counter output is shared between a dedicated external clock output (

PLL

<

#

>

_OUT

) and the global clock 

network.

(3)

If the VCO post scale counter = 2, a 300- to 500-MHz internal VCO frequency is available.

The Cyclone II PLL supports up to three global clock outputs and one 
dedicated external clock output. The output frequency to the global clock 
network or dedicated external clock output is determined by using the 
following equation:

f

IN

 is the clock input to the PLL and C is the setting on the c0, c1, or c2 

counter.

The VCO frequency is determined in all cases by using the following 
equation:

PFD

Loop
Filter

Lock Detect

& Filter

VCO

Charge

Pump

÷c0

÷c1

÷c2

÷

m

÷

n

Global
Clock

Global
Clock

Global
Clock

To I/O or
general routing

PLL<

#

>_OUT

Post-Scale

Counters

VCO Phase Selection

Selectable at Each 

PLL Output Port

CLK1

CLK3

CLK2 

(1)

CLK0 

(1)

inclk0

inclk1

up

down

8

8

8

f

VCO

f

FB

f

IN

Reference

Input Clock

f

REF

 = f

IN 

/

n

(2)

Manual Clock

Switchover

Select Signal

÷k

(3)

f

global/external

 = f

IN

m

×

 C

f

VCO

 = f

IN

m

n

ac/package_outlines/cyc_c52006-html.html
background image

7–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II PLL Hardware Overview

The VCO frequency is a critical parameter that must be between 300 and 
1,000 MHz to ensure proper operation of the PLL. The Quartus II 
software automatically sets the VCO frequency within the recommended 
range based on the clock output and phase-shift requirements in your 
design.

PLL Reference Clock Generation

In Cyclone II devices, up to four clock pins can drive the PLL, as shown 
in 

Figure 7–11 on page 7–26

. The multiplexer output feeds the PLL 

reference clock input. The PLL has internal delay elements that 
compensate for the clock delay from the input pin to the clock input port 
of the PLL.

Table 7–3

 shows the clock input pin connections to the PLLs in the 

Cyclone II device.

Each PLL can be fed by one of four single-ended or two differential clock 
input pins. For example, PLL 1 can be fed by 

CLK[3..0]

 when using a 

single-ended I/O standard. When your design uses a differential I/O 
standard, these same clock pins have a secondary function as 

LVDSCLK[2..1]p

 and 

LVDSCLK[2..1]n

 pins. When using differential 

clocks, the 

CLK0

 pin’s secondary function is 

LVDSCLK1p

, the 

CLK1

 pin’s 

secondary function is 

LVDSCLK1n

, etc.

Table 7–3. PLL Clock Input Pin Connections

Device

PLL 1

PLL 2

PLL 3

PLL 4

CLK0
CLK1

CLK2
CLK3

CLK4
CLK5

CLK6
CLK7

CLK8
CLK9

CLK10
CLK11

CLK12
CLK13

CLK14
CLK15

EP2C5

v

v

v

v

EP2C8

v

v

v

v

EP2C15

v

v

v

v

v

v

v

v

EP2C20

v

v

v

v

v

v

v

v

EP2C35

v

v

v

v

v

v

v

v

EP2C50

v

v

v

v

v

v

v

v

EP2C70

v

v

v

v

v

v

v

v

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–7

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Software 
Overview

You can use the 

altpll

 megafunction in the Quartus II software to 

enable Cyclone II PLLs. 

Figure 7–3

 shows the available ports in 

Cyclone II PLLs and their sources and destinations. The c0 and c1 
counters feed the internal global clock networks and the c2 counter can 
feed the global clock network and a dedicated external clock output pin 
(

PLL

<

#

>

_OUT

) at the same time. 

Figure 7–3. Cyclone II PLL Signals 

Notes to 

Figure 7–3

:

(1)

These signals can be assigned to either a single-ended or differential I/O standard.

(2)

The 

inclk

 must be driven by one of two dedicated clock input pins.

(3)

This counter output can drive both a dedicated external clock output 
(

PLL

<

#

>

_OUT

) and the global clock network.

inclk[1..0] 

(2)  

pllena 

areset 

pfdena 

clkswitch

locked 

c[1..0] 

 (3)

 c2 

Internal clock signal 

Physical pins and internal clock signal

Signal driven by internal logic 

Physical Pins 

Signal driven to internal logic 

(1) 

ac/package_outlines/cyc_c52006-html.html
background image

7–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Software Overview

Tables 7–4

 and 

7–5

 describe the Cyclone II PLL input and output ports. 

Table 7–4. PLL Input Signals

Port

Description

Source

Destination

inclk[1..0]

Primary and secondary clock inputs to the PLL.

Dedicated clock 
input pins 

n

 counter

pllena pllena

 is an active high signal that acts as an 

enable and reset signal for the PLL. It can be used 
for enabling or disabling each PLL. When 

pllena

 transitions low, the PLL clock output 

ports are driven to GND and the PLL loses lock. 
Once 

pllena

 transitions high again, the lock 

process begins and the PLL re-synchronizes to its 
input reference clock. The 

pllena

 port can be 

driven by an LE output or any general-purpose I/O 
pin.

Logic array or 
input pin 

PLL control signal

areset

areset

 is an active high signal that resets all PLL 

counters to their initial values. When this signal is 
driven high the PLL resets its counters, clears the 
PLL outputs and loses lock. Once this signal is 
driven low again, the lock process begins and the 
PLL re-synchronizes to its input reference clock. 
The 

areset

 port can be driven by an LE output 

or any general-purpose I/O pin.

Logic array or 
input pin

PLL control signal

pfdena

pfdena

 is an active high signal that enables or 

disables the up/down output signals from the 
PFD. When 

pfdena

 is driven low, the PFD is 

disabled, while the VCO continues to operate. The 
PLL clock outputs continue to toggle regardless of 
the input clock, but may experience some long-
term drift. Because the output clock frequency 
does not change for some time, you can use the 

pfdena

 port as a shutdown or cleanup function 

when a reliable input clock is no longer available. 
The 

pfdena

 port can be driven by an LE output 

or any general-purpose I/O pin.

Logic array or 
input pin 

PFD

clkswitch

clkswitch

 is an active high switchover signal 

used to initiate manual clock switchover.

Logic array or 
input pin 

PLL control signal

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–9

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Table 7–6

 shows a list of I/O standards supported in Cyclone II device 

PLLs.

Table 7–5. PLL Output signals

Port

Description

Source

Destination

c[2..0]

PLL clock outputs driving the internal global clock 
network or external clock output pin 
(

PLL

<

#

>

_OUT

)

PLL post-scale 
counter

Global clock 
network or 
external I/O pin 

Locked

Gives the status of the PLL lock. When the PLL is 
locked, this port drives V

C C

. When the PLL is out 

of lock, this port drives GND. The locked port may 
pulse high and low during the PLL lock process.

PLL lock detect 
circuit

Logic array or 
output pin

Table 7–6. I/O Standards Supported for Cyclone II PLLs (Part 1 of 2)

I/O Standard

Input

Output

inclk

lock

pll_out

LVTTL (3.3, 2.5, and 1.8 V)

v

v

v

LVCMOS (3.3, 2.5, 1.8, and 
1.5 V)

v

v

v

3.3-V PCI

v

v

v

3.3-V PCI-X 

(1)

v

v

v

LVPECL

v

LVDS

v

v

v

1.5 and 1.8 V differential 
HSTL class I and class II 

v

v

 

(2)

1.8 and 2.5 V differential 
SSTL class I and class II 

v

v

 

(2)

1.5-V HSTL class I 

v

v

v

1.5-V HSTL class II 

(3)

v

v

v

1.8-V HSTL class I 

v

v

v

1.8-V HSTL class II 

(3)

v

v

v

SSTL-18 class I

v

v

v

SSTL-18 class II 

(3)

v

v

v

SSTL-25 class I

v

v

v

ac/package_outlines/cyc_c52006-html.html
background image

7–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Clock Feedback Modes

Clock Feedback 
Modes

Cyclone II PLLs support four clock feedback modes: normal mode, zero 
delay buffer mode, no compensation mode, and source synchronous 
mode. Cyclone II PLLs do not have support for external feedback mode. 
All the supported clock feedback modes allow for multiplication and 
division, phase shifting, and programmable duty cycle. The phase 
relationships shown in the waveforms in 

Figures 7–4

 through 

7–6

 are for 

the default (zero degree) phase shift setting. Changing the phase-shift 
setting changes the relationships between the output clocks from the PLL. 

Normal Mode

In normal mode, the PLL phase-aligns the input reference clock with the 
clock signal at the ports of the registers in the logic array I/O registers to 
compensate for the internal global clock network delay. Use the 

altpll

 

megafunction in the Quartus II software to define which internal clock 
output from the PLL (c0, c1, or c2) to compensate for.

If an external clock output pin (

PLL

<

#

>

_OUT

) is used in this mode, there 

is a phase shift with respect to the clock input pin. Similarly, if the internal 
PLL clock outputs are used to drive general-purpose I/O pins, there is be 
phase shift with respect to the clock input pin. 

Figure 7–4

 shows an example waveform of the PLL clocks’ phase 

relationship in this mode. 

SSTL-25 class II

v

v

v

RSDS/mini-LVDS 

(4)

v

v

Notes to 

Table 7–6

:

(1)

The PCI-X I/O standard is supported only on side I/O pins.

(2)

Differential SSTL and HSTL outputs are only supported on the 

PLL

<

#

>

_OUT

 pins.

(3)

These I/O standards are only supported on top and bottom I/O pins.

(4)

The RSDS and mini-LVDS pins are only supported on output pins.

Table 7–6. I/O Standards Supported for Cyclone II PLLs (Part 2 of 2)

I/O Standard

Input

Output

inclk

lock

pll_out

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–11

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Figure 7–4. Phase Relationship between Cyclone II PLL Clocks in Normal 
Mode

Note to 

Figure 7–4

:

(1)

The external clock output can lead or lag the PLL clock signals.

Zero Delay Buffer Mode

In zero delay buffer mode, the clock signal on the PLL external clock 
output pin (

PLL

<

#

>

_OUT

), fed by the c2 counter, is phase-aligned with 

the PLL input clock pin for zero delay. If the 

c[1..0]

 ports drive internal 

clock ports, there is a phase shift with respect to the input clock pin. 

Figure 7–5

 shows an example waveform of the PLL clocks’ phase 

relationship in this mode.

PLL inclk

PLL clock at the
register clock port

External PLL clock outputs 

(1)

Phase Aligned

ac/package_outlines/cyc_c52006-html.html
background image

7–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Clock Feedback Modes

Figure 7–5. Phase Relationship between Cyclone II PLL Clocks in Zero Delay 
Buffer Mode

Note to 

Figure 7–5

:

(1)

The internal clock output(s) can lead or lag the external PLL clock output 
(

PLL

<

#

>

_OUT

) signals.

1

Altera recommends using the same I/O standard on the input 
and output clocks when using the Cyclone II PLL in zero delay 
buffer mode. 

No Compensation Mode

In no compensation mode, the PLL does not compensate for any clock 
networks, which leads to better jitter performance. Because the clock 
feedback into the PFD does not pass through as much circuitry, both the 
PLL internal clock outputs and external clock outputs are phase shifted 
with respect to the PLL clock input. 

Figure 7–6

 shows an example 

waveform of the PLL clocks’ phase relationship in this mode.

PLL Reference 

Clock at the Inp

u

t Pin

PLL clock at the

register clock port 

(1)

External PLL clock

o

u

tp

u

ts at the O

u

tp

u

t Pin

Phase Aligned

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–13

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Figure 7–6. Phase Relationship between Cyclone II PLL Clocks in No 
Compensation Mode

Notes to 

Figure 7–6

:

(1)

Internal clocks fed by the PLL are in phase with each other. 

(2)

The external clock outputs can lead or lag the PLL internal clocks.

Source-Synchronous Mode

If data and clock arrive at the same time at the input pins, they are 
guaranteed to keep the same phase relationship at the clock and data 
ports of any IOE input register. 

Figure 7–7

 shows an example waveform 

of the clock and data in this mode. This mode is recommended for 
source-synchronous data transfer. Data and clock signals at the IOE 
experience similar buffer delays as long as the same I/O standard is used.

PLL inclk

PLL clock at the

register clock port 

(1)

External PLL clock outputs  

(2)

Phase Aligned

ac/package_outlines/cyc_c52006-html.html
background image

7–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Hardware Features

Figure 7–7. Phase Relationship between Cyclone II PLL Clocks in 
Source-Synchronous Compensation Mode

1

Set the input pin to the register delay chain within the IOE to 
zero in the Quartus II software for all data pins clocked by a 
source-synchronous mode PLL.

Hardware 
Features

Cyclone II device PLLs support a number of features for general-purpose 
clock management. This section discusses clock multiplication and 
division implementation, phase-shifting implementation and PLL lock 
circuits.

Clock Multiplication & Division

Cyclone II device PLLs provide clock synthesis for PLL output ports 
using 

m

/(

n

 × post-scale) scaling factors. Every PLL has one pre-scale 

divider, 

n

, with a range of 1 to 4 and one multiply counter, 

m

, with a range 

of 1 to 32. The input clock, f

IN

, is divided by a pre-scale counter, 

n

, to 

produce the input reference clock, f

REF

, to the PFD. This input reference 

clock, f

REF

, is then multiplied by the 

m

 feedback factor. The control loop 

drives the VCO frequency to match f

IN

 × (

m

/

n

). The equations for these 

frequencies are:

Data pin

inclk

Data at register

Clock at register

f

REF

 = 

f

IN

n

f

VCO

 = f

REF 

×

 m = f

IN 

n

m

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–15

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Each output port has a unique post-scale counter to divide down the 
high-frequency VCO. There are three post-scale counters (c0, c1, and c2), 
which range from 1 to 32. The following equations show the frequencies 
for the three post-scale counters:

All three output counters can drive the global clock network. The c2 
output counter can also drive a dedicated external I/O pin (single ended 
or differential). This counter output can drive a dedicated external clock 
output pin (

PLL

<

#

>

_OUT

) and the global clock network at the same time.

For multiple PLL outputs with different frequencies, the VCO is set to the 
least common multiple of the output frequencies that meets the VCO 
frequency specifications. Then, the post-scale counters scale down the 
VCO frequency for each PLL clock output port. For example, if clock 
output frequencies required from one PLL are 33 and 66 MHz, the VCO 
is set to 330 MHz (the least common multiple in the VCO’s range). 

Programmable Duty Cycle

The programmable duty cycle feature allows you to set the PLL clock 
output duty cycles. The duty cycle is the ratio of the clock output high and 
low time to the total clock cycle time, expressed as a percentage of high 
time. This feature is supported on all three PLL post-scale counters, c0, c1, 
and c2, and when using all clock feedback modes. 

The duty cycle is set by using a low- and high-time count setting for the 
post-scale counters. The Quartus II software uses the input frequency and 
target multiply/divide ratio to select the post-scale counter. The 
granularity of the duty cycle is determined by the post-scale counter 
value chosen on a PLL clock output and is defined as 50% ÷ post-scale 
counter value. For example, if the post-scale counter value is 3, then the 
allowable duty cycle precision would be 50% ÷ 3 = 16.67%. Because the 

altpll

 megafunction does not accept non-integer values for the duty 

cycle values, the allowable duty cycles are 17% 33% 50% and 67%. For 
example, if the c0 counter is 10, then steps of 5% are possible for duty 
cycle choices between 5 to 90%.

f

C0

 = 

 = f

IN

×

 C0

m

f

VCO

C0

f

C1

 = 

 = f

IN

×

 C1

m

f

VCO

C1

f

C2

 = 

 = f

IN

×

 C2

m

f

VCO

C2

ac/package_outlines/cyc_c52006-html.html
background image

7–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Hardware Features

Phase-Shifting Implementation

Cyclone II devices use fine or coarse phase shifts for clock delays because 
they are more efficient than delay elements and are independent of 
process, voltage, and temperature.

Phase shift is implemented by using a combination of the VCO phase 
output and the counter starting time. The VCO phase taps and counter 
starting time are independent of process, voltage, and temperature. The 
VCO phase taps allow you to phase shift the Cyclone II PLL output clocks 
with fine resolution. The counter starting time allows you to phase shift 
the Cyclone II PLL output clocks with coarse resolution.

Fine-resolution phase shifting is implemented using any of the eight VCO 
phases for the output counters (

c[2..0]

) or the feedback counter (

m

reference clock. This provides the finest resolution for phase shift. The 
minimum delay time that may be inserted using this method is defined 
by the equation:

f

IN

 is input reference clock frequency.

For example, if f

IN

 is 100 MHz, 

n

 is 1 and 

m

 is 8, then f

VCO

 is 800 MHz and 

Δ

t is 156.25 ps. This delay time is defined by the PLL operating frequency 

which is governed by the reference clock and the counter settings. 

The second way to implement phase shifts is by delaying the start of the 

m

 and post-scale counters for a predetermined number of counter clocks. 

This delay time may be expressed as:

where S is the value set for the counter starting time. The counter starting 
time is called the 

Initial

 setting in the PLL Usage section of the 

compilation report in the Quartus II software.

Figure 7–8

 shows an example of delay insertion using these two methods. 

The eight phases from the VCO are shown and labeled for reference. For 
this example, 

OUTCLK0

 is based off the 0° phase from the VCO and has 

the S value for the counter set to 1. It is divided by 4 (two VCO clocks for 
high time and two VCO clocks for low time). 

OUTCLK1

 is based off the 

135° phase tap from the VCO and also has the S value for the counter set 
to 1. It is also divided by 4. In this case, the two clocks are offset by three 

Δ

t

FINE

 

=

t

VCO

 =

1

8

 =

1

×

 f

VCO

n

×

 

×

 f

IN

Δ

t

COARSE

 

=

 

=

 1

f

VCO

(S 

 1) 

×

 

n

×

 f

IN

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–17

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Δ

t

FINE

 periods. 

OUTCLK2

 is based off the 0° phase from the VCO but has 

the S value for the counter set to 3. This creates a delay of two 

Δ

t

COARSE

 

periods. 

Figure 7–8. Cyclone II PLL Phase Shifting using VCO Phase Output & Counter Delay Time

Control Signals

The four control signals in Cyclone II PLLs (

pllena

areset

pfdena

and 

locked

) control PLL operation.

pllena

The PLL enable signal, 

pllena

, enables and disables the PLL. You can 

either enable/disable a single PLL (by connecting 

pllena

 port 

independently) or multiple PLLs (by connecting 

pllena

 ports together). 

The 

pllena

 signal is an active-high signal. When 

pllena

 is low, the PLL 

clock output ports are driven by GND and the PLL loses lock. All PLL 
counters, including gated lock counter return to default state. When 

pllena

 transitions high, the PLL relocks and resynchronizes to the input 

clock. In Cyclone II devices, the 

pllena

 port can be fed by an LE output 

or any general-purpose I/O pin. There is no dedicated 

pllena

 pin. This 

increases flexibility since each PLL can have its own 

pllena

 control 

circuitry or all PLLs can share the same 

pllena

 circuitry. The 

pllena

 

signal is optional. When it is not enabled in the Quartus II software, the 
port is internally tied to V

CC

t

d0-1

t

d0-2

1/8 t

VCO

t

VCO

90˚

135˚

180˚

225˚

270˚

315˚ 

OUTCLK0

OUTCLK1

OUTCLK2

45˚

ac/package_outlines/cyc_c52006-html.html
background image

7–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Hardware Features

areset

The PLL 

areset

 signal is the reset and resynchronization input for each 

PLL. The 

areset

 signal should be asserted every time the PLL loses lock 

to guarantee correct phase relationship between the PLL input and 
output clocks. You should include the 

areset

 signal in designs if any of 

the following conditions are true:

Manual clock switchover is enabled in the design

Phase relationships between input and output clocks need to be 
maintained after a loss of lock condition

If the input clock to the PLL is not toggling or is unstable upon 
powerup, assert the 

areset

 signal after the input clock is toggling, 

staying within the input jitter specification

1

Altera recommends using the 

areset

 and 

locked

 signals in 

your designs to control and observe the status of your PLL.

The 

areset

 signal is an active high signal and, when driven high, the 

PLL counters reset, clearing the PLL output and causing the PLL to lose 
lock. The VCO is also set back to its nominal frequency. The clock outputs 
from the PLL are driven to ground as long as 

areset

 is active. When 

areset

 transitions low, the PLL resynchronizes to its input clock as the 

PLL relocks. If the target VCO frequency is below this nominal frequency, 
then the PLL clock output frequency starts at a higher value than desired 
during the lock process. In this case, Altera recommends monitoring the 
gated 

locked

 signal to ensure the PLL is fully in lock before enabling the 

clock outputs from the PLL. The Cyclone II device can drive this PLL 
input signal from LEs or any general-purpose I/O pin. The 

areset

 

signal is optional. When it is not enabled in the Quartus II software, the 
port is internally tied to GND. 

pfdena

The 

pfdena

 signal is an active high signal that controls the PFD output 

in the PLL with a programmable gate. If you disable the PFD by 
transitioning 

pfdena

 low, the VCO operates at its last set control voltage 

and frequency value with some long-term drift to a lower frequency. Even 
though the PLL clock outputs continue to toggle regardless of the input 
clock, the PLL could lose lock. The system continues running when the 
PLL goes out of lock or if the input clock is disabled. By maintaining the 
current frequency, the system has time to store its current settings before 
shutting down. If the 

pfdena

 signal transitions high, the PLL relocks and 

resynchronizes to the input clock. The 

pfdena

 input signal can be driven 

by any general-purpose I/O pin or from LEs. This signal is optional. 
When it is not enabled in the Quartus II software, the port is internally 
tied to V

CC

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–19

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

locked

When the 

locked

 port output is a logic high level, this indicates a stable 

PLL clock output in phase with the PLL reference input clock. The 

locked

 port may toggle as the PLL begins tracking the reference clock. 

The 

locked

 port of the PLL can feed any general-purpose I/O pin or LEs. 

The 

locked

 signal is optional, but is useful in monitoring the PLL lock 

process. 

The 

locked

 output indicates that the PLL has locked onto the reference 

clock. You may need to gate the locked signal for use as a system-control 
signal. Either a gated 

locked

 signal or an ungated 

locked

 signal from 

the 

locked

 port can drive the logic array or an output pin. Cyclone II 

PLLs include a programmable counter that holds the 

locked

 signal low 

for a user-selected number of input clock transitions. This allows the PLL 
to lock before transitioning the 

locked

 signal high. You can use the 

Quartus II software to set the 20-bit counter value. The device resets and 
enables both the counter and the PLL simultaneously upon power-up 
and/or the assertion of the 

pllenable

 signal. To ensure correct lock 

circuit operation, and to ensure that the output clocks have the correct 
phase relationship with respect to the input clock, Altera recommends 
that the input clock be running before the Cyclone II device is configured.

Figure 7–9

 shows the timing waveform for LOCKED and gated LOCKED 

signals. 

Figure 7–9. Timing Waveform for LOCKED & Gated LOCKED Signals

Filter Counter

Reaches

Value Count

PLLENA

Reference Clock

Feedback Clock

Locked

Gated Lock

ac/package_outlines/cyc_c52006-html.html
background image

7–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Hardware Features

Manual Clock Switchover

The Cyclone II PLLs support manual switchover of the reference clock 
through internal logic. This enables you to switch between two reference 
input clocks. Use this feature for a dual clock domain application such as 
in a system that turns on the redundant clock if the primary clock stops 
running.

Figure 7–10

 shows how the PLL input clock (f

IN

) is generated from one of 

four possible clock sources. The first stage multiplexing consists of two 
dedicated multiplexers that generate two single-ended or two differential 
clocks from four dedicated clock pins. These clock signals are then 
multiplexed to generate f

IN

 by using another dedicated 2-to-1 

multiplexer. The first stage multiplexers are controlled by configuration 
bit settings in the configuration file generated by the Quartus II software, 
while the second stage multiplexer is either controlled by the 
configuration bit settings or logic array signal to allow the f

IN

 to be 

controlled dynamically. This allows the implementation of a manual 
clock switchover circuit where the PLL reference clock can be switched 
during user mode for applications that requires clock redundancy.

Figure 7–10. Cyclone II PLL Input Clock Generation

Notes to 

Figure 7–10

:

(1)

This select line is set through the configuration file.

(2)

This select line can either be set through the configuration file or it can be 
dynamically set in user mode when using the manual switchover feature.

f

IN

inclk1

inclk0

CLK[

n + 3]

CLK[

n + 2]

CLK[

n + 1]

CLK[

n]

(1)

(1)

(2)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–21

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

PLL 
Specifications

See the 

DC & Switching Characteristics

 chapter in Volume 1 of the 

Cyclone II Device Handbook

 for information on PLL timing specifications.

Clocking

Cyclone II devices provide up to 16 dedicated clock pins (

CLK[15..0]

that can drive the global clock networks. The smaller Cyclone II devices 
(EP2C5 and EP2C8 devices) support four dedicated clock pins on each 
side (left and right) capable of driving a total of eight global clock 
networks, while the larger devices (EP2C15 devices and larger) support 
four clock pins on all four sides of the device. These clock pins can drive 
a total of 16 global clock networks. 

Table 7–7

 shows the number of global clocks available across the 

Cyclone II family members.

Global Clock Network

Global clocks drive throughout the entire device, feeding all device 
quadrants. All resources within the device (IOEs, logic array blocks 
(LABs), dedicated multiplier blocks, and M4K memory blocks) can use 
the global clock networks as clock sources. These clock network resources 
can also be used for control signals, such as clock enables and 
synchronous or asynchronous clears fed by an external pin. Internal logic 
can also drive the global clock networks for internally generated global 
clocks and asynchronous clears, clock enables, or other control signals 
with high fan-out.

Table 7–7. Number of Global Clocks Available in Cyclone II Devices

Device

Number of Global Clocks

EP2C5

8

EP2C8

8

EP2C15

16

EP2C20

16

EP2C35

16

EP2C50

16

EP2C70

16

ac/package_outlines/cyc_c52006-html.html
background image

7–22

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Clocking

Table 7–8

 shows the clock sources connectivity to the global clock 

networks.

Table 7–8. Global Clock Network Connections (Part 1 of 3)

Global Clock 

Network Clock 

Sources

Global Clock Networks

All Cyclone II Devices

EP2C15 through EP2C70 Devices Only

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CLK0

/

LVDSCLK0p

v

v

CLK1

/

LVDSCLK0n

v v

CLK2

/

LVDSCLK1p

v

v

CLK3

/

LVDSCLK1n

v

v

CLK4

/

LVDSCLK2p

v

v

CLK5

/

LVDSCLK2n

v v

CLK6

/

LVDSCLK3p

v

v

CLK7

/

LVDSCLK3n

v

v

CLK8

/

LVDSCLK4n

v

v

CLK9

/

LVDSCLK4p

v v

CLK10

/

LVDSCLK5n

v

v

CLK11

/

LVDSCLK5p

v

v

CLK12

/

LVDSCLK6n

v

v

CLK13

/

LVDSCLK6p

v v

CLK14

/

LVDSCLK7n

v

v

CLK15

/

LVDSCLK7p

v

v

PLL1_c0

v v

v

PLL1_c1

v

v v

PLL1_c2

v v

PLL2_c0

v v

v

PLL2_c1

v

v v

PLL2_c2

v v

PLL3_c0

v v

v

PLL3_c1

v

v v

PLL3_c2

v v

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–23

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

PLL4_c0

v v

v

PLL4_c1

v

v v

PLL4_c2

v v

DPCLK0

 

(1)

v

DPCLK1

 

(1)

v

DPCLK10

 

(1)

(2)

CDPCLK0

 or 

CDPCLK7

 

(3)

v

DPCLK2

 

(1)

(2)

CDPCLK1

 or 

CDPCLK2

 

(3)

v

DPCLK7

 

(1)

v

DPCLK6

 

(1)

v

DPCLK8

 

(1)

(2)

CDPCLK5

 or 

CDPCLK6

 

(3)

v

DPCLK4

 

(1)

(2)

CDPCLK4

 or 

CDPCLK3

 

(3)

v

DPCLK8

 

(1)

v

DPCLK11

 

(1)

v

DPCLK9

 

(1)

v

DPCLK10

 

(1)

v

DPCLK5

 

(1)

v

DPCLK2

 

(1)

v

DPCLK4

 

(1)

v

Table 7–8. Global Clock Network Connections (Part 2 of 3)

Global Clock 

Network Clock 

Sources

Global Clock Networks

All Cyclone II Devices

EP2C15 through EP2C70 Devices Only

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ac/package_outlines/cyc_c52006-html.html
background image

7–24

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Clocking

If the dedicated clock pins are not used to feed the global clock networks, 
they can be used as general-purpose input pins to feed the logic array 
using the MultiTrack interconnect. However, if they are used as 
general-purpose input pins, they do not have support for an I/O register 
and must use LE-based registers in place of an I/O register.

Clock Control Block

Every global clock network is driven by a clock control block residing 
either on the top, bottom, left, or right side of the Cyclone II device. The 
global clock network has been optimized for minimum clock skew and 
delay. 

Table 7–9

 lists the sources that can feed the clock control block, which in 

turn feeds the global clock networks.

DPCLK3

 

(1)

v

Notes to 

Table 7–8

:

(1)

See the 

Cyclone II Architecture

 chapter in Volume 1 of the 

Cyclone II Device Handbook

 for more information on 

DPCLK

 

pins.

(2)

This pin only applies to EP2C5 and EP2C8 devices.

(3)

These pins only apply to EP2C15 devices and larger. Only one of the two 

CDPCLK

 pins can feed the clock control 

block. The other pin can be used as a regular I/O pin.

Table 7–8. Global Clock Network Connections (Part 3 of 3)

Global Clock 

Network Clock 

Sources

Global Clock Networks

All Cyclone II Devices

EP2C15 through EP2C70 Devices Only

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Table 7–9. Clock Control Block Inputs (Part 1 of 2)

Input

Description

Dedicated clock inputs

Dedicated clock input pins can drive clocks or 
global signals, such as asynchronous clears, 
presets, or clock enables onto a given global 
clock network.

Dual-purpose clock (

DPCLK

 and 

CDPCLK

) I/O inputs

DPCLK

 and 

CDPCLK

 I/O pins are bidirectional 

dual function pins that can be used for high fan-
out control signals, such as protocol signals, 
TRDY and IRDY signals for PCI, or DQS for 
DDR, via the global clock network.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–25

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

In Cyclone II devices, the dedicated clock input pins, PLL counter 
outputs, dual-purpose clock I/O inputs, and internal logic can all feed the 
clock control block for each global clock network. The output from the 
clock control block in turn feeds the corresponding global clock network. 
The clock control blocks are arranged on the device periphery and there 
are a maximum of 16 clock control blocks available per Cyclone II device.

The control block has two functions:

Dynamic global clock network clock source selection 

Global clock network power-down (dynamic enable and disable)

Figure 7–11

 shows the clock control block.

PLL outputs

The PLL counter outputs can drive the global 
clock network.

Internal logic

The global clock network can also be driven 
through the logic array routing to enable 
internal logic (LEs) to drive a high fan-out, low 
skew signal path.

Table 7–9. Clock Control Block Inputs (Part 2 of 2)

Input

Description

ac/package_outlines/cyc_c52006-html.html
background image

7–26

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Clocking

Figure 7–11. Clock Control Block

Notes to 

Figure 7–11

:

(1)

The 

CLKSWITCH

 signal can either be set through the configuration file or dynamically set when using the manual 

PLL switchover feature. The output of the multiplexer is the input reference clock (f

IN

) for the PLL. 

(2)

The 

CLKSELECT[1..0]

 signals are fed by internal logic and can be used to dynamically select the clock source for 

the global clock network when the device is in user mode.

(3)

The static clock select signals are set in the configuration file and cannot be dynamically controlled when the device 
is in user mode.

(4)

Internal logic can be used to enable or disable the global clock network in user mode.

Each PLL generates three clock outputs through the 

c[1..0]

 and c2 

counters. Two of these clocks can drive the global clock network through 
the clock control block.

Global Clock Network Clock Source Generation

There are a total of 8 clock control blocks on the smaller Cyclone II devices 
(EP2C5 and EP2C8 devices) and a total of 16 clock control blocks on the 
larger Cyclone II devices (EP2C15 devices and larger). 

Figure 7–12

 shows 

the Cyclone II clock inputs and the clock control blocks placement.

CLKSWITCH 

(1)

Static Clock Select 

(3)

Static Clock

Select 

(3)

Internal Logic

Clock Control Block

DPCLK or

CDPCLK

CLKSELECT[1..0] 

(2)

CLKENA 

(4)

inclk1
inclk0

CLK[

n

 + 3]

CLK[

n

 + 2]

CLK[

n

 + 1]

CLK[

n

]

f

IN

C0
C1
C2

PLL

Global
Clock

Enable/
Disable

(3)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–27

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Figure 7–12. Cyclone II Clock Control Blocks Placement

The inputs to the four clock control blocks on each side are chosen from 
among the following clock sources:

Four clock input pins

Three PLL counter outputs

Two 

DPCLK

 pins and two 

CDPCLK

 pins from both the left and right 

sides and four 

DPCLK

 pins and two 

CDPCLK

 pins from both the top 

and bottom

Four signals from internal logic

CLK[0..3]

CLK[8..11]

GCLK[0..3]

GCLK[4..7]

GCLK[12..15]

GCLK[8..11]

CLK[12..15]

CLK[4..7]

Output from PLL

Output from PLL

Input to PLL

Output from PLL

Output from PLL

Clock Control

Block

Clock Control

Block

Clock Control

Block

Clock Control
Block

PLL

1

PLL

4

PLL

2

PLL

3

4

3

4

3

4

3

4

3

ac/package_outlines/cyc_c52006-html.html
background image

7–28

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Clocking

From the clock sources listed above, only two clock input pins, two PLL 
clock outputs, one 

DPCLK

 or 

CDPCLK

 pin, and one source from internal 

logic can drive into any given clock control blocks, as shown in 

Figure 7–11

. Out of these six inputs to any clock control block, the two 

clock input pins and two PLL outputs can be dynamic selected to feed a 
global clock network. The clock control block supports static selection of 
the 

DPCLK

 or 

CDPCLK

 pin and the signal from internal logic.

Figure 7–13

 shows the simplified version of the four clock control blocks 

on each side of the Cyclone II device periphery. The Cyclone II devices 
support up to 16 of these clock control blocks and this allows for up to a 
maximum of 16 global clocks in Cyclone II devices.

Figure 7–13. Clock Control Blocks on Each Side of the Cyclone II Device

Note to 

Figure 7–13

:

(1)

The left and right sides of the device have two 

DPCLK

 pins, and the top and bottom 

of the device have four 

DPCLK

 pins.

Global Clock Network Power Down

The Cyclone II global clock network can be disabled (powered down) by 
both static and dynamic approaches. When a clock network is powered 
down, all the logic fed by the clock network is in an off-state, thereby 
reducing the overall power consumption of the device.

The global clock networks that are not used are automatically powered 
down through configuration bit settings in the configuration file 
generated by the Quartus II software.

The dynamic clock enable or disable feature allows internal logic to 
synchronously control power up or down on the global clock networks in 
the Cyclone II device. This function is independent of the PLL and is 
applied directly on the clock network, as shown in 

Figure 7–11

. The input 

4

GCLK

Clock Input Pins

4

DPCLK

Internal Logic

Clock

Control

Block

3

PLL Outputs

4

2 or 4 

(1)

CDPCLK

2

Four Clock Control

Blocks on Each Side

of the Device

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–29

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

clock sources and the 

clkena

 signals for the global clock network 

multiplexers can be set through the Quartus II software using the 

altclkctrl

 megafunction.

clkena signals

In Cyclone II devices, the 

clkena

 signals are supported at the clock 

network level. 

Figure 7–14

 shows how the 

clkena

 is implemented. This 

allows you to gate off the clock even when a PLL is not being used. Upon 
re-enabling the output clock, the PLL does not need a resynchronization 
or relock period because the clock is gated off at the clock network level. 
Also, the PLL can remain locked independent of the 

clkena

 signals since 

the loop-related counters are not affected. 

Figure 7–14. clkena Implementation

Figure 7–15

 shows the waveform example for a clock output enable. 

clkena

 is synchronous to the falling edge of the clock (

clkin

).

This feature is useful for applications that require a low power or sleep 
mode. The exact amount of power saved when using this feature is 
pending device characterization.

D

Q

clkena

clkena_out

clk_out

clkin

ac/package_outlines/cyc_c52006-html.html
background image

7–30

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Board Layout

Figure 7–15. clkena Implementation

The 

clkena

 signal can also disable clock outputs if the system is not 

tolerant to frequency overshoot during PLL resynchronization.

Altera recommends using the 

clkena

 signals when switching the clock 

source to the PLLs or the global clock network. The recommended 
sequence to be followed is:

1.

Disable the primary output clock by de-asserting the 

clkena

 signal.

2.

Switch to the secondary clock using the dynamic select signals of the 
clock control block.

3.

Allow some clock cycles of the secondary clock to pass before 
re-asserting the 

clkena

 signal. The exact number of clock cycles 

you need to wait before enabling the secondary clock is design 
dependent. You can build custom logic to ensure glitch-free 
transition when switching between different clock sources. 

Board Layout

The PLL circuits in Cyclone II devices contain analog components 
embedded in a digital device. These analog components have separate 
power and ground pins to minimize noise generated by the digital 
components.

clkin

clkena

clkout

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–31

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

VCCA & GNDA

Each Cyclone II PLL uses separate VCC and ground pin pairs for their 
analog circuitry. The analog circuit power and ground pin for each PLL is 
called 

VCCA_PLL

<

PLL number

> and 

GNDA_ PLL

<

PLL number

>. Connect 

the 

VCCA

 power pin to a 1.2-V power supply, even if you do not use the 

PLL. Isolate the power connected to VCCA from the power to the rest of 
the Cyclone II device or any other digital device on the board. You can use 
one of three different methods of isolating the VCCA pin:

Use separate VCCA power planes

Use a partitioned VCCA island within the VCCINT plane

Use thick VCCA traces

Separate VCCA Power Plane

A mixed signal system is already partitioned into analog and digital 
sections, each with its own power planes on the board. To isolate the 

VCCA

 

pin using a separate VCCA power plane, connect the 

VCCA

 pin to the 

analog 1.2-V power plane.

Partitioned VCCA Island Within the VCCINT Plane

Fully digital systems do not have a separate analog power plane on the 
board. Since it is expensive to add new planes to the board, you can create 
islands for 

VCCA_PLL

Figure 7–16

 shows an example board layout with 

an analog power island. The dielectric boundary that creates the island 
should be 25 mils thick. 

Figure 7–16

 shows a partitioned plane within 

V

CCINT

 for VCCA.

ac/package_outlines/cyc_c52006-html.html
background image

7–32

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Board Layout

Figure 7–16. V

CCINT

 Plane Partitioned for VCCA Island

Thick VCCA Trace

Because of board constraints, you may not be able to partition a VCCA 
island. Instead, run a thick trace from the power supply to each VCCA 
pin. The traces should be at least 20 mils thick. 

In each of these three cases, you should filter each VCCA pin with a 
decoupling circuit shown in 

Figure 7–17

. Place a ferrite bead that exhibits 

high impedance at frequencies of 50 MHz or higher and a 10 µF tantalum 
parallel capacitor where the power enters the board. Decouple each 
VCCA pin with a 0.1 µF and 0.001 µF parallel combination of ceramic 
capacitors located as close as possible to the Cyclone II device. You can 
connect the GNDA pins directly to the same ground plane as the device’s 
digital ground.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–33

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Figure 7–17. PLL Power Schematic for Cyclone II PLLs

Note to 

Figure 7–17

:

(1)

Applies to PLLs 1 through 4.

VCCD & GND

The digital power and ground pins are labeled 

VCCD_ PLL

<

PLL number

and 

GND_PLL

<

PLL number

>. The 

VCCD

 pin supplies the power for the 

digital circuitry in the PLL. Connect these VCCD pins to the quietest 
digital supply on the board. In most systems, this is the digital 1.2-V 
supply supplied to the device’s V

CCINT

 pins. Connect the VCCD pins to a 

power supply even if you do not use the PLL. When connecting the V

CCD

 

pins to V

CCINT

, you do not need any filtering or isolation. You can connect 

the 

GND

 pins directly to the same ground plane as the device’s digital 

ground. See 

Figure 7–17

.

Conclusion

Cyclone II device PLLs provide you with complete control of device 
clocks and system timing. These PLLs support clock 
multiplication/division, phase shift, and programmable duty cycle for 
your cost-sensitive clock synthesis applications.

1.2V Supply

Ferrite Bead

Repeat for Each PLL
Power & Groundset

Cyclone II Device

PLL<#>_VCCA

PLL<#>_GNDA

PLL<#>VCCD

PLL<#>_GND

.1 µF

.001 µF

GND

GND

VCCINT

10 

μ

F

ac/package_outlines/cyc_c52006-html.html
background image

7–34

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Conclusion

In addition, the clock networks in the Cyclone II device support dynamic 
selection of the clock source and also support a power-down mode where 
clock networks that are not being used can easily be turned off, reducing 
the overall power consumption of the device.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

7–35

February 2007

Cyclone II Device Handbook, Volume 1

PLLs in Cyclone II Devices

Document 
Revision History

Table 7–10

 shows the revision history for this document.

Table 7–10. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v3.1

Added document revision history.

Updated handpara note in 

“Introduction”

.

Updated 

Note (3)

 in 

Table 7–2

.

Updated 

Figure 7–5

.

Updated 

“Control Signals”

 section.

Updated 

“Thick VCCA Trace”

 section.

Updated chapter with 
extended temperature 
information.

Updated 

pllena 

information in 

“Control 

Signals”

 section.

Corrected capacitor unit 
from10-F to 10

µ

F.

December 2005 
v2.2

Updated industrial temperature range

November 2005 
v2.1

Updated 

Figure 7–12

.

Updated 

Figure 7–17

.

July 2005 v2.0

Updated 

Table 7–6

.

Updated 

“Hardware Features”

 section.

Updated 

“areset”

 section.

Updated 

Table 7–8

.

Added 

“Board Layout”

 section.

February 2005 
v1.2

Updated information concerning signals.
Added a note to Figures 7-9 through 7-13 regarding violating 
the setup or hold time on address registers.

November, 
2004 v1.1

Updated 

“Introduction”

 section.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

7–36

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

Section III–1

Preliminary

Section III. Memory

This section provides information on embedded memory blocks in 
Cyclone

®

II devices and the supported external memory interfaces.

This section includes the following chapters:

Chapter 8, Cyclone II Memory Blocks

Chapter 9, External Memory Interfaces

Revision History 

Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Section III–2

 

Altera Corporation

Preliminary

Revision History

Cyclone II Device Handbook, Volume 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

8–1

February 2008

8. Cyclone II Memory Blocks

Introduction

Cyclone

®

II devices feature embedded memory structures to address the 

on-chip memory needs of FPGA designs. The embedded memory 
structure consists of columns of M4K memory blocks that can be 
configured to provide various memory functions such as RAM, first-in 
first-out (FIFO) buffers, and ROM. M4K memory blocks provide over 
1 Mbit of RAM at up to 250-MHz operation (see 

Table 8–2 on page 8–2

 for 

total RAM bits per density).

Overview

The M4K blocks support the following features:

Over 1 Mbit of RAM available without reducing available logic

4,096 memory bits per block (4,608 bits per block including parity)

Variable port configurations

True dual-port (one read and one write, two reads, or two writes) 
operation

Byte enables for data input masking during writes

Initialization file to pre-load content of memory in RAM and ROM 
modes

Up to 250-MHz operation

Table 8–1

 summarizes the features supported by the M4K memory.

Table 8–1. Summary of M4K Memory Features (Part 1 of 2)

Feature

M4K Blocks

Maximum performance 

(1)

250 MHz

Total RAM bits (including parity bits)

4,608

Configurations

4K 

×

 1

2K 

×

 2

1K 

×

 4

512 

×

 8

512 

×

 9

256 

×

 16

256 

×

 18

128 

×

 32

128 

×

 36

Parity bits

v

Byte enable

v

CII51008-2.4

ac/package_outlines/cyc_c52006-html.html
background image

8–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Overview

Table 8–2

 shows the capacity and distribution of the M4K memory blocks 

in each Cyclone II device family member.

Packed mode

v

Address clock enable

v

Single-port mode

v

Simple dual-port mode

v

True dual-port mode

v

Embedded shift register mode 

(2)

v

ROM mode

v

FIFO buffer 

(2)

v

Simple dual-port mixed width support

v

True dual-port mixed width support

v

Memory Initialization File (

.mif

)

v

Mixed-clock mode

v

Power-up condition

Outputs cleared

Register clears

Output registers only

Same-port read-during-write

New data available at positive clock 
edge

Mixed-port read-during-write

Old data available at positive clock 
edge

Notes to 

Table 8–1

:

(1)

Maximum performance information is preliminary until device characterization.

(2)

FIFO buffers and embedded shift registers require external logic elements (LEs) 
for implementing control logic.

Table 8–2. Number of M4K Blocks in Cyclone II Devices (Part 1 of 2)

Device

M4K Blocks

Total RAM Bits

EP2C5

26

119,808

EP2C8

36

165,888

EP2C15

52

239,616

EP2C20

52

239,616

EP2C35

105

483,840

Table 8–1. Summary of M4K Memory Features (Part 2 of 2)

Feature

M4K Blocks

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–3

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Control Signals

Figure 8–1

 shows how the register clocks, clears, and control signals are 

implemented in the Cyclone II memory block.

The clock enable control signal controls the clock entering the entire 
memory block, not just the input and output registers. The signal disables 
the clock so that the memory block does not see any clock edges and will 
not perform any operations.

Cyclone II devices do not support asynchronous clear signals to input 
registers. Only output registers support asynchronous clears. There are 
three ways to reset the registers in the M4K blocks: power up the device, 
use the 

aclr

 signal for output register only, or assert the device-wide 

reset signal using the 

DEV_CLRn

 option.

1

When applied to output registers, the asynchronous clear signal 
clears the output registers and the effects are seen immediately.

EP2C50

129

594,432

EP2C70

250

1,152,000

Table 8–2. Number of M4K Blocks in Cyclone II Devices (Part 2 of 2)

Device

M4K Blocks

Total RAM Bits

ac/package_outlines/cyc_c52006-html.html
background image

8–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Overview

Figure 8–1. M4K Control Signal Selection

Parity Bit Support

Error detection using parity check is possible using the parity bit, with 
additional logic implemented in LEs to ensure data integrity. Parity-size 
data words can also be used for other purposes such as storing 
user-specified control bits.

f

Refer to the 

Using Parity to Detect Errors White Paper

 for more 

information.

Byte Enable Support

All M4K memory blocks support byte enables that mask the input data so 
that only specific bytes of data are written. The unwritten bytes retain the 
previous written value. The write enable (

wren

) signals, along with the 

byte enable (

byteena

) signals, control the RAM block’s write operations. 

The default value for the byte enable signals is high (enabled), in which 

clock_b

clocken_a

clock_a

clocken_b

aclr_b

aclr_a

Dedicated
Row LAB
Clocks

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

renwe_b

renwe_a

6

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

byteena_b

byteena_a

addressstall_b

addressstall_a

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–5

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

case writing is controlled only by the write enable signals. There is no 
clear port to the byte enable registers. M4K blocks support byte enables 
when the write port has a data width of 1, 2, 4, 8, 9, 16, 18, 32, or 36 bits. 
When using data widths of 1, 2, 4, 8, and 9 bits, the byte enable behaves 
as a redundant write enable because the data width is less than or equal 
to a single byte

Table 8–3

 summarizes the byte selection.

Table 8–4

 shows the byte enable port control for true dual-port mode.

Figure 8–2

 shows how the 

wren

 and 

byteena

 signals control the 

operations of the RAM.

When a byte enable bit is de-asserted during a write cycle, the 
corresponding data byte output appears as a “don’t care” or unknown 
value. When a byte enable bit is asserted during a write cycle, the 
corresponding data byte output is the newly written data.

Table 8–3. Byte Enable for Cyclone II M4K Blocks

Note (1)

byteena[3..0]

Affected Bytes

datain 

×

1

datain 

×

2

datain 

×

4

datain 

×

8

datain 

×

9

datain 

×

16

datain 

×

18

datain 

×

32

datain 

×

36

[0] = 1

[0]

[1..0]

[3..0]

[7..0]

[8..0]

[7..0]

[8..0]

[7..0]

[8..0]

[1]  =  1

-

-

-

-

-

[15..8]

[17..9]

[15..8]

[17..9]

[2]  =  1

-

-

-

-

-

-

-

[23..16]

[26..18]

[3]  =  1

-

-

-

-

-

-

-

[31..24]

[35..27]

Note to 

Table 8–3

:

(1)

Any combination of byte enables is possible.

Table 8–4. Byte Enable Port Control for True Dual-Port Mode

byteena [3:0]

Affected Port

[1:0]

Port A 

(1)

[3:2]

Port B 

(1)

Note to 

Table 8–4

:

(1)

For any data width up to ×18 for each port.

ac/package_outlines/cyc_c52006-html.html
background image

8–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Overview

Figure 8–2. Cyclone II Byte Enable Functional Waveform

Packed Mode Support

Cyclone II M4K memory blocks support packed mode. You can 
implement two single-port memory blocks in a single block under the 
following conditions:

Each of the two independent block sizes is less than or equal to half 
of the M4K block size. The maximum data width for each 
independent block is 18 bits wide.

Each of the single-port memory blocks is configured in single-clock 
mode.

f

Se

“Single-Port Mode” on page 8–9

 and 

“Single-Clock Mode” on 

page 8–24

 for more information.

Address Clock Enable

Cyclone II M4K memory blocks support address clock enables, which 
holds the previous address value until needed. When the memory blocks 
are configured in dual-port mode, each port has its own independent 
address clock enable. 

inclock

wren

address

data

q (asynch)

an

XXXX

a0

a1

a2

a0

a1

a2

doutn

ABXX

XXCD

ABCD

ABFF

FFCD

ABCD

byteena

XX

10

01

11

XXXX

XX

ABCD

ABCD

FFFF

FFFF

FFFF

ABFF

FFCD

contents at a0

contents at a1

contents at a2

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–7

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Figure 8–3

 shows an address clock enable block diagram. The address 

register output is fed back to its input via a multiplexer. The multiplexer 
output is selected by the address clock enable (

addressstall

) signal. 

Address latching is enabled when the 

addressstall

 signal goes high 

(active high). The output of the address register is then continuously fed 
into the input of the register until the 

addressstall

 signal goes low.

Figure 8–3. Cyclone II Address Clock Enable Block Diagram

The address clock enable is typically used for cache memory applications 
to improve efficiency during a cache-miss. The default value for the 
address clock enable signals is low (disabled). 

Figures 8–4

 and 

8–5

 show 

the address clock enable waveforms during the read and write cycles, 
respectively.

address[0]

address[N]

addressstall

clock

1
0

address[0]

register

address[N]

register

address[N]

address[0]

1
0

ac/package_outlines/cyc_c52006-html.html
background image

8–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Memory Modes

Figure 8–4. Cyclone II Address Clock Enable During Read Cycle Waveform

Figure 8–5. Cyclone II Address Clock Enable During Write Cycle Waveform

Memory Modes

Cyclone II M4K memory blocks include input registers that synchronize 
writes and output registers to pipeline data, thereby improving system 
performance. All M4K memory blocks are fully synchronous, meaning 
that you must send all inputs through a register, but you can either send 
outputs through a register (pipelined) or bypass the register 
(flow-through). 

 inclock

rden

rdaddress

q (synch)

a0

a1

a2

a3

a4

a5

a6

q (asynch)

an

a0

a4

a5

latched address
(inside memory)

dout0

dout1

dout1

dout4

dout1

dout4

dout5

addressstall

a1

doutn-1

dout1

doutn

doutn

dout1

dout0

dout1

    inclock

wren

wraddress

a0

a1

a2

a3

a4

a5

a6

an

a0

a4

a5

latched address
(inside memory)

addressstall

a1

data

00

01

02

03

04

05

06

contents at a0

contents at a1

contents at a2

contents at a3

contents at a4

contents at a5

XX

04

XX

00

03

01

XX

02

XX

XX

XX

05

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–9

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

1

M4K memory blocks do not support asynchronous memory 
(unregistered inputs).

The M4K memory blocks support the following modes:

Single-port

Simple dual-port

True dual-port (bidirectional dual-port)

Shift register

ROM

FIFO buffers

1

Violating the setup or hold time on the memory block address 
registers could corrupt memory contents. This applies to both 
read and write operations.

Single-Port Mode

Single-port mode supports non-simultaneous read and write operations. 

Figure 8–6

 shows the single-port memory configuration for Cyclone II 

memory blocks.

Figure 8–6. Single-Port Mode

Note (1)

Note to 

Figure 8–6

:

(1)

Two single-port memory blocks can be implemented in a single M4K block in 
packed mode.

In single-port mode, the outputs are in read-during-write mode, which 
means that during the write operation, data written to the RAM flows 
through to the RAM outputs. When the output registers are bypassed, the 
new data is available on the rising edge of the same clock cycle on which 
it was written. 

f

Se

“Read-During- Write Operation at the Same Address” on page 8–28

 

for more information about read-during-write mode. 

The port width configurations for M4K blocks in single-port mode are as 
follows:

q[ ]

outclock   

outclocken

outaclr

data[ ]
address[ ]
wren
byteena[ ]
addressstall

inclock

inclocken

ac/package_outlines/cyc_c52006-html.html
background image

8–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Memory Modes

4K 

×

 1

2K 

×

 2

1K 

×

 4

512 

×

 8

512 

×

 9

256 

×

 16

256 

×

 18

128 

×

 32

128

 ×

 36

Figure 8–7

 shows timing waveforms for read and write operations in 

single-port mode.

Figure 8–7. Cyclone II Single-Port Timing Waveforms 

Note to 

Figure 8–7

:

(1)

The crosses in the 

data

 waveform during read mean “don’t care.”

Simple Dual-Port Mode

Simple dual-port mode supports simultaneous read and write operation. 

Figure 8–8

 shows the simple dual-port memory configuration.

inclock

wren

address

q (synch)

an-1

an

a0

a1

a2

a3

a4

a5

a6

q (asynch)

din-1

din

din4

din5

din6

data 

(1)

din-2

din-1

din

dout0

dout1

dout2

dout3

din4

din-1

din

dout0

dout1

dout2

dout3

din4

din5

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–11

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Figure 8–8. Cyclone II Simple Dual-Port Mode

Note (1)

Note to 

Figure 8–8

:

(1)

Simple dual-port RAM supports input and output clock mode in addition to the 
read and write clock mode shown.

Cyclone II memory blocks support mixed-width configurations, allowing 
different read and write port widths. 

Tables 8–5

 and 

8–6

 show the 

mixed-width configurations.

In simple dual-port mode, the memory blocks have one write enable and 
one read enable signal. They do not support a clear port on the write 
enable and read enable registers. When the read enable is deactivated, the 
current data is retained at the output ports. If the read enable is activated 
during a write operation with the same address location selected, the 
simple dual-port RAM output is the old data stored at the memory 

data[ ]

wraddress[ ]

wren

byteena[ ]

wr_addressstall  

wrclock

wrclocken

rdaddress[ ]

rden

q[ ]

rd_addressstall

rdclock   

rdclocken

rd_aclr

Simple Dual-Port Memory

Table 8–5. Cyclone II Memory Block Mixed-Width Configurations (Simple Dual-Port Mode)

Read Port

Write Port

4K 

×

 

1

2K 

×

 

2

1K 

×

 4

512 

×

 8 256 

×

 16 128 

×  

32 512 

×

 9 256 

×

 18

128 

×

 36

4K 

×

 1

v

v

v

v

v

v

2K 

×

 2

v

v

v

v

v

v

1K 

×

 4

v

v

v

v

v

v

512 

×

 8

v

v

v

v

v

v

256 

×

 16

v

v

v

v

v

v

128 

×

 32

v

v

v

v

v

v

512 

×

 9

v

v

v

256 

×

 18

v

v

v

128 

×

 36

v

v

v

ac/package_outlines/cyc_c52006-html.html
background image

8–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Memory Modes

address. Se

“Read-During- Write Operation at the Same Address” on 

page 8–28

 for more information. 

Figure 8–9

 shows timing waveforms for 

read and write operations in simple dual-port mode.

Figure 8–9. Cyclone II Simple Dual-Port Timing Waveforms 

 

Note to 

Figure 8–9

:

(1)

The crosses in the 

data

 waveform during read mean “don’t care.”

True Dual-Port Mode

True dual-port mode supports any combination of two-port operations: 
two reads, two writes, or one read and one write at two different clock 
frequencies. 

Figure 8–10

 shows Cyclone II true dual-port memory 

configuration.

wrclock

wren

wraddress

q (synch)

rdclock

an-1

an

a0

a1

a2

a3

a4

a5

a6

q (asynch)

rden

rdaddress

bn

b0

b1

b2

b3

doutn-2

doutn-1

doutn

doutn-1

doutn

dout0

dout0

din-1

din

din4

din5

din6

data 

(1)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–13

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Figure 8–10. Cyclone II True Dual-Port Mode

Note (1)

Note to 

Figure 8–10

:

(1)

True dual-port memory supports input and output clock mode in addition to the 
independent clock mode shown.

The widest bit configuration of the M4K blocks in true dual-port mode is 
256 

×

 

16-bit (18-bit with parity).

The 128 

×

 

32-bit (36-bit with parity) configuration of the M4K block is 

unavailable because the number of output drivers is equivalent to the 
maximum bit width. The maximum width of the true dual-port RAM 
equals half of the total number of output drivers because true dual-port 
RAM has outputs on two ports. 

Table 8–6

 lists the possible M4K block 

mixed-port width configurations.

In true dual-port configuration, the RAM outputs are in 
read-during-write mode. This means that during a write operation, data 
being written to the A or B port of the RAM flows through to the A or B 

Table 8–6. Cyclone II Memory Block Mixed-Port Width Configurations (True 
Dual-Port)

Read Port

Write Port

4K 

×

 

1 2K 

×

  2 1K 

×

 4 512 

×

 8 256 

×

 16 512 

×

 9 256 

×

 18

4K 

×

 1

v

v

v

v

v

2K 

×

 2

v

v

v

v

v

1K 

×

 4

v

v

v

v

v

512 

×

 8

v

v

v

v

v

256 

×

 16

v

v

v

v

v

512 

×

 9

v

v

256 

×

 18

v

v

data_a[ ]

address_a[ ]

wren_a

byteena_a[ ]

addressstall_a

  clock_a

enable_a

aclr_a
q_a[ ]

data_b[ ]

address_b[ ]

wren_b

byteena_b[ ]

addressstall_b

clock_b   

enable_b

aclr_b

q_b[ ]

ac/package_outlines/cyc_c52006-html.html
background image

8–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Memory Modes

outputs, respectively. When the output registers are bypassed, the new 
data is available on the rising edge of the same clock cycle on which it was 
written. See 

“Read-During- Write Operation at the Same Address” on 

page 8–28

 for waveforms and information on mixed-port 

read-during-write mode.

Potential write contentions must be resolved external to the RAM because 
writing to the same address location at both ports results in unknown 
data storage at that location. 

f

For the maximum synchronous write cycle time, refer to the

 

Cyclone II 

Device Family Data Sheet

 

in volume 1 of the 

Cyclone II Device Handbook

.

Figure 8–11

 shows true dual-port timing waveforms for the write 

operation at port A and the read operation at port B.

Figure 8–11. Cyclone II True Dual-Port Timing Waveforms

Note to 

Figure 8–11

:

(1)

The crosses in the 

data_a

 waveform during write indicate “don’t care.”

Shift Register Mode

Cyclone II memory blocks can implement shift registers for digital signal 
processing (DSP) applications, such as finite impulse response (FIR) 
filters, pseudo-random number generators, multi-channel filtering, and 
auto-correlation and cross-correlation functions. These and other DSP 

clk_a

wren_a

address_a

q_a (synch)

q_b (synch)

clk_b

an-1

an

a0

a1

a2

a3

a4

a5

a6

q_b (asynch)

wren_b

address_b

bn

b0

b1

b2

b3

doutn-2

doutn-1

doutn

doutn-1

doutn

dout0

dout0

q_a (asynch)

din-1

din

din4

din5

din6

data_a 

(1)

din-2

din-1

din

dout0

dout1

dout2

dout3

din4

din-1

din

dout0

dout1

dout2

dout3

din4

din5

dout1

dout2

dout1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–15

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

applications require local data storage, traditionally implemented with 
standard flip-flops that quickly exhaust many logic cells for large shift 
registers. A more efficient alternative is to use embedded memory as a 
shift register block, which saves logic cell and routing resources.

The size of a (

w × m × n

) shift register is determined by the input data 

width (

w

), the length of the taps (

m)

, and the number of taps (

n

), and must 

be less than or equal to the maximum number of memory bits, which is 
4,608 bits. In addition, the size of (

w × n

) must be less than or equal to the 

maximum width of the block, which is 36 bits. If a larger shift register is 
required, the memory blocks can be cascaded.

Data is written into each address location at the falling edge of the clock 
and read from the address at the rising edge of the clock. The shift register 
mode logic automatically controls the positive and negative edge 
clocking to shift the data in one clock cycle. 

Figure 8–12

 shows the 

Cyclone II memory block in the shift register mode.

Figure 8–12. Cyclone II Shift Register Mode Configuration

W

×

 m 

×

 n Shift Register

m-Bit Shift Register

m-Bit Shift Register

m-Bit Shift Register

m-Bit Shift Register

W

W

W

W

W

W

W

n Number of Taps

ac/package_outlines/cyc_c52006-html.html
background image

8–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Clock Modes

ROM Mode

Cyclone II memory blocks support ROM mode. A MIF initializes the 
ROM contents of these blocks. The address lines of the ROM are 
registered. The outputs can be registered or unregistered. The ROM read 
operation is identical to the read operation in the single-port RAM 
configuration.

FIFO Buffer Mode

A single clock or dual clock FIFO buffer may be implemented in the 
memory blocks. Dual clock FIFO buffers are useful when transferring 
data from one clock domain to another clock domain. All FIFO memory 
configurations have synchronous inputs. However, the FIFO buffer 
outputs are always combinational (i.e., not registered). Simultaneous read 
and write from an empty FIFO buffer is not supported.

f

For more information on FIFO buffers, refer to the 

Single- & Dual-Clock 

FIFO Megafunctions User Guide

.

Clock Modes

Depending on which memory mode is selected, the following clock 
modes are available:

Independent

Input/output

Read/write

Single-clock

Table 8–7

 shows these clock modes supported by all memory blocks 

when configured in each respective memory modes. 

Table 8–7. Cyclone II Memory Clock Modes

Clocking Modes

True Dual-Port 

Mode

Simple Dual-Port 

Mode

Single-Port

Mode

Independent

v

Input/output

v

v

v

Read/write

v

Single clock

v

v

v

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–17

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Independent Clock Mode

Cyclone II memory blocks can implement independent clock mode for 
true dual-port memory. In this mode, a separate clock is available for each 
port (A and B). Clock A controls all registers on the port A side, while 
clock B controls all registers on the port B side. Each port also supports 
independent clock enables for port A and B registers. However, ports do 
not support asynchronous clear signals for the registers. 

Figure 8–13

 shows a memory block in independent clock mode.

ac/package_outlines/cyc_c52006-html.html
background image

8–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Clock Modes

Figure 8–13. Cyclone II Memory Block in Independent Clock Mode

Note (1)

Note to 

Figure 8–13

:

(1)

Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies 
to both read and write operations.

6

D

ENA

Q

D

ENA

Q

D

ENA

Q

data_a[ ]

 address_a[ ]

 

Memory Block

256 

×

 16 

(2)

512 

×

 

8

1,024 

×

 4

2,04

8

 

×

 2

4,096 

×

 1

Data In

Address A

Write/Read

Enable

Data Out

Data In

Address B

Write/Read

Enable

Data Out

enable_a

clock_a

D

ENA

Q

wren_a

6 LAB Ro

w Cloc

k

s

q_a[ ]

6

data_b[ ]

address_b[ ]

q_b[ ]

ENA

AB

ENA

D

Q

ENA

D

Q

ENA

D

Q

D

Q

D

ENA

Q

byteena_a[ ]

Byte Enable A

Byte Enable B

byteena_b[ ]

ENA

D

Q

Wr

ite

Pulse

Gener

ator

Wr

ite

Pulse

Gener

ator

wren_b

enable_b

clock_b

addressstall_a

Address Clock

Enable A

Address Clock

addressstall_b

Enab

le B

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–19

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Input/Output Clock Mode

Cyclone II memory blocks can implement the input/output clock mode 
for true and simple dual-port memory. On each of the two ports, A and B, 
one clock controls all registers for the data, write enable, and address 
inputs into the memory block. The other clock controls the blocks’ data 
output registers. Each memory block port also supports independent 
clock enables for input and output registers. Asynchronous clear signals 
for the registers are not supported.

Figures 8–14

 through 

8–16

 show the memory block in input/output clock 

mode for true dual-port, simple dual-port, and single-port modes, 
respectively.

ac/package_outlines/cyc_c52006-html.html
background image

8–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Clock Modes

Figure 8–14. Cyclone II Input/Output Clock Mode in True Dual-Port Mode

Note (1)

Note to 

Figure 8–14

:

(1)

Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies 
to both read and write operations.

6

D

ENA

Q

D

ENA

Q

D

ENA

Q

data_a[ ]

 address_a[ ]

 

Memory Block

256 

×

 16 

(2)

512 

×

 

8

1,024 

×

 4

2,04

8

 

×

 2

4,096 

×

 1

Data In

Address A

Write/Read

Enable

Data Out

Data In

Address B

Write/Read

Enable

Data Out

inclocken

inclock

D

ENA

Q

wren_a

6 LAB Ro

w Cloc

k

s

q_a[ ]

6

data_b[ ]

address_b[ ]

q_b[ ]

ENA

AB

ENA

D

Q

ENA

D

Q

ENA

D

Q

D

Q

D

ENA

Q

byteena_a[ ]

Byte Enable A

Byte Enable B

byteena_b[ ]

ENA

D

Q

Wr

ite

Pulse

Gener

ator

Wr

ite

Pulse

Gener

ator

wren_b

outclocken

outclock

addressstall_a

Address Clock

Enable A

Address Clock

addressstall_b

Enab

le B

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–21

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Figure 8–15. Cyclone II Input/Output Clock Mode in Simple Dual-Port Mode

Notes (1)

(2)

Notes to 

Figure 8–15

:

(1)

Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies 
to both read and write operations.

(2)

See the 

Cyclone II Device Family Data Sheet

 in volume 1 of the 

Cyclone II Device Handbook

 for more information on the 

MultiTrack™ interconnect.

6

D
ENA

Q

D

ENA

Q

D

ENA

Q

D

ENA

Q

D
ENA

Q

data[ ]

D
ENA

Q

wraddress[ ]

rdaddress[ ]

 Memory Block

256 ´ 16

512 ´ 8

1,024 ´ 4
2,048 ´ 2
4,096 ´ 1

Data In

Read Address

Write Address

Write Enable

Read Enable

Data Out

outclocken

inclocken

inclock

outclock

wren

rden

6 LAB Row 
Clocks

To MultiTrack
Interconnect 

(2)

D
ENA

Q

byteena[ ]

Byte Enable

Write

Pulse

Generator

(1)

rd_addressstall

wr_addressstall

Read Address
Clock Enable

Write Address
Clock Enable

ac/package_outlines/cyc_c52006-html.html
background image

8–22

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Clock Modes

Figure 8–16. Cyclone II Input/Output Clock Mode in Single-Port Mode

Notes (1)

(2)

Notes to 

Figure 8–16

:

(1)

Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies 
to both read and write operations.

(2)

For more information about the MultiTrack interconnect, refer to 

Cyclone II Device Family Data Sheet

 in volume 1 of 

the 

Cyclone II Device Handbook

.

Read/Write Clock Mode

Cyclone II memory blocks can implement read/write clock mode for 
simple dual-port memory. The write clock controls the blocks’ data 
inputs, write address, and write enable signals. The read clock controls 
the data output, read address, and read enable signals. The memory 
blocks support independent clock enables for each clock for the read- and 
write-side registers. This mode does not support asynchronous clear 
signals for the registers. 

Figure 8–17

 shows a memory block in read/write 

clock mode.

6

D
ENA

Q

D

ENA

Q

D

ENA

Q

D
ENA

Q

data[ ]

address[ ]

 Memory Block

256 ´ 16

512 ´ 8

1,024 ´ 4
2,048 ´ 2
4,096 ´ 1

Data In

Address

Write Enable

Data Out

outclocken

inclocken

inclock

outclock

wren

6 LAB Row 
Clocks

To MultiTrack
Interconnect 

(2)

D
ENA

Q

byteena[ ]

Byte Enable

Write

Pulse

Generator

addressstall

Address
Clock Enable

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–23

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Figure 8–17. Cyclone II Read/Write Clock Mode

Notes (1)

(2)

 

Notes to 

Figure 8–17

:

(1)

Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies 
to both read and write operations.

(2)

For more information about the MultiTract interconnect, refer to 

Cyclone II Device Family Data Sheet

 in volume 1 of 

the 

Cyclone II Device Handbook

.

6

D
ENA

Q

D

ENA

Q

D

ENA

Q

D

ENA

Q

D

ENA

Q

data[ ]

D
ENA

Q

wraddress[ ]

rdaddress[ ]

 Memory Block

256 ´ 16

512 ´ 8

1,024 ´ 4
2,048 ´ 2
4,096 ´ 1

Data In

Read Address

Write Address

Write Enable

Read Enable

Data Out

rdclocken

wrclocken

wrclock

rdclock

wren

rden

6 LAB Row 
Clocks

To MultiTrack
Interconnect 

(2)

D
ENA

Q

byteena[ ]

Byte Enable

Write

Pulse

Generator

(1)

rd_addressstall

wr_addressstall

Read Address
Clock Enable

Write Address
Clock Enable

ac/package_outlines/cyc_c52006-html.html
background image

8–24

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Clock Modes

Single-Clock Mode

Cyclone II memory blocks support single-clock mode for true dual-port, 
simple dual-port, and single-port memory. In this mode, a single clock, 
together with a clock enable, controls all registers of the memory block. 
This mode does not support asynchronous clear signals for the registers. 

Figures 8–18

 through 

8–20

 show the memory block in single-clock mode 

for true dual-port, simple dual-port, and single-port modes, respectively.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–25

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Figure 8–18. Cyclone II Single-Clock Mode in True Dual-Port Mode

Note (1)

Note to 

Figure 8–18

:

(1)

Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies 
to both read and write operations.

6

D

ENA

Q

D

ENA

Q

D

ENA

Q

data_a[ ]

 address_a[ ]

 

Memory Block

256 

×

 16 

(2)

512 

×

 

8

1,024 

×

 4

2,04

8

 

×

 2

4,096 

×

 1

Data In

Address A

Write/Read

Enable

Data Out

Data In

Address B

Write/Read

Enable

Data Out

enable

clock

D

ENA

Q

wren_a

6 LAB Ro

w Cloc

k

s

q_a[ ]

6

data_b[ ]

address_b[ ]

q_b[ ]

ENA

AB

ENA

D

Q

ENA

D

Q

ENA

D

Q

D

Q

D

ENA

Q

byteena_a[ ]

Byte Enable A

Byte Enable B

byteena_b[ ]

ENA

D

Q

Wr

ite

Pulse

Gener

ator

Wr

ite

Pulse

Gener

ator

wren_b

a

ddressstall_a

Address Clock

Enable A

Address Clock

addressstall_b

Enab

le B

ac/package_outlines/cyc_c52006-html.html
background image

8–26

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Clock Modes

Figure 8–19. Cyclone II Single-Clock Mode in Simple Dual-Port Mode

Notes (1)

(2)

Notes to 

Figure 8–19

:

(1)

Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies 
to both read and write operations.

(2)

See the 

Cyclone II Device Family Data Sheet

 

in volume 1 of the 

Cyclone II Device Handbook

 for more information on the 

MultiTrack interconnect.

6

D
ENA

Q

D

ENA

Q

D

ENA

Q

D

ENA

Q

D
ENA

Q

data[ ]

D
ENA

Q

wraddress[ ]

rdaddress[ ]

 Memory Block

256 ´ 16

512 ´ 8

1,024 ´ 4
2,048 ´ 2
4,096 ´ 1

Data In

Read Address

Write Address

Write Enable

Read Enable

Data Out

enable

clock

wren

rden

6 LAB Row 
Clocks

To MultiTrack
Interconnect 

(2)

D
ENA

Q

byteena[ ]

Byte Enable

Write

Pulse

Generator

(1)

rd_addressstall

wr_addressstall

Read Address
Clock Enable

Write Address
Clock Enable

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–27

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Figure 8–20. Cyclone II Single-Clock Mode in Single-Port Mode

Notes (1)

(2)

Notes to 

Figure 8–20

:

(1)

Violating the setup or hold time on the memory block address registers could corrupt memory contents. This applies 
to both read and write operations.

(2)

See th

Cyclone II Device Family Data Sheet

 

in Volume 1 of the 

Cyclone II Device Handbook

 for more information on the 

MultiTrack interconnect.

Power-Up Conditions & Memory Initialization

The Cyclone II memory block outputs always power-up to zero, 
regardless of whether the output registers are used or bypassed. Even if 
an MIF pre-loads the contents of the memory block, the outputs still 
power up cleared. For example, if address 0 is pre-initialized to 

FF

, M4K 

blocks power up with the output at 

00

. A subsequent read after power up 

from address 0 outputs the pre-initialized value of 

FF

.

6

D
ENA

Q

D

ENA

Q

D

ENA

Q

D
ENA

Q

data[ ]

address[ ]

 Memory Block

256 ´ 16

512 ´ 8

1,024 ´ 4
2,048 ´ 2
4,096 ´ 1

Data In

Address

Write Enable

Data Out

enable

clock

wren

6 LAB Row 
Clocks

To MultiTrack
Interconnect 

(2)

D
ENA

Q

byteena[ ]

Byte Enable

Write

Pulse

Generator

addressstall

Address
Clock Enable

ac/package_outlines/cyc_c52006-html.html
background image

8–28

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Read-During- Write Operation at the Same Address

Read-During- 
Write Operation 
at the Same 
Address

The 

“Same-Port Read-During-Write Mode”

 and 

“Mixed-Port 

Read-During-Write Mode”

 sections describe the functionality of the 

various RAM configurations when reading from an address during a 
write operation at that same address. There are two read-during-write 
data flows: same-port and mixed-port. 

Figure 8–21

 shows the difference 

between these flows.

Figure 8–21. Cyclone II Read-During-Write Data Flow

Same-Port Read-During-Write Mode

For read-during-write operation of a single-port RAM or the same port of 
a true dual-port RAM, the new data is available on the rising edge of the 
same clock cycle on which it was written. 

Figure 8–22

 shows a sample 

functional waveform. When using byte enables in true dual-port RAM 
mode, the outputs for the masked bytes on the same port are unknown 
(see 

Figure 8–2 on page 8–6

). The non-masked bytes are read out as 

shown in 

Figure 8–22

.

Port A
data in

Port B
data in

Port A
data out

Port B
data out

Mixed-port
data flow

Same-port
data flow

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–29

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Figure 8–22. Cyclone II Same-Port Read-During-Write Functionality

Note (1)

Note to 

Figure 8–22

:

(1)

Outputs are not registered.

Mixed-Port Read-During-Write Mode

This mode applies to a RAM in simple or true dual-port mode, which has 
one port reading and the other port writing to the same address location 
with the same clock.

In this mode, you also have two output choices: old data or don't care. In 
Old Data Mode, a read-during-write operation to different ports causes 
the RAM outputs to reflect the old data at that address location. In Don't 
Care Mode, the same operation results in a "don't care" or unknown value 
on the RAM outputs.

Figure 8–23. Cyclone II Mixed-Port Read-During-Write: Old Data Mode

Note (1)

Note to 

Figure 8–23

:

(1)

Outputs are not registered.

inclock

data

wren

q

A

B

A

Old

inclock

data_a

wren_a

q_b

A

B

A

Old

wren_b

B

Address Q

address_a and

address_b

ac/package_outlines/cyc_c52006-html.html
background image

8–30

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Conclusion

Figure 8–24. Cyclone II Mixed-Port Read-During-Write: Don’t Care Mode

Note (1)

Note to 

Figure 8–24

:

(1)

Outputs are not registered.

Mixed-port read-during-write is not supported when two different clocks 
are used in a dual-port RAM. The output value is unknown during a 
mixed-port read-during-write operation.

Conclusion

The M4K memory structure of Cyclone II devices provides a flexible 
memory architecture with high memory bandwidth. It addresses the 
needs of different memory applications in FPGA designs with features 
such as different memory modes, byte enables, parity bit storage, address 
clock enables, mixed clock mode, shift register mode, mixed-port width 
support, and true dual-port mode.

Referenced 
Documents

This chapter references the following documents:

Cyclone II Device Family Data Sheet

 

in volume 1 of the 

Cyclone II Device 

Handbook

Single- and Dual-Clock FIFO Megafunction User Guide

Using Parity to Detect Errors White Paper

inclock

data_a

wren_a

q_b

A

B

Unknown

wren_b

B

Address Q

address_a and

address_b

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

8–31

February 2008

Cyclone II Device Handbook, Volume 1

Cyclone II Memory Blocks

Document 
Revision History

Table 8–8

 shows the revision history for this document.

Table 8–8. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2008 
v2.4

Corrected 

Figure 8–12

.

February 2007 
v2.3

Added document revision history.

Updated 

“Packed Mode Support”

 section.

Updated 

“Mixed-Port Read-During-Write Mode”

 section 

and added new 

Figure 8–24

.

In packed mode support, 
the maximum data width for 
each of the two memory 
block is 18 bits wide.

Added don’t care mode 
information to mixed-port 
read-during-write mode 
section.

November 2005 
v2.1

Updated 

Figures 8–13

 through 

8–20

.

July 2005 v2.0

Added Clear Signals section.

February 2005 
v1.1

Added a note to Figures 8-13 through 8-20 regarding 
violating the setup and hold time on address registers.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

8–32

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Document Revision History

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

9–1

February 2007

9. External Memory

Interfaces

Introduction

Improving data bandwidth is an important design consideration when 
trying to enhance system performance without complicating board 
design. Traditionally, doubling the data bandwidth of a system required 
either doubling the system frequency or doubling the number of data I/O 
pins. Both methods are undesirable because they complicate the overall 
system design and increase the number of I/O pins. Using double data 
rate (DDR) I/O pins to transmit and receive data doubles the data 
bandwidth while keeping I/O counts low. The DDR architecture uses 
both edges of a clock to transmit data, which facilitates data transmission 
at twice the rate of a single data rate (SDR) architecture using the same 
clock speed while maintaining the same number of I/O pins. DDR 
transmission should be used where fast data transmission is required for 
a broad range of applications such as networking, communications, 
storage, and image processing.

Cyclone

®

II devices support a broad range of external memory interfaces, 

such as SDR SDRAM, DDR SDRAM, DDR2 SDRAM, and QDRII SRAM. 
Dedicated clock delay control circuitry allows Cyclone II devices to 
interface with an external memory device at clock speeds up to 
167 MHz/333 Mbps for DDR and DDR2 SDRAM devices and 
167 MHz/667 Mbps for QDRII SRAM devices. Although Cyclone II 
devices also support SDR SDRAM, this chapter focuses on the 
implementations of a double data rate I/O interface using the hardware 
features available in Cyclone II devices and explains briefly how each 
memory standard uses the Cyclone II features.

The easiest way to interface to external memory devices is by using one 
of the Altera

®

 external memory IP cores listed below.

DDR2 SDRAM Controller MegaCore

®

 Function

DDR SDRAM Controller MegaCore Function

QDRII SRAM Controller MegaCore Function

OpenCore

®

 Plus evaluations of these cores are available for free to 

Quartus

®

II Web Edition software users. In addition, Altera software 

subscription customers now receive full licenses to these MegaCore 
functions as part of the IP-BASE suite.

CII51009-3.1

ac/package_outlines/cyc_c52006-html.html
background image

9–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

External Memory Interface Standards

External 
Memory 
Interface 
Standards

The following sections describe how to use Cyclone II device external 
memory interfacing features.

DDR & DDR2 SDRAM

DDR SDRAM is a memory architecture that transmits and receives data 
at twice the clock speed. These devices transfer data on both the rising 
and falling edge of the clock signal. DDR2 SDRAM is the second 
generation memory based on the DDR SDRAM architecture and is 
capable of data transfer rates of up to 533 Mbps. Cyclone II devices 
support DDR and DDR2 SDRAM at up to 333 Mbps.

Interface Pins

DDR and DDR2 SDRAM devices use interface pins such as data (DQ), 
data strobe (DQS), clock, command, and address pins to communicate 
with the memory controller. Data is sent and captured at twice the system 
clock rate by transferring data on the positive and negative edge of the 
clock. The commands and addresses use only one active (positive) edge 
of a clock. 

DDR SDRAM uses single-ended data strobe DQS, while DDR2 SDRAM 
has the option to use differential data strobes DQS and DQS#. Cyclone II 
devices do not use the optional differential data strobes for DDR2 
SDRAM interfaces. You can leave the DDR2 SDRAM memory DQS# pin 
unconnected, because only the shifted DQS signal from the clock delay 
control circuitry captures data. DDR and DDR2 SDRAM ×16 devices use 
two DQS pins, and each DQS pin is associated with eight DQ pins. 
However, this is not the same as the ×16/×18 mode in Cyclone II devices. 
You need to configure the Cyclone II devices to use two sets of pins in ×8 
mode. Similarly, if your ×72 memory module uses nine DQS pins where 
each DQS pin is associated with eight DQ pins, configure the Cyclone II 
device to use nine sets of DQS/DQ groups in ×8 mode. 

Connect the memory device’s DQ and DQS pins to the Cyclone II DQ and 
DQS pins, respectively, as listed in the Cyclone II pin tables. DDR and 
DDR2 SDRAM also use active-high data mask (DM) pins for writes. DM 
pins are pre-assigned in pin outs for Cyclone II devices, and these are the 
preferred pins. However, you may connect the memory device’s DM pins 
to any of the Cyclone II I/O pins in the same bank as the DQ pins of the 
FPGA. There is one DM pin per DQS/DQ group. If the DDR or DDR2 
SDRAM device supports ECC, the design uses an extra DQS/DQ group 
for the ECC pins.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–3

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

You can use any of the user I/O pins for commands and addresses. 
Because of the symmetrical setup and hold time for the command and 
address pins at the memory device, you may need to generate these 
signals from the negative edge of the system clock.

The clocks to the SDRAM device are called CK and CK#. Use any of the 
user I/O pins via the DDR registers to generate the CK and CK# signals 
to meet the t

DQSS

 requirements of the DDR SDRAM or DDR2 SDRAM 

device. The memory device’s t

DQSS

 requires the positive edge of the write 

DQS signal to be within 25% of the positive edge of the DDR SDRAM and 
DDR2 SDRAM clock input. Because of strict skew requirements between 
CK and CK# signals, use adjacent pins to generate the clock pair. 
Surround the pair with buffer pins tied to V

CC

 and pins tied to ground for 

better noise immunity from other signals.

Read & Write Operation

When reading from the memory, DDR and DDR2 SDRAM devices send 
the data edge-aligned relative to the data strobe. To properly read the 
data, the data strobe must be center-aligned relative to the data inside the 
FPGA. Cyclone II devices feature clock delay control circuitry to shift the 
data strobe to the middle of the data window. 

Figure 9–1

 shows an 

example of how the memory sends out the data and data strobe for a 
burst-of-two operation.

ac/package_outlines/cyc_c52006-html.html
background image

9–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

External Memory Interface Standards

Figure 9–1. Example of a 90° Shift on the DQS Signal

Notes (1)

(2)

Notes to 

Figure 9–1

:

(1)

RLDRAM II and QDRII SRAM memory interfaces do not have preamble and postamble specifications.

(2)

DDR2 SDRAM does not support a burst length of two.

(3)

The phase shift required for your system should be based on your timing analysis and may not be 90°.

During write operations to a DDR or DDR2 SDRAM device, the FPGA 
must send the data strobe to the memory device center-aligned relative to 
the data. Cyclone II devices use a PLL to center-align the data strobe by 
generating a 0° phase-shifted system clock for the write data strobes and 
a –90° phase-shifted write clock for the write data pins for the DDR and 
DDR2 SDRAM. 

Figure 9–2

 shows an example of the relationship between 

the data and data strobe during a burst-of-two write.

Figure 9–2. DQ & DQS Relationship During a DDR & DDR2 SDRAM Write

DQS at 

 

FPGA pin

 

DQ at 

 

FPGA pin

 

DQS at 

 

IOE registers

 

DQ at 

 

IOE registers

 

90˚ degree

 

DQ pin to

 

r

egister delay

 

DQS pin to

 

r

egister delay

Preamble

 

Postamble

 

(3)

DQS at

FPGA Pin

DQ at

FPGA Pin

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–5

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

QDRII SRAM

QDRII SRAM is the second generation of QDR SRAM devices. QDRII 
SRAM devices, which can transfer four words per clock cycle, fulfill the 
requirements facing next-generation communications system designers. 
QDRII SRAM devices provide concurrent reads and writes, zero latency, 
increased data throughput, and allow simultaneous access to the same 
address location.

Interface Pins

QDRII SRAM devices use two separate, unidirectional data ports for read 
and write operations, enabling four times the data transfer compared to 
single data rate devices. QDRII SRAM devices use common control and 
address lines for read and write operations. 

Figure 9–3

 shows the block 

diagram for QDRII SRAM burst-of-two architecture.

Figure 9–3. QDRII SRAM Block Diagram for Burst-of-Two Architecture

QDRII SRAM burst-of-two devices sample the read address on the rising 
edge of the clock and the write address on the falling edge of the clock. 
QDRII SRAM burst-of-four devices sample both read and write addresses 
on the clock’s rising edge. Connect the memory device’s Q ports (read 
data) to the Cyclone II DQ pins. You can use any of the Cyclone II device’s 
user I/O pins in the top and bottom I/O banks for the D ports (write 
data), commands, and addresses. For maximum performance, Altera 
recommends connecting the D ports (write data) to the Cyclone II DQ 
pins, because the DQ pins are pre-assigned to ensure minimal skew.

256K 

×

 18

Memory

Array

Control

Logic

256K 

×

 18

Memory

Array

Write

Port

Read

Port

Q

CQ, CQn

C, Cn (Optional)

RPSn

Data

Data

36

36

A

BWSn

WPSn

D

18

18

2

2

18

2

Discrete QDRII SRAM Device

K, Kn

V

REF

ac/package_outlines/cyc_c52006-html.html
background image

9–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

External Memory Interface Standards

QDRII SRAM devices use the following clock signals:

Input clocks K and K#

Optional output clocks C and C#

Echo clocks CQ and CQn

Clocks C#, K#, and CQn are logical complements of clocks C, K, and CQ, 
respectively. Clocks C, C#, K, and K# are inputs to the QDRII SRAM, and 
clocks CQ and CQn are outputs from the QDRII SRAM. Cyclone II 
devices use single-clock mode for QDRII SRAM interfacing. The K and 
K# clocks are used for both read and write operations, and the C and C# 
clocks are unused.

You can generate C, C#, K, and K# clocks using any of the I/O registers 
via the DDR registers. Due to strict skew requirements between K and K# 
signals, use adjacent pins to generate the clock pair. Surround the pair 
with buffer pins tied to V

CC

 and pins tied to ground for better noise 

immunity from other signals.

In Cyclone II devices, another DQS pin implements the CQn pin in the 
QDRII SRAM memory interface. These pins are denoted by DQS/CQ# in 
the pin table. Connect CQ and CQn pins to the Cyclone II DQS/CQ and 
DQS/CQ# pins of the same DQ groups, respectively. You must configure 
the DQS/CQ and DQS/CQ# as bidirectional pins. However, because CQ 
and CQn pins are output-only pins from the memory device, the 
Cyclone II device’s QDRII SRAM memory interface requires that you 
ground the DQS/CQ and DQS/CQ# output enable. To capture data 
presented by the memory device, connect the shifted CQ signal to register 

C

I

 and input register 

A

I

. Connect the shifted CQn to input register 

B

I

Figure 9–4

 shows the CQ and CQn connections for a QDRII SRAM read.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–7

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

Figure 9–4. CQ & CQn Connection for QDRII SRAM Read

Read & Write Operation

Figure 9–5

 shows the data and clock relationships in QDRII SRAM 

devices at the memory pins during reads. QDRII SRAM devices send data 
within t

CO

 time after each rising edge of the read clock C or C# in multi-

clock mode or the input clock K or K# in single clock mode. Data is valid 
until t

DOH

 time after each rising edge of the read clock C or C# in multi-

clock mode or the input clock K or K# in single clock mode. The CQ and 
CQn clocks are edge-aligned with the read data signal. These clocks 
accompany the read data for data capture in Cyclone II devices.

resynch_clk

dataout_h

LE

Register

LE

Register

LE

Register

DQ

LE

Register

LE

Register

dataout_l

Input  Register B

I

Input  Register A

neg_reg_out

Register C

sync_reg_h

sync_reg_l

D

t

D

t

I

I

Clock Delay

Control Circuitry

DQS/CQ# (CQn)

DQS/CQ (CQ)

ac/package_outlines/cyc_c52006-html.html
background image

9–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

External Memory Interface Standards

Figure 9–5. Data & Clock Relationship During a QDRII SRAM Report

Notes to 

Figure 9–5

:

(1)

The timing parameter nomenclature is based on the Cypress QDRII SRAM data sheet for CY7C1313V18.

(2)

t

C O

 is the data clock-to-out time and t

D O H

 is the data output hold time between burst.

(3)

t

C L Z

 and t

C H Z

 are bus turn-on and turn-off times, respectively.

(4)

t

C Q D

 is the skew between CQn and data edges.

(5)

t

C C Q O

 and t

C Q O H

 are skew measurements between the C or C# clocks (or the K or K# clocks in single-clock mode) 

and the CQ or CQn clocks.

When writing to QDRII SRAM devices, the write clock generates the data 
while the K clock is 90° shifted from the write clock, creating a center-
aligned arrangement.

C/K

Cn/Kn

Q

QA

QA + 1

QA + 2

QA + 3

CQ

CQn

t

CO (2)

t

CLZ (3)

t

CO (2)

t

CHZ (3)

t

CQD (4)

t

CQD (4)

t

CQOH (4)

t

CCQO (5)

t

DOH (2)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–9

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

Cyclone II DDR 
Memory Support 
Overview

Table 9–1

 shows the external memory interfaces supported in Cyclone II 

devices.

Cyclone II devices support the data strobe or read clock signal (DQS) 
used in DDR SDRAM with the clock delay control circuitry that can shift 
the incoming DQS signals to center them within the data window. To 
achieve DDR operation, the DDR input and output registers are 
implemented using the internal logic element (LE) registers. You should 
use the 

altdqs

 and 

altdq

 megafunctions in the Quartus II software to 

implement the DDR registers used for DQS and DQ signals, respectively.

Table 9–1. External Memory Support in Cyclone II Devices

Note (1)

Memory Standard

I/O Standard

Maximum Bus 

Width

Maximum Clock 

Rate Supported 

(MHz)

Maximum Data 

Rate Supported 

(Mbps)

DDR SDRAM

SSTL-2 class I 

(2)

72

167

333 

(1)

SSTL-2 class II 

(2)

72

133

267 

(1)

DDR2 SDRAM

SSTL-18 class I 

(2)

72

167

333 

(1)

SSTL-18 class II 

(3)

72

125

250 

(1)

QDRII SRAM 

(4)

1.8-V HSTL class I 

(2)

36

167

667 

(1)

1.8-V HSTL class II 

(3)

36

100

400 

(1)

Notes to 

Table 9–1

:

(1)

The data rate is for designs using the clock delay control circuitry.

(2)

These I/O standards are supported on all the I/O banks of the Cyclone II device.

(3)

These I/O standards are supported only on the I/O banks on the top and bottom of the Cyclone II device.

(4)

For maximum performance, Altera recommends using the 1.8-V HSTL I/O standard because of higher I/O drive 
strength. QDRII SRAM devices also support the 1.5-V HSTL I/O standard.

ac/package_outlines/cyc_c52006-html.html
background image

9–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

DDR Memory Interface Pins

DDR Memory 
Interface Pins

Cyclone II devices use data (DQ), data strobe (DQS), and clock pins to 
interface with external memory. 

Figure 9–6

 shows the DQ and DQS pins 

in the ×8/×9 mode.

Figure 9–6. Cyclone II Device DQ & DQS Groups in ×8/×9 Mode

Notes (1)

(3)

Notes to 

Figure 9–6

:

(1)

Each DQ group consists of a DQS pin, a DM pin, and up to nine DQ pins.

(2)

For the QDRII memory interface, other DQS pins implement the CQn pins. These pins are denoted by DQS/CQ# in 
the pin table.

(3)

This is an idealized pin layout. For the actual pin layout, refer to the pin tables in the 

PCB Layout Guidelines

 section 

of the 

Cyclone II Device Handbook, Volume 1

.

Data & Data Strobe Pins

Cyclone II data pins for the DDR memory interfaces are called DQ pins. 
Cyclone II devices can use either bidirectional data strobes or 
unidirectional read clocks. Depending on the external memory interface, 
either the memory device’s read data strobes or read clocks feed the DQS 
pins.

In Cyclone II devices, all the I/O banks support DDR and DDR2 SDRAM 
and QDRII SRAM memory at up to 167 MHz. All the I/O banks support 
DQS signals with the DQ bus modes of ×8/×9 and ×16/×18. Cyclone II 
devices can support either bidirectional data strobes or unidirectional 
read clocks.

1

DDR2 and QDRII interfaces with class II I/O standard can only 
be implemented on the top and bottom I/O banks of the 
Cyclone II device.

DQ Pins

DQS Pin

DM Pin

DQ Pins

(2)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–11

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

In ×8 and ×16 modes, one DQS pin drives up to 8 or 16 DQ pins, 
respectively, within the group. In the ×9 and ×18 modes, a pair of DQS 
pins (CQ and CQ#) drives up to 9 or 18 DQ pins within the group to 
support one or two parity bits and the corresponding data bits. If the 
parity bits or any data bits are not used, the extra DQ pins can be used as 
regular user I/O pins. The ×9 and ×18 modes are used to support the 
QDRII memory interface. 

Table 9–2

 shows the number of DQS/DQ 

groups supported in each Cyclone II density/package combination.

Table 9–2. Cyclone II DQS & DQ Bus Mode Support

Note (1)

Device

Package

Number of ×8 

Groups

Number of ×9 

Groups 

(5)

(6)

Number of ×16 

Groups

Number of ×18 
Groups 

(5)

(6)

EP2C5

144-pin TQFP 

(2)

3

3

0

0

208-pin PQFP 

(3)

4

3

3

256-pin FineLine BGA

8 

(3)

(7)

4

4 

(7)

EP2C8

144-pin TQFP 

(2)

3

3

0

0

208-pin PQFP

(3)

(7)

3

3

256-pin FineLine BGA

®

(3)

(7)

4

4 

(7)

EP2C15

256-pin FineLine BGA

8

4

4

4

484-pin FineLine BGA

16 

(4)

(8)

8

8 

(8)

EP2C20

240-pin PQFP

8

4

4

4

256-pin FineLine BGA

8

4

4

4

484-pin FineLine BGA

16 

(4)

(8)

8

8 

(8)

EP2C35

484-pin FineLine BGA

16 

(4)

(8)

8

8 

(8)

672-pin FineLine BGA

20 

(4)

(8)

8

8 

(8)

EP2C50

484-pin FineLine BGA

16 

(4)

(8)

8

8 

(8)

672-pin FineLine BGA

20 

(4)

(8)

8

8 

(8)

EP2C70

672-pin FineLine BGA

20 

(4)

(8)

8

8 

(8)

896-pin FineLine BGA

20 

(4)

(8)

8

8 

(8)

Notes to 

Table 9–2

:

(1)

Numbers are preliminary.

(2)

EP2C5 and EP2C8 devices in the 144-pin TQFP package do not have any DQ pin groups in I/O bank 1.

(3)

Because of available clock resources, only a total of 6 DQ/DQS groups can be implemented.

(4)

Because of available clock resources, only a total of 14 DQ/DQS groups can be implemented.

(5)

The ×9 DQS/DQ groups are also used as ×8 DQS/DQ groups. The ×18 DQS/DQ groups are also used as ×16 
DQS/DQ groups.

(6)

For QDRII implementation, if you connect the D ports (write data) to the Cyclone II DQ pins, the total available ×9 
DQS /DQ and ×18 DQS/DQ groups are half of that shown in 

Table 9–2

.

(7)

Because of available clock resources, only a total of 3 DQ/DQS groups can be implemented.

(8)

Because of available clock resources, only a total of 7 DQ/DQS groups can be implemented.

ac/package_outlines/cyc_c52006-html.html
background image

9–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

DDR Memory Interface Pins

The DQS pins are listed in the Cyclone II pin tables as 

DQS[1..0]T

DQS[1..0]B

DQS[1..0]L

, and 

DQS[1..0]R

 for the EP2C5 and EP2C8 

devices and 

DQS[5..0]T

DQS[5..0]B

DQS[3..0]L

, and 

DQS[3..0]R

 for the larger devices. The 

T

 denotes pins on the top of the 

device, the 

B

 denotes pins on the bottom of the device, the 

L

 denotes pins 

on the left of the device, and the 

R

 denotes pins on the right of the device. 

The corresponding DQ pins are marked as 

DQ[5..0]T[8..0]

where 

[5..0]

 indicates which DQS group the pins belong to.

In the Cyclone II pinouts, the DQ groups with 9 DQ pins are also used in 
the ×8 mode with the corresponding DQS pins, leaving the unused DQ 
pin available as a regular I/O pin. The DQ groups that have 18 DQ pins 
are also used in the ×16 mode with the corresponding DQS pins, leaving 
the two unused DQ pins available as regular I/O pins. For example, 

DQ1T[8..0]

 can be used in the ×8 mode, provided it is used with 

DQS1T

The remaining unused DQ pin, 

DQ1T8

, is available as a regular I/O pin.

When not used as DQ or DQS pins, these pins are available as regular I/O 
pins

Table 9–3

 shows the number of DQS pins supported in each I/O 

bank in each Cyclone II device density.

The DQ pin numbering is based on ×8/×9 mode. There are up to 8 
DQS/DQ groups in ×8 mode or 4 DQS/DQ groups in ×9 mode in I/O 
banks for EP2C5 and EP2C8. For the larger devices, there are up to 20 
DQS/DQ groups in ×8 mode or 8 DQS/DQ groups in ×9 mode. Although 
there are up to 20 DQS/DQ groups in the ×8 mode available in the larger 
Cyclone II devices, but because of the available clock resources in the 
Cyclone II devices, only 16 DQS/DQ groups can be utilized for the 
external memory interface. There is a total of 16 global clock buses 
available for routing DQS signals but 2 of them are needed for routing the 
–90° write clock and the system clock to the external memory devices. 
This reduces the global clock resources to 14 global clock buses for 
routing DQS signals. Incoming DQS signals are all routed to the clock 
control block, and are then routed to the global clock bus to clock the DDR 
LE registers. For EP2C5 and EP2C8 devices, the DQS signals are routed 

Table 9–3. Available DQS Pins in Each I/O Bank & Each Device

Note (1)

Device

Top I/O Bank

Bottom I/O Bank

Left I/O Bank

Right I/O Bank

EP2C5, EP2C8

DQS[1..0]T

DQS[1..0]B

DQS[1..0]L

DQS[1..0]R

EP2C15, EP2C20, 
EP2C35, EP2C50, 
EP2C70

DQS[5..0]B

DQS[5..0]T

DQS[3..0]L

DQS[3..0]R

Note to 

Table 9–3

:

(1)

Numbers are preliminary.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–13

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

directly to the clock control block. For the larger Cyclone II devices, the 
corner DQS signals are multiplexed before they are routed to the clock 
control block. When you use the corner DQS pins for DDR 
implementation, there is a degradation in the performance of the memory 
interface. The clock control block is used to select from a number of input 
clock sources, in this case either PLL clock outputs or DQS pins, to drive 
onto the global clock bus. 

Figure 9–7

 shows the corner DQS signal 

mappings for EP2C15 through EP2C70 devices.

Figure 9–7. Corner DQS Signal Mapping for EP2C15–EP2C70 Devices

Notes to 

Figure 9–7

:

(1)

There are four control blocks on each side.

(2)

There are a total of 16 global clocks available.

(3)

Only one of the corner DQS pins in each corner can feed the clock control block at a time. The other DQS pins can 
be used as general purpose I/O pins.

(4)

PLL resource can be lost if all DQS pins from one side are used at the same time.

(5)

Top/bottom and side IOE have different timing.

PLL 4 

(4)

PLL 3

(4)

PLL 2

(4)

DQS1R

DQS2R

DQS3R

DQS0R

DQS0L

DQS2L

DQS3L

DQS1L

DQS1T

DQS[5..2]T

PLL 1

(4)

DQS0T

DQS1B

DQS[5..2]B

DQS0B

Clock Control

Block (1)

Clock Control

Block (1)

4

4

4

4

4

3

4

Global Clock

Bus (2)

(3)

(3)

(3)

(3)

3

3

3

ac/package_outlines/cyc_c52006-html.html
background image

9–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

DDR Memory Interface Pins

For example, to implement a 72-bit wide SDRAM memory interface in 
Cyclone II devices, use 5 DQS/DQ groups in the top I/O bank and 4 
DQS/DQ groups in the bottom I/O bank, or vice-versa. In this case, if 
DQS0T or DQS1T is used for the fifth DQS signal, the DQS2R or DQS2L 
pins become regular I/O pins and are unavailable for DQS signals in 
memory interface. For detailed information about the global clock 
network, refer to the 

Global Clock Network & Phase Locked Loops

 section in 

the 

Cyclone II Architecture

 chapter of the 

Cyclone II Device Handbook

.

You must configure the DQ and DQS pins as bidirectional DDR pins on 
all the I/O banks of the device. Use the 

altdq

 and 

altdqs

 

megafunctions to configure the DQ and DQS paths, respectively. If you 
only want to use the DQ or DQS pins as inputs, for instance in the QDRII 
memory interface where DQ and DQS are unidirectional read data and 
read clock, set the output enable of the DQ or DQS pins to ground. For 
further information, please refer to the section 

“QDRII SRAM” on 

page 9–5

 of this handbook.

Clock, Command & Address Pins

You can use any of the user I/O pins on all the I/O banks (that support 
the external memory’s I/O standard) of the device to generate clocks and 
command and address signals to the memory device.

Parity, DM & ECC Pins

You can use any of the DQ pins for the parity pins in Cyclone II devices. 
Cyclone II devices support parity in the ×8/×9 and ×16/×18 modes. 
There is one parity bit available per 8 bits of data pins.

The data mask (DM) pins are required when writing to DDR SDRAM and 
DDR2 SDRAM devices. A low signal on the DM pin indicates that the 
write is valid. If the DM signal is high, the memory masks the DQ signals. 
In Cyclone II devices, the DM pins are pre-assigned in the device pin outs, 
and these are the preferred pins. Each group of DQS and DQ signals 
requires a DM pin. Similar to the DQ output signals, the DM signals are 
clocked by the –90° shifted clock.

Some DDR SDRAM and DDR2 SDRAM devices support error correction 
coding (ECC) or parity. Parity bit checking is a way to detect errors, but it 
has no correction capabilities. ECC can detect and automatically correct 
errors in data transmission. In 72-bit DDR SDRAM, there are 8 ECC pins 
on top of the 64 data pins. Connect the DDR and DDR2 SDRAM ECC pins 
to a Cyclone II device’s DQS/DQ group. The memory controller needs 
extra logic to encode and decode the ECC data.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–15

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

Phase Lock Loop (PLL)

When using the Cyclone II I/O banks to interface with the DDR memory, 
at least one PLL with two outputs is needed to generate the system clock 
and the write clock. The system clock generates the DQS write signals, 
commands, and addresses. The write clock shifts by –90° from the system 
clock and generates the DQ signals during writes.

Clock Delay Control

Clock delay control circuit on each DQS pin allows a phase shift that 
center-aligns the incoming DQS signals within the data window of their 
corresponding DQ data signals. The phase-shifted DQS signals drive the 
global clock network. This global DQS signal then clocks the DQ signals 
on internal LE registers. The clock delay control circuitry is used during 
the read operations where the DQS signals are acting as input clocks or 
strobes.

Figure 9–8

 illustrates DDR SDRAM interfacing from the I/O pins 

through the dedicated circuitry to the logic array.

Figure 9–8. DDR SDRAM Interfacing

Figure 9–1 on page 9–4

 shows an example where the DQS signal is shifted 

by 90°. The DQS signal goes through the 90° shift delay set by the clock 
delay control circuitry and global clock routing delay from the clock delay 
control circuitry to the DQ LE registers. The DQ signals only goes through 
routing delays from the DQ pin to the DQ LE registers. The delay from 

DQS

OE

VCC

PLL

GND

clk

DQ

OE

DataA

DataB

Resynchronizing
to System Clock

Global Clock

Clock Delay

Control Circuitry

-90˚ Shifted clk

Adjacent LAB LEs

Clock Control

Block

LE

Register

LE

Register

LE

Register

LE

Register

t

en/dis

Dynamic Enable/Disable

Circuitry

ENOUT

ena_register_mode

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

LE

Register

ac/package_outlines/cyc_c52006-html.html
background image

9–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

DDR Memory Interface Pins

DQS pin to the DQ LE register does not necessarily match the delay from 
the DQ pin to the DQ LE register. Therefore, you must adjust the clock 
delay control circuitry to compensate for this difference in delays.

DQS Postamble

For external memory interfaces that use a bidirectional read strobe, such 
as DDR and DDR2 SDRAM, the DQS signal is low before going to or 
coming from the high-impedance state (see 

Figure 9–1

). The state where 

DQS is low just after high-impedance is called the preamble and the state 
where DQS is low just before it goes to high-impedance is called the 
postamble. There are preamble and postamble specifications for both 
read and write operations in DDR and DDR2 SDRAM. If the Cyclone II 
device or the DDR/DDR2 SDRAM device does not drive the DQ and 
DQS pins, the signals go to a high-impedance state. Because a pull-up 
resistor terminates both DQ and DQS to V

TT

 (1.25 V for SSTL-2 and 0.9 V 

for SSTL-18), the effective voltage on the high-impedance line is either 
1.25 V or 0.9 V. According to the JEDEC JESD8-9 specification for SSTL-2 
I/O standard and the JESD8-15A specification for SSTL-18 I/O standard, 
this is an indeterminate logic level, and the input buffer can interpret this 
as either a logic high or logic low. If there is any noise on the DQS line, the 
input buffer may interpret that noise as actual strobe edges. 

Cyclone II devices have non-dedicated logic that can be configured to 
prevent a false edge trigger at the end of the DQS postamble. Each 
Cyclone II DQS signal is connected to postamble logic that consists of a D 
flip flop (see 

Figure 9–9

). This register is clocked by the shifted DQS 

signal. Its input is connected to ground. The controller needs to include 
extra logic to tell the reset signal to release the preset signal on the falling 
DQS edge at the start of the postamble. This disables any glitches that 
happen right after the postamble. This postamble logic is automatically 
implemented by the Altera MegaCore DDR/DDR2 SDRAM Controller in 
the LE register as part of the open-source datapath.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–17

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

Figure 9–9. Cyclone II DQS Postamble Circuitry Connection

Figure 9–10

 shows the timing waveform for 

Figure 9–9

. When the 

postamble logic detects the falling DQS edge at the start of postamble, it 
sends out a signal to disable the capture registers to prevent any 
accidental latching.

D

Q

ENA

Q

D

PRN

CLRN

D

Q

ENA

D

Q

ENA

Δ

t

Postamble

Logic

EnableN

Reset

Global

Clock Network

DQ[7..0]

DQS

DQS Programmable

Delay Chain

Circuitry

DQS'

Capture Register

Capture Register

Capture Register

ac/package_outlines/cyc_c52006-html.html
background image

9–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

DDR Memory Interface Pins

Figure 9–10. Cyclone II DQS Postamble Circuitry Control Timing Waveform

DDR Input Registers

In Cyclone II devices, the DDR input registers are implemented with five 
internal LE registers located in the logic array block (LAB) adjacent to the 
DDR input pin (see 

Figure 9–11

). The DDR data is fed to the first two 

registers, input register 

A

I

 and input register 

B

I

. Input register 

B

I

 

captures the DDR data present during the rising edge of the clock. Input 
register 

A

I

 captures the DDR data present during the falling edge of the 

clock. Register 

C

I

 aligns the data before it is transferred to the 

resynchronization registers.

Figure 9–11. DDR Input Implementation

DQS

DQS'

Reset

EnableN

resynch_clk

dataout_h

LE

Register

LE

Register

LE

Register

DQ

LE

Register

LE

Register

dataout_l

DQS

Input Register B

I

Input Register A

I

neg_reg_out

Register C

I

sync_reg_l

sync_reg_h

t

Inverted &
Delayed DQS

Clock Delay

Control Circuitry

DDR Input Configuration in Cyclone II

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–19

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

Registers 

sync_reg_h

 and 

sync_reg_l

 synchronize the two data 

streams to the rising edge of the resynchronization clock. 

Figure 9–12

 

shows examples of functional waveforms from a double data rate input 
implementation.

Figure 9–12. DDR Input Functional Waveforms

The Cyclone II DDR input registers require you to invert the incoming 
DQS signal to ensure proper data transfer. The 

altdq

 megafunction 

automatically adds the inverter on the clock port of the DQ signals. As 
shown in 

Figure 9–11

, the inverted DQS signal’s rising edge clocks 

register 

A

I

, its falling edge clocks register 

B

I

, and register 

C

I

 aligns the 

data clocked by register 

B

I

 with register 

A

I

 on the inverted DQS signal’s 

rising edge. In a DDR memory read operation, the last data coincides with 
the falling edge of DQS signal. If you do not invert the DQS pin, you do 
not get this last data because the register does not latch until the next 
rising edge of the DQS signal.

DQS

Delay_DQS

DQ

Output of

Input Register A

I

Output of

Input Register B

I

Output of

Register C

I

resync_clk

dataout_h

dataout_l

Q1

Q0

Q1

Q2

Q3

Q0

Q0

Q2

Q3

Q2

Q1

Q0

Q3

Q2

ac/package_outlines/cyc_c52006-html.html
background image

9–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

DDR Memory Interface Pins

Figure 9–13

 shows waveforms of the circuit shown in 

Figure 9–11

. Th

first set of waveforms in 

Figure 9–13

 shows the edge-aligned relationship 

between the DQ and DQS signals at the Cyclone II device pins. The 
second set of waveforms in 

Figure 9–13

 shows what happens if the 

shifted DQS signal is not inverted. In this case, the last data, Q

n

, does not 

get latched into the logic array as DQS goes to tri-state after the read 
postamble time. The third set of waveforms in 

Figure 9–13

 shows a 

proper read operation with the DQS signal inverted after the 90° shift. 
The last data, Q

n

, does get latched. In this case the outputs of register 

A

I

 

and register 

C

I

, which correspond to 

dataout_h

 and 

dataout_l

 ports, 

are now switched because of the DQS inversion. Register 

A

I

, register 

B

I

and register 

C

I

 refer to the nomenclature in 

Figure 9–11

.

Figure 9–13. DQ Captures With Noninverted & Inverted Shifted DQS

DQ & DQS Signals

DQ at the Pin

DQS at the Pin

Shifted DQS Signal is Not Inverted

Shifted DQS Signal is Inverted

DQS Shifted by 90˚

Output of Register AI (dataout_h)

Output of Register BI

Output of Register CI (dataout_l)

DQS Inverted and

Shifted by 90˚

Output of Register AI

(dataout_h)

Output of Register BI

Output of Register CI

(dataout_I)

Qn - 1

Qn - 2

Qn

Qn - 2

Qn - 1

Qn

 

- 2

Qn - 1

Qn

Qn - 2

Qn

Qn - 3

Qn - 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–21

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

DDR Output Registers

Figure 9–14

 shows a schematic representation of DDR output 

implemented in a Cyclone II device. The DDR output logic is 
implemented using LEs in the LAB adjacent to the output pin. Two 
registers synchronize two serial data streams. The registered outputs are 
then multiplexed by the common clock to drive the DDR output pin at 
two times the data rate.

Figure 9–14. DDR Output Implementation for DDR Memory Interfaces

While the clock signal is logic-high, the output from output register 

A

O

 is 

driven onto the DDR output pin. While the clock signal is logic-low, the 
output from output register 

B

O

 is driven onto the DDR output pin. The 

DDR output pin can be any available user I/O pin. Altera recommends 
the use of 

altdq

 and 

altdqs

 megafunctions to implement this output 

logic. This automatically provides the required tight placement and 
routing constraints on the LE registers and the output multiplexer.

Figure 9–15

 shows examples of functional waveforms from a DDR output 

implementation.

LE

Register

LE

Register

datain_h

datain_l

Output Register B

O

Output Register A

O

data1

data0

sel

DQ

-90˚ Shifted clk

ac/package_outlines/cyc_c52006-html.html
background image

9–22

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

DDR Memory Interface Pins

Figure 9–15. DDR Output Waveforms

Bidirectional DDR Registers

Figure 9–16

 shows a bidirectional DDR interface constructed using the 

DDR input and DDR output examples described in the previous two 
sections. As with the DDR input and DDR output examples, the 
bidirectional DDR pin can be any available user I/O pin. The registers 
that implement DDR bidirectional logic are LEs in the LAB adjacent to 
that pin. The tri-state buffer controls when the device drives data onto the 
bidirectional DDR pin.

outclk

datain_h

datain_l

data1

data0

DQ

D1

D0

D1

D2

D3

D0

D3

D2

D1

D0

D3

D2

D5

D4

D7

D6

D9

D8

D5

D4

D7

D6

D9

D8

D4

D5

D6

D7

D8

D9

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–23

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

Figure 9–16. Bidirectional DDR Implementation for DDR Memory Interfaces

Note (1)

Note to 

Figure 9–16

:

(1)

You can use the 

altdq

 and 

altdqs

 megafunctions to generate the DQ and DQS signals.

Figure 9–17

 shows example waveforms from a bidirectional DDR 

implementation.

resynch_clk

dataout_h

LE

Register

LE

Register

LE

Register

DQ

LE

Register

LE

Register

dataout_l

DQS

Input  Register B

I

Input  Register A

I

neg_reg_out

Register C

I

sync_reg_l

sync_reg_h

LE

Register

LE

Register

datain_h

datain_l

Output  Register B

O

Output  Register A

O

outclk

data1

data0

sel

OE

TRI

LE

Register

LE

Register

sel

TRI

V

CC

GND

t

Clock Delay

Control Circuitry

ac/package_outlines/cyc_c52006-html.html
background image

9–24

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Conclusion

Figure 9–17. DDR Bidirectional Waveforms

Conclusion

Cyclone II devices support SDR SDRAM, DDR SDRAM, DDR2 SDRAM, 
and QDRII SRAM external memories. Cyclone II devices feature high-
speed interfaces that transfer data between external memory devices at 
up to 167 MHz/333 Mbps for DDR and DDR2 SDRAM devices and 
167 MHz/667 Mbps for QDRII SRAM devices. The clock delay control 
circuitry allows you to fine tune the phase shift for the input clocks or 
strobes to properly align clock edges as needed to capture data.

outclk

OE

datain h

datain_l

data1

data0

DQ

D1

D0

D1

D2

D3

D0

D3

D2

D1

D0

D3

D2

DQS

Output of

Input Register A

I

Output of

Input Register B

I

Output of

Register C

I

resync_clk

dataout_h

dataout_l

Q1

Q0

Q1

Q2

Q3

Q0

Q0

Q2

Q3

Q2

Q1

Q0

Q3

Q2

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

9–25

February 2007

Cyclone II Device Handbook, Volume 1

External Memory Interfaces

Document 
Revision History

Table 9–4

 shows the revision history for this document.

Table 9–4. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v3.1

Added document revision history.

Added handpara note in 

“Data & Data Strobe Pins”

 

section.

Updated 

“DDR Output Registers”

 section.

Elaboration of DDR2 and 
QDRII interfaces supported 
by I/O bank included.

November 
2005, v2.1

Introduction

Updated 

Table 9–2

.

Updated 

Figure 9–7

.

July 2005, v2.0

Updated 

Table 9–2

.

November 
2004, v1.1

Moved the 

“External Memory Interface Standards”

 

section to follow the 

“Introduction”

 section.

Updated the 

“Data & Data Strobe Pins”

 section.

Updated 

Figures 9–11

9–12

9–15

9–16

, an

9–17

.

June 2004, v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

9–26

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

Section IV–1

Preliminary

Section IV. I/O Standards

This section provides information on Cyclone

®

 II single-ended, voltage 

referenced, and differential I/O standards.

This section includes the following chapters:

Chapter 10, Selectable I/O Standards in Cyclone II Devices

Chapter 11, High-Speed Differential Interfaces in Cyclone II Devices

Revision History 

Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Section IV–2

 

Altera Corporation

Preliminary

Revision History

Cyclone II Device Handbook, Volume 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

10–1

February 2008

10. Selectable I/O Standards

in Cyclone II Devices

Introduction

The proliferation of I/O standards and the need for improved I/O 
performance have made it critical that low-cost devices have flexible I/O 
capabilities. Selectable I/O capabilities such as SSTL-18, SSTL-2, and 
LVDS compatibility allow Cyclone

®

II devices to connect to other devices 

on the same printed circuit board (PCB) that may require different 
operating and I/O voltages. With these aspects of implementation easily 
manipulated using the Altera

®

 Quartus

®

II software, the Cyclone II 

device family allows you to use low cost FPGAs while keeping pace with 
increasing design complexity.

This chapter is a guide to understanding the input and output capabilities 
of the Cyclone II devices, including:

Supported I/O standards

Cyclone II I/O banks

Programmable current drive strength

I/O termination

Pad placement and DC guidelines

f

For information on hot socketing, refer to th

Hot Socketing & Power-On 

Reset

 

chapter in volume 1 of the 

Cyclone II Device Handbook

.

For information on ESD specifications, refer to the 

Altera Reliability Report

Supported I/O 
Standards

Cyclone II devices support the I/O standards shown in 

Table 10–1

.

f

For more details on the I/O standards discussed in this section, 
including target data rates and voltage values for each I/O standard, 
refer to the 

DC Characteristics and Timing Specifications

 

chapter in 

volume 1 of the

 Cyclone II Device Handbook

.

CII51010-2.4

ac/package_outlines/cyc_c52006-html.html
background image

10–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Supported I/O Standards

f

For information about the I/O standards supported for external memory 
applications, refer to the 

External Memory Interfaces

 chapter in volume 

of the 

Cyclone II Device Handbook

.

Table 10–1. Cyclone II Supported I/O Standards and Constraints (Part 1 of 2)

I/O Standard

Type

V

CCIO

 Level

Top and 

Bottom I/O 

Pins

Side I/O Pins

Input

Output

CLK, 

DQS

User I/O 

Pins

CLK, 

DQS

PLL_OUT

User I/O 

Pins

3.3-V LVTTL and LVCMOS

Single ended

3.3 V/

2.5 V

3.3 V

v

v

v

v

v

2.5-V LVTTL and LVCMOS

Single ended

3.3 V/

2.5 V

2.5 V

v

v

v

v

v

1.8-V LVTTL and LVCMOS

Single ended

1.8 V/

1.5 V

1.8 V

v

v

v

v

v

1.5-V LVCMOS

Single ended

1.8 V/

1.5 V

1.5 V

v

v

v

v

v

SSTL-2 class I

Voltage 
referenced

2.5 V

2.5 V

v

v

v

v

v

SSTL-2 class II

Voltage 
referenced

2.5 V

2.5 V

v

v

v

v

v

SSTL-18 class I

Voltage 
referenced

1.8 V

1.8 V

v

v

v

v

v

SSTL-18 class II

Voltage 
referenced

1.8 V

1.8 V

v

v

(1)

(1)

(1)

HSTL-18 class I

Voltage 
referenced

1.8 V

1.8 V

v

v

v

v

v

HSTL-18 class II

Voltage 
referenced

1.8 V

1.8 V

v

v

(1)

(1)

(1)

HSTL-15 class I

Voltage 
referenced

1.5 V

1.5 V

v

v

v

v

v

HSTL-15 class II

Voltage 
referenced 

1.5 V

1.5 V

v

v

(1)

(1)

(1)

PCI and PCI-X 

(2)

Single ended

3.3 V

3.3 V

v

v

v

Differential SSTL-2 class I or 
class II

Pseudo 
differential 

(3)

(4)

2.5 V

v

2.5 V

(4)

(5)

 

(5)

 

Differential SSTL-18 class I 
or class II

Pseudo 
differential 

(3)

(4)

1.8 V

v

 

(6)

1.8 V

(4)

(5)

(5)

 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–3

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

3.3-V LVTTL (EIA/JEDEC Standard JESD8-B)

The 3.3-V LVTTL I/O standard is a general-purpose, single-ended 
standard used for 3.3-V applications. The LVTTL standard defines the DC 
interface parameters for digital circuits operating from a 3.0-/3.3-V 
power supply and driving or being driven by LVTTL-compatible devices. 

The LVTTL input standard specifies a wider input voltage range of 
– 0.3 V

V

I

3.9 V. Altera recommends an input voltage range of 

– 0.5 V

V

I

4.1 V.

Differential HSTL-15 class I 
or class II

Pseudo 
differential 

(3)

(4)

1.5 V

v

 

(6)

1.5 V

(4)

(5)

(5)

 

Differential HSTL-18 class I 
or class II

Pseudo 
differential 

(3)

(4)

1.8 V

v

 

(6)

1.8 V

(4)

(5)

(5)

 

LVDS

Differential

2.5 V

2.5 V

v

v

v

v

v

RSDS and mini-LVDS 

(7)

Differential

(4)

2.5 V

v

v

v

LVPECL 

(8)

Differential

3.3 V/
2.5 V/
1.8 V/
1.5 V

(4)

v

v

Notes to 

Table 10–1

:

(1)

These pins support SSTL-18 class II and 1.8- and 1.5-V HSTL class II inputs.

(2)

PCI-X does not meet the IV curve requirement at the linear region. PCI-clamp diode is not available on top and 
bottom I/O pins.

(3)

Pseudo-differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed 
as inverted. Pseudo-differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and 
SSTL inputs and only decode one of them.

(4)

This I/O standard is not supported on these I/O pins.

(5)

This I/O standard is only supported on the dedicated clock pins.

(6)

PLL_OUT

 does not support differential SSTL-18 class II and differential 1.8 and 1.5-V HSTL class II.

(7)

mini-LVDS and RSDS are only supported on output pins.

(8)

LVPECL is only supported on clock inputs, not DQS and dual-purpose clock pins.

Table 10–1. Cyclone II Supported I/O Standards and Constraints (Part 2 of 2)

I/O Standard

Type

V

CCIO

 Level

Top and 

Bottom I/O 

Pins

Side I/O Pins

Input

Output

CLK, 

DQS

User I/O 

Pins

CLK, 

DQS

PLL_OUT

User I/O 

Pins

ac/package_outlines/cyc_c52006-html.html
background image

10–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Supported I/O Standards

3.3-V LVCMOS (EIA/JEDEC Standard JESD8-B)

The 3.3-V LVCMOS I/O standard is a general-purpose, single-ended 
standard used for 3.3-V applications. The LVCMOS standard defines the 
DC interface parameters for digital circuits operating from a 3.0- or 3.3-V 
power supply and driving or being driven by LVCMOS-compatible 
devices.

The LVCMOS standard specifies the same input voltage requirements as 
LVTTL (– 0.3 V

V

I

3.9 V). The output buffer drives to the rail to meet the 

minimum high-level output voltage requirements. The 3.3-V I/O 
standard does not require input reference voltages or board terminations. 
Cyclone II devices support both input and output levels specified by the 
3.3-V LVCMOS I/O standard.

3.3-V (PCI Special Interest Group [SIG] PCI Local Bus 
Specification Revision 3.0)

The PCI local bus specification is used for applications that interface to 
the PCI local bus, which provides a processor-independent data path 
between highly integrated peripheral controller components, peripheral 
add-in boards, and processor/memory systems. The conventional PCI 
specification revision 3.0 defines the PCI hardware environment 
including the protocol, electrical, mechanical, and configuration 
specifications for the PCI devices and expansion boards. This standard 
requires a 3.3-V V

CCIO

. The 3.3-V PCI standard does not require input 

reference voltages or board terminations.

The side (left and right) I/O banks on all Cyclone II devices are fully 
compliant with the 3.3V PCI Local Bus Specification Revision 3.0 and 
meet 32-bit/66 MHz operating frequency and timing requirements.

Table 10–2

 lists the specific Cyclone II devices that support 64- and 32-bit 

PCI at 66 MHz.

Table 10–2. Cyclone II 66-MHz PCI Support (Part 1 of 2)

Device

Package

–6 and –7 Speed Grades

64 Bits

32 Bits

EP2C5

144-pin TQFP

208-pin PQFP

v

256-pin FineLineBGA

®

v

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–5

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Table 10–3

 lists the specific Cyclone II devices that support 64-bit and 

32-bit PCI at 33 MHz.

EP2C8

144-pin TQFP

208-pin PQFP

v

256-pin FineLine BGA

v

EP2C15

256-pin FineLine BGA

v

484-pin FineLine BGA

v

v

EP2C20

240-pin PQFP

v

256-pin FineLine BGA

v

484-pin FineLine BGA

v

v

EP2C35

484-pin FineLine BGA

v

v

672-pin FineLine BGA

v

v

EP2C50

484-pin FineLine BGA

v

v

672-pin FineLine BGA

v

v

EP2C70

672-pin FineLine BGA

v

v

896-pin FineLine BGA

v

v

Table 10–3. Cyclone II 33-MHz PCI Support (Part 1 of 2)

Device

Package

–6, –7 and –8 Speed Grades

64 Bits

32 Bits

EP2C5

144-pin TQFP

208-pin PQFP

v

256-pin FineLine BGA

v

EP2C8

144-pin TQFP

208-pin PQFP

v

256-pin FineLine BGA

v

EP2C15

256-pin FineLine BGA

v

484-pin FineLine BGA

v

v

Table 10–2. Cyclone II 66-MHz PCI Support (Part 2 of 2)

Device

Package

–6 and –7 Speed Grades

64 Bits

32 Bits

ac/package_outlines/cyc_c52006-html.html
background image

10–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Supported I/O Standards

3.3-V PCI-X

The 3.3-V PCI-X I/O standard is formulated under PCI-X Local Bus 
Specification Revision 1.0 developed by the PCI SIG. 

The PCI-X 1.0 standard is used for applications that interface to the PCI 
local bus. The standard enables the design of systems and devices that 
operate at clock speeds up to 133 MHz, or 1 gigabit per second (Gbps) for 
a 64-bit bus. The PCI-X 1.0 protocol enhancements enable devices to 
operate much more efficiently, providing more usable bandwidth at any 
clock frequency. By using the PCI-X 1.0 standard, devices can be designed 
to meet PCI-X 1.0 requirements and operate as conventional 33- and 
66-MHz PCI devices when installed in those systems. This standard 
requires 3.3-V V

CCIO

. Cyclone II devices are fully compliant with the 3.3-V 

PCI-X Specification Revision 1.0a and meet the 133 MHz operating 
frequency and timing requirements. The 3.3-V PCI-X standard does not 
require input reference voltages or board terminations. Cyclone II devices 
support both input and output levels operation for left and right I/O 
banks. 

Easy-to-Use, Low-Cost PCI Express Solution

PCI Express is rapidly establishing itself as the successor to PCI, 
providing higher performance, increased flexibility, and scalability for 
next-generation systems without increasing costs, all while maintaining 
software compatibility with existing PCI applications. Now you can 
easily design high volume, low-cost PCI Express ×1 solutions today 
featuring:

EP2C20

240-pin PQFP

v

256-pin FineLine BGA

v

484-pin FineLine BGA

v

v

EP2C35

484-pin FineLine BGA

v

v

672-pin FineLine BGA

v

v

EP2C50

484-pin FineLine BGA

v

v

672-pin FineLine BGA

v

v

EP2C70

672-pin FineLine BGA

v

v

896-pin FineLine BGA

v

v

Table 10–3. Cyclone II 33-MHz PCI Support (Part 2 of 2)

Device

Package

–6, –7 and –8 Speed Grades

64 Bits

32 Bits

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–7

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Cyclone II FPGA (EP2C15 or larger) 

Altera PCI Express Compiler ×1 MegaCore

® 

function

External PCI Express transceiver/PHY

2.5-V LVTTL (EIA/JEDEC Standard EIA/JESD8-5)

The 2.5-V I/O standard is used for 2.5-V LVTTL applications. This 
standard defines the DC interface parameters for high-speed, 
low-voltage, non-terminated digital circuits driving or being driven by 
other 2.5-V devices. 

The 2.5-V standard does not require input reference voltages or board 
terminations. Cyclone II devices support input and output levels for 
2.5-V LVTTL.

2.5-V LVCMOS (EIA/JEDEC Standard EIA/JESD8-5)

The 2.5-V I/O standard is used for 2.5-V LVCMOS applications. This 
standard defines the DC interface parameters for high-speed, 
low-voltage, non-terminated digital circuits driving or being driven by 
other 2.5-V parts. 

The 2.5-V standard does not require input reference voltages or board 
terminations. Cyclone II devices support input and output levels for 
2.5-V LVCMOS.

SSTL-2 Class I and II (EIA/JEDEC Standard JESD8-9A)

The SSTL-2 I/O standard is a 2.5-V memory bus standard used for 
applications such as high-speed double data rate (DDR) SDRAM 
interfaces. This standard defines the input and output specifications for 
devices that operate in the SSTL-2 logic switching range of 0.0 to 2.5 V. 
This standard improves operations in conditions where a bus must be 
isolated from large stubs. The SSTL-2 standard specifies an input voltage 
range of – 0.3 V

V

I

V

CCIO 

+ 0.3 V. SSTL-2 requires a V

REF

 value of 1.25 V 

and a V

TT 

value of 1.25 V connected to the termination resistors (refer to 

Figures 10–1

 and 

10–2

). 

ac/package_outlines/cyc_c52006-html.html
background image

10–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Supported I/O Standards

Figure 10–1. SSTL-2 Class I Termination

Figure 10–2. SSTL-2 Class II Termination

Cyclone II devices support both input and output SSTL-2 class I and II 
levels.

Pseudo-Differential SSTL-2 

The differential SSTL-2 I/O standard (EIA/JEDEC standard JESD8-9A) is 
a 2.5-V standard used for applications such as high-speed DDR SDRAM 
clock interfaces. This standard supports differential signals in systems 
using the SSTL-2 standard and supplements the SSTL-2 standard for 
differential clocks. The differential SSTL-2 standard specifies an input 
voltage range of – 0.3 V

V

I

V

CCIO

+ 0.3 V. The differential SSTL-2 

standard does not require an input reference voltage. Refer to 

Figures 10–3

 and 

10–4

 for details on differential SSTL-2 terminations. 

Cyclone II devices do not support true differential SSTL-2 standards. 
Cyclone II devices support pseudo-differential SSTL-2 outputs for 

PLL_OUT

 pins and pseudo-differential SSTL-2 inputs for clock pins. 

Pseudo-differential inputs require an input reference voltage as opposed 
to the true differential inputs. Refer to 

Table 10–1 on page 10–2

 for 

information about pseudo-differential SSTL. 

Output Buffer

Input Buffer

V

TT

 = 1.25 V

50 

Ω

25 

Ω

Z = 50 

Ω

V

REF

 = 1.25 V

Output Buffer

Input Buffer

V

TT

 = 1.25 V

50 

Ω

V

TT

 = 1.25 V

50 

Ω

25 

Ω

Z = 50 

Ω

V

REF

 = 1.25 V

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–9

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Figure 10–3. SSTL-2 Class I Differential Termination

Figure 10–4. SSTL-2 Class II Differential Termination

1.8-V LVTTL (EIA/JEDEC Standard EIA/JESD8-7)

The 1.8-V I/O standard is used for 1.8-V LVTTL applications. This 
standard defines the DC interface parameters for high-speed, 
low-voltage, non-terminated digital circuits driving or being driven by 
other 1.8-V parts.

The 1.8-V standard does not require input reference voltages or board 
terminations. Cyclone II devices support input and output levels for 
1.8-V LVTTL. 

Differential

Transmitter

Differential

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 = 1.25 V

V

TT

 = 1.25 V

25 

Ω

25 

Ω

Differential

Transmitter

Differential

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 = 1.25 V

V

TT

 = 1.25 V

50 

Ω

50 

Ω

V

TT

 = 1.25 V

V

TT

 = 1.25 V

25 

Ω

25 

Ω

ac/package_outlines/cyc_c52006-html.html
background image

10–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Supported I/O Standards

1.8-V LVCMOS (EIA/JEDEC Standard EIA/JESD8-7)

The 1.8-V I/O standard is used for 1.8-V LVCMOS applications. This 
standard defines the DC interface parameters for high-speed, 
low-voltage, non-terminated digital circuits driving or being driven by 
other 1.8-V parts.

The 1.8-V standard does not require input reference voltages or board 
terminations. Cyclone II devices support input and output levels for 
1.8-V LVCMOS. 

SSTL-18 Class I and II 

The 1.8-V SSTL-18 standard is formulated under JEDEC Standard, 
JESD815: Stub Series Terminated Logic for 1.8V (SSTL-18). 

The SSTL-18 I/O standard is a 1.8-V memory bus standard used for 
applications such as high-speed DDR2 SDRAM interfaces. This standard 
is similar to SSTL-2 and defines input and output specifications for 
devices that are designed to operate in the SSTL-18 logic switching range 
0.0 to 1.8 V. SSTL-18 requires a 0.9-V V

REF 

and a 0.9-V V

TT

, with the 

termination resistors connected to both. There are no class definitions for 
the SSTL-18 standard in the JEDEC specification. The specification of this 
I/O standard is based on an environment that consists of both series and 
parallel terminating resistors. Altera provides solutions to two derived 
applications in JEDEC specification and names them class I and class II to 
be consistent with other SSTL standards. 

Figures 10–5

 and 

10–6

 show 

SSTL-18 class I and II termination, respectively. Cyclone II devices 
support both input and output levels.

Figure 10–5. 1.8-V SSTL Class I Termination

Output Buffer

Input Buffer

V

TT

 = 0.9 V

50 

Ω

25 

Ω

Z = 50 

Ω

V

REF

 = 0.9 V

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–11

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Figure 10–6. 1.8-V SSTL Class II Termination

1.8-V HSTL Class I and II

The HSTL standard is a technology independent I/O standard developed 
by JEDEC to provide voltage scalability. It is used for applications 
designed to operate in the 0.0- to 1.8-V HSTL logic switching range such 
as quad data rate (QDR) memory clock interfaces.

Although JEDEC specifies a maximum V

CCIO

 value of 1.6 V, there are 

various memory chip vendors with HSTL standards that require a V

CCIO

 

of 1.8 V. Cyclone II devices support interfaces with V

CCIO

 of 1.8 V for 

HSTL. 

Figures 10–7

 and 

10–8

 show the nominal V

REF

 and V

TT

 required to 

track the higher value of V

CCIO

. The value of V

REF

 is selected to provide 

optimum noise margin in the system. Cyclone II devices support both 
input and output levels of operation.

Figure 10–7. 1.8-V HSTL Class I Termination

Figure 10–8. 1.8-V HSTL Class II Termination

Output Buffer

Input Buffer

V

TT

 = 0.9 V

50 

Ω

V

TT

 = 0.9 V

50 

Ω

25 

Ω

Z = 50 

Ω

V

REF

 = 0.9 V

Output Buffer

Input Buffer

V

TT

 = 0.9 V

50 

Ω

Z = 50 

Ω

V

REF

 = 0.9 V

Output Buffer

Input Buffer

V

TT

 = 0.9 V

50 

Ω

Z = 50 

Ω

V

REF

 = 0.9 V

V

TT

 = 0.9 V

50 

Ω

ac/package_outlines/cyc_c52006-html.html
background image

10–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Supported I/O Standards

Pseudo-Differential SSTL-18 Class I and Differential SSTL-18 
Class II 

The 1.8-V differential SSTL-18 standard is formulated under JEDEC 
Standard, JESD8-15: Stub Series Terminated Logic for 1.8V (SSTL-18). 

The differential SSTL-18 I/O standard is a 1.8-V standard used for 
applications such as high-speed DDR2 SDRAM interfaces. This standard 
supports differential signals in systems using the SSTL-18 standard and 
supplements the SSTL-18 standard for differential clocks. Refer to 

Figures 10–9

 an

10–10

 for details on differential SSTL-18 termination. 

Cyclone II devices do not support true differential SSTL-18 standards. 
Cyclone II devices support pseudo-differential SSTL-18 outputs for 

PLL_OUT

 pins and pseudo-differential SSTL-18 inputs for clock pins. 

Pseudo-differential inputs require an input reference voltage as opposed 
to the true differential inputs. Refer to 

Table 10–1 on page 10–2

 for 

information about pseudo-differential SSTL. 

Figure 10–9. Differential SSTL-18 Class I Termination

Differential

Transmitter

Differential

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 = 0.9 V

V

TT

 = 0.9 V

25 

Ω

25 

Ω

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–13

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Figure 10–10. Differential SSTL-18 Class II Termination

1.8-V Pseudo-Differential HSTL Class I and II 

The 1.8-V differential HSTL specification is the same as the 1.8-V 
single-ended HSTL specification. It is used for applications designed to 
operate in the 0.0 to 1.8-V HSTL logic switching range such as QDR 
memory clock interfaces. Cyclone II devices support both input and 
output levels. Refer to 

Figures 10–11

 and 

10–12

 for details on 1.8-V 

differential HSTL termination.

Cyclone II devices do not support true 1.8-V differential HSTL standards. 
Cyclone II devices support pseudo-differential HSTL outputs for 

PLL_OUT

 pins and pseudo-differential HSTL inputs for clock pins. 

Pseudo-differential inputs require an input reference voltage as opposed 
to the true differential inputs. Refer to 

Table 10–1 on page 10–2

 for 

information about pseudo-differential HSTL.

Figure 10–11. 1.8-V Differential HSTL Class I Termination

Differential

Transmitter

Differential

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 = 0.9 V

V

TT

 = 0.9 V

50 

Ω

50 

Ω

V

TT

 = 0.9 V

V

TT

 = 0.9 V

25 

Ω

25 

Ω

Differential

Transmitter

Differential

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 = 0.9 V

V

TT

 = 0.9 V

ac/package_outlines/cyc_c52006-html.html
background image

10–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Supported I/O Standards

Figure 10–12. 1.8-V Differential HSTL Class II Termination

1.5-V LVCMOS (EIA/JEDEC Standard JESD8-11)

The 1.5-V I/O standard is used for 1.5-V applications. This standard 
defines the DC interface parameters for high-speed, low-voltage, 
non-terminated digital circuits driving or being driven by other 1.5-V 
devices.

The 1.5-V standard does not require input reference voltages or board 
terminations. Cyclone II devices support input and output levels for 
1.5-V LVCMOS.

1.5-V HSTL Class I and II 

The 1.5-V HSTL standard is formulated under EIA/JEDEC Standard, 
EIA/JESD8-6: A 1.5V Output Buffer Supply Voltage Based Interface 
Standard for Digital Integrated Circuits. 

The 1.5-V HSTL I/O standard is used for applications designed to operate 
in the 0.0- to 1.5-V HSTL logic nominal switching range. This standard 
defines single-ended input and output specifications for all 
HSTL-compliant digital integrated circuits. The 1.5-V HSTL I/O standard 
in Cyclone II devices is compatible with the 1.8-V HSTL I/O standard in 
APEX™ 20KE, APEX 20KC, Stratix

®

II, Stratix GX, Stratix, and in 

Cyclone II devices themselves because the input and output voltage 
thresholds are compatible. Refer to 

Figures 10–13

 and 

10–14

. Cyclone II 

devices support both input and output levels with V

REF

 and V

TT

.

Differential

Transmitter

Differential

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 = 0.9 V

V

TT

 = 0.9 V

50 

Ω

50 

Ω

V

TT

 = 0.9 V

V

TT

 = 0.9 V

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–15

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Figure 10–13. 1.5-V HSTL Class I Termination

Figure 10–14. 1.5-V HSTL Class II Termination

1.5-V Pseudo-Differential HSTL Class I and II 

The 1.5-V differential HSTL standard is formulated under EIA/JEDEC 
Standard, EIA/JESD8-6: A 1.5V Output Buffer Supply Voltage Based 
Interface Standard for Digital Integrated Circuits.

The 1.5-V differential HSTL specification is the same as the 1.5-V 
single-ended HSTL specification. It is used for applications designed to 
operate in the 0.0- to 1.5-V HSTL logic switching range, such as QDR 
memory clock interfaces. Cyclone II devices support both input and 
output levels. Refer to 

Figures 10–15

 and 

10–16

 for details on the 1.5-V 

differential HSTL termination.

Cyclone II devices do not support true 1.5-V differential HSTL standards. 
Cyclone II devices support pseudo-differential HSTL outputs for 

PLL_OUT

 pins and pseudo-differential HSTL inputs for clock pins. 

Pseudo-differential inputs require an input reference voltage as opposed 
to the true differential inputs. Refer to 

Table 10–1 on page 10–2

 for 

information about pseudo-differential HSTL. 

Output Buffer

Input Buffer

V

TT

 = 0.75 V

50 

Ω

Z = 50 

Ω

V

REF

 = 0.75 V

Output Buffer

Input Buffer

V

TT

 = 0.75 V

50 

Ω

V

TT

 = 0.75 V

50 

Ω

Z = 50 

Ω

V

REF

 = 0.75 V

ac/package_outlines/cyc_c52006-html.html
background image

10–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Supported I/O Standards

Figure 10–15. 1.5-V Differential HSTL Class I Termination

Figure 10–16. 1.5-V Differential HSTL Class II Termination

LVDS, RSDS and mini-LVDS

The LVDS standard is formulated under ANSI/TIA/EIA Standard, 
ANSI/TIA/EIA-644: Electrical Characteristics of Low Voltage 
Differential Signaling Interface Circuits.

The LVDS I/O standard is a differential high-speed, low-voltage swing, 
low-power, general-purpose I/O interface standard. This standard is 
used in applications requiring high-bandwidth data transfer, backplane 
drivers, and clock distribution. Cyclone II devices are capable of running 
at a maximum data rate of 805 Mbps for input and 640 Mbps for output 
and still meet the ANSI/TIA/EIA-644 standard. 

Because of the low voltage swing of the LVDS I/O standard, the 
electromagnetic interference (EMI) effects are much smaller than 
complementary metal-oxide semiconductor (CMOS), 

Differential

Transmitter

Differential

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 = 0.75 V

V

TT

 = 0.75 V

Differential

Transmitter

Differential

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 = 0.75 V

V

TT

 = 0.75 V

50 

Ω

50 

Ω

V

TT

 = 0.75 V

V

TT

 = 0.75 V

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–17

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

transistor-to-transistor logic (TTL), and positive (or pseudo) emitter 
coupled logic (PECL). This low EMI makes LVDS ideal for applications 
with low EMI requirements or noise immunity requirements. The LVDS 
standard does not require an input reference voltage. However, it does 
require a termination resistor of 90 to 110

Ω

 between the two signals at the 

input buffer. Cyclone II devices support true differential LVDS inputs and 
outputs. 

f

LVDS outputs on Cyclone II need external resistor network to work 
properly. Refer to the 

High Speed Differential Interfaces in Cyclone II Devices

 

chapter in volume 1 of the

 Cyclone II Device Handbook 

for more 

information. 

For reduced swing differential signaling (RSDS), V

OD

 ranges from 100 to 

600 mV. For mini-LVDS, V

OD

 ranges from 300 to 600 mV. The differential 

termination resistor value ranges from 95 to 105

Ω

 for both RSDS and 

mini-LVDS. Cyclone II devices support RSDS/mini-LVDS outputs only. 

Differential LVPECL

The low voltage positive (or pseudo) emitter coupled logic (LVPECL) 
standard is a differential interface standard recommending V

CCIO

 of  

3.3 V. The LVPECL standard also supports V

CCIO

 of 2.5 V, 1.8 V and 1.5 V. 

The standard is used in applications involving video graphics, 
telecommunications, data communications, and clock distribution. The 
high-speed, low-voltage swing LVPECL I/O standard uses a positive 
power supply and is similar to LVDS. However, LVPECL has a larger 
differential output voltage swing than LVDS. The LVPECL standard does 
not require an input reference voltage, but it does require an external 
100-

Ω

 termination resistor between the two signals at the input buffer. 

Figures 10–17

 and 

10–18

 show two alternate termination schemes for 

LVPECL. LVPECL input standard is supported at the clock input pins on 
Cyclone II devices. LVPECL output standard is not supported.

Figure 10–17. LVPECL DC Coupled Termination

Output Buffer

Input Buffer

100 

Ω

Z = 50 

Ω

Z = 50 

Ω

ac/package_outlines/cyc_c52006-html.html
background image

10–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Cyclone II I/O Banks

Figure 10–18. LVPECL AC Coupled Termination

Cyclone II I/O 
Banks

The I/O pins on Cyclone II devices are grouped together into I/O banks, 
and each bank has a separate power bus. This allows you to select the 
preferred I/O standard for a given bank, enabling tremendous flexibility 
in the Cyclone II device’s I/O support.

EP2C5 and EP2C8 devices support four I/O banks. EP2C15, EP2C20, 
EP2C35, EP2C50, and EP2C70 devices support eight I/O banks. Each 
device I/O pin is associated with one of these specific, numbered I/O 
banks (refer to 

Figures 10–19

 and 

10–20

). To accommodate 

voltage-referenced I/O standards, each Cyclone II I/O bank has separate 
V

REF

 bus. Each bank in EP2C5, EP2C8, EP2C15, EP2C20, EP2C35, and 

EP2C50 devices supports two 

VREF

 pins and each bank in EP2C70 

devices supports four 

VREF

 pins. In the event these pins are not used as 

VREF

 pins, they may be used as regular I/O pins. However, they are 

expected to have slightly higher pin capacitance than other user I/O pins 
when used with regular user I/O pins. 

Output Buffer

Input Buffer

100 

Ω

Z = 50 

Ω

Z = 50 

Ω

V

CCIO

V

CCIO

R2

R2

R1

R1

10 to 100 nF

10 to 100 nF

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–19

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Figure 10–19. EP2C5 and EP2C8 Device I/O Banks

Notes (1)

(2)

Notes to 

Figure 10–19

:

(1)

This is a top view of the silicon die.

(2)

This is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

Regular I/O Bank

Individual Power Bus

Regular I/O Bank

Regular I/O Bank

Regular I/O Bank

1

2

3

4

ac/package_outlines/cyc_c52006-html.html
background image

10–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Cyclone II I/O Banks

Figure 10–20. EP2C15, EP2C20, EP2C35, EP2C50, and EP2C70 Device I/O Banks

Notes (1)

(2)

Notes to 

Figure 10–20

:

(1)

This is a top view of the silicon die.

(2)

This is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

Regular I/O Bank

Regular I/O Bank

Individual Power Bus

Regular I/O Bank

Regular I/O Bank

Regular I/O Bank

Regular I/O Bank

Regular I/O Bank

Regular I/O Bank

4

2

1

8

7

6

5

3

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–21

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Additionally, each Cyclone II I/O bank has its own 

VCCIO

 pins. Any 

single I/O bank can only support one V

CCIO

 setting from among 1.5, 1.8, 

2.5 or 3.3 V. Although there can only be one V

CCIO 

voltage per I/O bank, 

Cyclone II devices permit additional input signaling capabilities, as 
shown in 

Table 10–4

Any number of supported single-ended or differential standards can be 
simultaneously supported in a single I/O bank as long as they use 
compatible V

CCIO

 levels for input and output pins. For example, an I/O 

bank with a 2.5-V V

CCIO

 setting can support 2.5-V LVTTL inputs and 

outputs, 2.5-V LVDS-compatible inputs and outputs, and 3.3-V LVCMOS 
inputs only.

Voltage-referenced standards can be supported in an I/O bank using any 
number of single-ended or differential standards as long as they use the 
same V

REF

 and a compatible V

CCIO

 value. For example, if you choose to 

implement both SSTL-2 and SSTL-18 in your Cyclone II device, I/O pins 
using these standards—because they require different V

REF

 values—must 

be in different banks from each other. However, the same I/O bank can 
support SSTL-2 and 2.5-V LVCMOS with the V

CCIO

 set to 2.5 V and the 

V

REF

 set to 1.25 V.

Refer to 

“Pad Placement and DC Guidelines” on page 10–27

 

for more 

information.

Table 10–4. Acceptable Input Levels for LVTTL and LVCMOS

Bank V

CCIO

 (V)

Acceptable Input Levels (V)

3.3

2.5

1.8

1.5

3.3

v

v

 

(1)

2.5

v

v

1.8

v

 

(2)

v

 

(2)

v

v

 

(1)

1.5

v

 

(2)

v

 

(2)

v

v

Notes to 

Table 10–4

:

(1)

Because the input level does not drive to the rail, the input buffer does not 
completely shut off, and the I/O current is slightly higher than the default value. 

(2)

These input values overdrive the input buffer, so the pin leakage current is 
slightly higher than the default value. To drive inputs higher than V

CCIO

 but less 

than 4.0 V, disable the PCI clamping diode and turn on 

Allow voltage overdrive 

for LVTTL/LVCMOS input pins

 in Settings > Device > Device and Pin Options 

> Pin Placement tab. This setting allows input pins with LVTTL or LVCMOS I/O 
standards to be placed by the Quartus II software in an I/O bank with a lower 
V

CCIO

 voltage than the voltage specified by the pins.

ac/package_outlines/cyc_c52006-html.html
background image

10–22

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Cyclone II I/O Banks

Table 10–5

 shows I/O standards supported when a pin is used as a 

regular I/O pin in the I/O banks of Cyclone II devices.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–23

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Table 10–5. Cyclone II Regular I/O Standards Support

I/O Standard

I/O Banks for EP2C15, EP2C20, EP2C35, EP2C50 and 

EP2C70 Devices

I/O Banks for EP2C5 and 

EP2C8 Devices

1

2

3

4

5

6

7

8

1

2

3

4

LVTTL

v

v

v

v

v

v

v

v

v

v

v

LVCMOS

v

v

v

v

v

v

v

v

v

v

v

2.5 V 

v

v

v

v

v

v

v

v

v

v

v

1.8 V 

v

v

v

v

v

v

v

v

v

v

v

1.5 V 

v

v

v

v

v

v

v

v

v

v

v

v

3.3-V PCI

v v

v

v

v

v

3.3-V PCI-X

v

v

v

v

v

v

SSTL-2 class I 

v

v

v

v

v

v

v

v

v

v

v

SSTL-2 class II 

v

v

v

v

v

v

v

v

v

v

v

v

SSTL-18 class I

v

v

v

v

v

v

v

v

v

v

v

SSTL-18 class II

(1)

(1)

v v

(1)

(1)

v

v

(1)

v

(1)

v

1.8-V HSTL class I

v

v

v

v

v

v

v

v

v

v

v

1.8-V HSTL class II

(1)

(1)

v v

(1)

(1)

v

v

(1)

v

(1)

v

1.5-V HSTL class I

v

v

v

v

v

v

v

v

v

v

v

1.5-V HSTL class II

(1)

(1)

v v

(1)

(1)

v

v

(1)

v

(1)

v

Pseudo-differential 
SSTL-2 

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

Pseudo-differential 
SSTL-18 

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

1.8-V pseudo-
differential HSTL 

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

1.5-V pseudo-
differential HSTL 

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

LVDS 

v

v

v

v

v

v

v

v

v

v

v

RSDS and mini-LVDS

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

(3)

Differential LVPECL

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(4)

Notes to 

Table 10–5

:

(1)

These I/O banks support SSTL-18 class II and 1.8- and 1.5-V HSTL class II inputs.

(2)

Pseudo-differential I/O standards are only supported for clock inputs and dedicated 

PLL_OUT

 outputs. Refer to 

Table 10–1

 for more information.

(3)

This I/O standard is only supported for outputs.

(4)

This I/O standard is only supported for the clock inputs.

ac/package_outlines/cyc_c52006-html.html
background image

10–24

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Programmable Current Drive Strength

Programmable 
Current Drive 
Strength

The Cyclone II device I/O standards support various output current 
drive settings as shown in 

Table 10–6

. These programmable drive-

strength settings are a valuable tool in helping decrease the effects of 
simultaneously switching outputs (SSO) in conjunction with reducing 
system noise. The supported settings ensure that the device driver meets 
the specifications for I

OH

 and I

OL

 of the corresponding I/O standard.

Table 10–6. Programmable Drive Strength

(Part 1 of 2) 

I/O Standard

I

OH

/I

OL

 Current Strength Setting (mA)

Top and Bottom I/O Pins

Side I/O Pins

LVTTL (3.3 V)

4

4

8

8

12

12

16

16

20

20

24

24

LVCMOS (3.3 V)

4

4

8

8

12

12

16

20

24

LVTTL and LVCMOS (2.5 V)

4

4

8

8

12

16

LVTTL and LVCMOS (1.8 V)

2

2

4

4

6

6

8

8

10

10

12

12

LVCMOS (1.5 V)

2

2

4

4

6

6

8

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–25

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

These drive-strength settings are programmable on a per-pin basis using 
the Quartus II software. 

SSTL-2 class I

8

8

12

12

SSTL-2 class II

16

16

20

24

SSTL-18 class I

6

6

8

8

10

10

12

SSTL-18 class II

16

18

HSTL-18 class I

8

8

10

10

12

12

HSTL-18 class II

16

N/A

18

20

HSTL-15 class I

8

8

10

12

HSTL-15 class II

16

N/A

Table 10–6. Programmable Drive Strength

(Part 2 of 2) 

I/O Standard

I

OH

/I

OL

 Current Strength Setting (mA)

Top and Bottom I/O Pins

Side I/O Pins

ac/package_outlines/cyc_c52006-html.html
background image

10–26

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

I/O Termination

I/O Termination

The majority of the Cyclone II I/O standards are single-ended, 
non-voltage-referenced I/O standards and, as such, the following I/O 
standards do not specify a recommended termination scheme:

3.3-V LVTTL and LVCMOS

2.5-V LVTTL and LVCMOS

1.8-V LVTTL and LVCMOS

1.5-V LVCMOS

3.3-V PCI and PCI-X

Voltage-Referenced I/O Standard Termination

Voltage-referenced I/O standards require both an input reference 
voltage, V

REF

, and a termination voltage, V

TT

. The reference voltage of the 

receiving device tracks the termination voltage of the transmitting device.

For more information on termination for voltage-referenced I/O 
standards, refer to 

“Supported I/O Standards” on page 10–1

.

Differential I/O Standard Termination

Differential I/O standards typically require a termination resistor 
between the two signals at the receiver. The termination resistor must 
match the differential load impedance of the bus. 

Cyclone II devices support differential I/O standards LVDS, RSDS, and 
mini-LVDS, and differential LVPECL. 

For more information on termination for differential I/O standards, refer 
to 

“Supported I/O Standards” on page 10–1

.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–27

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

I/O Driver Impedance Matching (R

S

) and Series Termination (R

S

)

Cyclone II devices support driver impedance matching to the impedance 
of the transmission line, typically 25 or 50 

Ω

. When used with the output 

drivers, on-chip termination (OCT) sets the output driver impedance to 
25 or 50 

Ω

 by choosing the driver strength. Once matching impedance is 

selected, driver current can not be changed. 

Table 10–7

 provides a list of 

output standards that support impedance matching. All I/O banks and 
I/O pins support impedance matching and series termination. Dedicated 
configuration pins and JTAG pins do not support impedance matching or 
series termination.

Pad Placement 
and DC 
Guidelines 

This section provides pad placement guidelines for the programmable 
I/O standards supported by Cyclone II devices and includes essential 
information for designing systems using the devices’ selectable I/O 
capabilities. This section also discusses the DC limitations and guidelines.

Quartus II software provides user controlled restriction relaxation 
options for some placement constraints. When a default restriction is 
relaxed by a user, the Quartus II fitter generates warnings. 

f

For more information about how Quartus II software checks I/O 
restrictions, refer to the 

I/O Management

 

chapter in volume 2 of the 

Quartus II Handbook

.

Table 10–7. Selectable I/O Drivers with Impedance Matching and Series 
Termination

I/O Standard

Target R

S

 (

Ω

)

3.3-V LVTTL/CMOS

25 

(1)

2.5-V LVTTL/CMOS

50 

(1)

1.8-V LVTTL/CMOS

50 

(1)

SSTL-2 class I

50 

(1)

SSTL-18 class I

50 

(1)

Note to 

Table 10–7

:

(1)

These RS values are nominal values. Actual impedance varies across process, 
voltage, and temperature conditions. Tolerance is specified in the 

DC 

Characteristics and Timing Specifications

 

chapter in volume 1 of the 

Cyclone II 

Handbook

.

ac/package_outlines/cyc_c52006-html.html
background image

10–28

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Pad Placement and DC Guidelines

Differential Pad Placement Guidelines

To maintain an acceptable noise level on the V

CCIO

 supply, there are 

restrictions on placement of single-ended I/O pads in relation to 
differential pads in the same I/O bank. Use the following guidelines for 
placing single-ended pads with respect to differential pads and for 
differential output pads placement in Cyclone II devices.

For the LVDS I/O standard:

Single-ended inputs can be no closer than four pads away from an 
LVDS I/O pad.

Single-ended outputs can be no closer than five pads away from an 
LVDS I/O pad.

Maximum of four 155-MHz (or greater) LVDS output channels per 

VCCIO

 and ground pair.

Maximum of three 311-MHz (or greater) LVDS output channels per 

VCCIO

 and ground pair.

1

For optimal signal integrity at the LVDS input pad, Altera 
recommends the LVDS, RSDS and mini-LVDS outputs are 
placed five or more pads away from an LVDS input pad.

The Quartus II software only checks the first two cases.

For the RSDS and mini-LVDS I/O standards:

Single-ended inputs can be no closer than four pads away from an 
RSDS and mini-LVDS output pad.

Single-ended outputs can be no closer than five pads away from an 
RSDS and mini-LVDS output pad.

Maximum of three 85-MHz (or greater) RSDS and mini-LVDS output 
channels per 

VCCIO

 and ground pair.

The Quartus II software only checks the first two cases.

For the LVPECL I/O standard:

Single-ended inputs can be no closer than four pads away from an 
LVPECL input pad.

Single-ended outputs can be no closer than five pads away from an 
LVPECL input pad.

1

For optimal signal integrity at the LVPECL input pad, Altera 
recommends the LVDS, RSDS and mini-LVDS outputs are 
placed five or more pads away from an LVPECL input pad.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–29

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

V

REF

 Pad Placement Guidelines

To maintain an acceptable noise level on the V

CCIO

 supply and to prevent 

output switching noise from shifting the V

REF

 rail, there are restrictions on 

the placement of single-ended voltage referenced I/Os with respect to 
V

REF

 pads and 

VCCIO

 and ground pairs. Use the following guidelines for 

placing single-ended pads in Cyclone II devices. 

The Quartus II software automatically does all the calculations in this 
section.

Input Pads

Each V

REF

 pad supports up to 15 input pads on each side of the V

REF

 pad 

for FineLine BGA devices. Each V

REF

 pad supports up to 10 input pads on 

each side of the V

REF

 pad for quad flat pack (QFP) devices. This is 

irrespective of 

VCCIO

 and ground pairs, and is guaranteed by the 

Cyclone II architecture.

Output Pads

When a voltage referenced input or bidirectional pad does not exist in a 
bank, there is no limit to the number of output pads that can be 
implemented in that bank. When a voltage referenced input exists, each 

VCCIO

 and ground pair supports 9 output pins for Fineline BGA 

packages (not more than 9 output pins per 12 consecutive row I/O pins) 
or 5 output pins for QFP packages (not more than 5 output pins per 12 
consecutive row I/O pins or 8 consecutive column I/O pins). Any 
non-SSTL and non-HSTL output can be no closer than two pads away 
from a V

REF 

pad. Altera recommends that any SSTL or HSTL output, 

except for pintable defined DQ and DQS outputs, to be no closer than two 
pads away from a V

REF

 pad to maintain acceptable noise levels.

1

Quartus II software will not check for the SSTL and HSTL 
output pads placement rule.

Refer to 

“DDR and QDR Pads” on page 10–32

 for details about guidelines 

for DQ and DQS pads placement.

Bidirectional Pads

Bidirectional pads must satisfy input and output guidelines 
simultaneously. 

Refer to 

“DDR and QDR Pads” on page 10–32

 for details about guidelines 

for DQ and DQS pads placement. 

ac/package_outlines/cyc_c52006-html.html
background image

10–30

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Pad Placement and DC Guidelines

If the bidirectional pads are all controlled by the same output enable (OE) 
and there are no other outputs or voltage referenced inputs in the bank, 
then there is no case where there is a voltage referenced input is active at 
the same time as an output. Therefore, the output limitation does not 
apply. However, since the bidirectional pads are linked to the same OE, 
all the bidirectional pads act as inputs at the same time. Therefore, the 
input limitation of 30 input pads (15 on each side of the V

REF

 pad) for 

FineLine BGA packages and 20 input pads (10 on each side of the V

REF

 

pad) for QFP packages applies.

If the bidirectional pads are all controlled by different OEs, and there are 
no other outputs or voltage referenced inputs in the bank, then there may 
be a case where one group of bidirectional pads is acting as inputs while 
another group is acting as outputs. In such cases, apply the formulas 
shown in 

Table 10–8

.

Consider a FineLine BGA package with four bidirectional pads controlled 
by the first OE, four bidirectional pads controlled by the second OE, and 
two bidirectional pads controlled by the third OE. If the first and second 
OEs are active and the third OE is inactive, there are 10 bidirectional pads, 
but it is safely allowable because there would be 8 or fewer outputs per 

VCCIO

/

GND

 pair.

When at least one additional voltage referenced input and no other 
outputs exist in the same V

REF

 bank, the bidirectional pad limitation 

applies in addition to the input and output limitations. See the following 
equations:

Total number of bidirectional pads + total number of input pads 

30 

(15 on each side of your V

REF 

pad) for Fineline BGA packages

Total number of bidirectional pads + total number of input pads 

20 

(10 on each side of your V

REF

 pad) for QFP packages

Table 10–8. Input-Only Bidirectional Pad Limitation Formulas

Package Type

Formula

FineLine BGA

(Total number of bidirectional pads) – (Total number of pads 
from the smallest group of pads controlled by an OE) 

(per 

VCCIO

 and ground pair)

QFP

(Total number of bidirectional pads) – (Total number of pads 
from the smallest group of pads controlled by an OE) 

(per 

VCCIO

 and ground pair).

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–31

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

After applying the equation above, apply one of the equations in 

Table 10–9

, depending on the package type.

When at least one additional output exists but no voltage referenced 
inputs exist, apply the appropriate formula from 

Table 10–10

.

When additional voltage referenced inputs and other outputs exist in the 
same V

REF 

bank, the bidirectional pad limitation must again 

simultaneously adhere to the input and output limitations. As such, the 
following rules apply:

Total number of bidirectional pads + total number of input pads 

30 

(15 on each side of your V

REF

 pad) for Fineline BGA packages

Total number of bidirectional pads + total number of input pads 

20 

(10 on each side of your V

REF 

pad) for QFP packages

Table 10–9. Bidirectional Pad Limitation Formulas (Where V

REF 

Inputs Exist)

Package Type

Formula

FineLine BGA

(Total number of bidirectional pads) 

9 (per 

VCCIO

 and 

ground pair)

QFP

(Total number of bidirectional pads) 

5 (per 

VCCIO

 and 

ground pair)

Table 10–10. Bidirectional Pad Limitation Formulas (Where V

REF

 Outputs 

Exist)

Package Type

Formula

FineLine BGA

(Total number of bidirectional pads) + (Total number of 
additional output pads) – (Total number of pads from the 
smallest group of pads controlled by an OE) 

9 (per 

VCCIO

 

and ground pair)

QFP

(Total number of bidirectional pads) + (Total number of 
additional output pads) – (Total number of pads from the 
smallest group of pads controlled by an OE) 

5 (per 

VCCIO

 

and ground pair)

ac/package_outlines/cyc_c52006-html.html
background image

10–32

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Pad Placement and DC Guidelines

After applying the equation above, apply one of the equations in 

Table 10–11

, depending on the package type.

Each I/O bank can only be set to a single V

CCIO 

voltage level and a single 

V

REF

 voltage level at a given time. Pins of different I/O standards can 

share the bank if they have compatible V

CCIO

 values (refer to 

Table 10–4

 

for more details) and compatible V

REF

 voltage levels.

DDR and QDR Pads

For dedicated DQ and DQS pads on a DDR interface, DQ pads have to be 
on the same power bank as DQS pads. With the DDR and DDR2 memory 
interfaces, a 

VCCIO

 and ground pair can have a maximum of five DQ 

pads.

For a QDR interface, D is the QDR output and Q is the QDR input. D pads 
and Q pads have to be on the same power bank as CQ. With the QDR and 
QDRII memory interfaces, a 

VCCIO

 and ground pair can have a 

maximum of five D and Q pads.

By default, the Quartus II software assigns D and Q pads as regular I/O 
pins. If you do not specify the function of a D or Q pad in the Quartus II 
software, the software sets them as regular I/O pins. If this occurs, 
Cyclone II QDR and QDRII performance is not guaranteed.

DC Guidelines

There is a current limit of 240 mA per eight consecutive output top and 
bottom pins per power pair, as shown by the following equation:

pin+7

Σ

 I

PIN

 < 240mA per power pair

pin

There is a current limit of 240 mA per 12 consecutive output side (left and 
right) pins per power pair, as shown by the following equation:

Table 10–11. Bidirectional Pad Limitation Formulas (Multiple V

REF

 Inputs 

and Outputs)

Package Type

Formula

FineLine BGA

(Total number of bidirectional pads) + (Total number of 
output pads) 

9 (per 

VCCIO

/

GND

 pair)

QFP

Total number of bidirectional pads + Total number of output 
pads 

5 (per 

VCCIO

/

GND

 pair)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–33

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

pin+11

Σ

 I

PIN

 < 240mA per power pair

pin

In all cases listed above, the Quartus II software generates an error 
message for illegally placed pads.

Table 10–12

 shows the I/O standard DC current specification.

Table 10–12. Cyclone II I/O Standard DC Current Specification (Preliminary) (Part 1 of 2)

I/O Standard

I

PIN

 (mA)

Top and Bottom Banks

Side Banks

LVTTL

(1)

 

(1)

 

LVCMOS

(1)

 

(1)

 

2.5 V 

(1)

 

(1)

 

1.8 V 

(1)

 

(1)

 

1.5 V 

(1)

 

(1)

 

3.3-V PCI

Not supported

1.5

3.3-V PCI-X

Not supported

1.5

SSTL-2 class I 

12 

(2)

12 

(2)

SSTL-2 class II 

24 

(2)

20 

(2)

SSTL-18 class I

12 

(2)

12 

(2)

SSTL-18 class II

(2)

Not supported

1.8-V HSTL class I

12 

(2)

12 

(2)

1.8-V HSTL class II

20 

(2)

Not supported

1.5-V HSTL class I

12 

(2)

10 

(2)

1.5-V HSTL class II

18 

(2)

Not supported

Differential SSTL-2 class I 

(3)

8.1 

(4)

Differential SSTL-2 class II 

(3)

16.4 

(4)

Differential SSTL-18 class I 

(3)

6.7 

(4)

Differential SSTL-18 class II 

(3)

13.4 

(4)

1.8-V differential HSTL class I 

(3)

(4)

1.8-V differential HSTL class II 

(3)

16 

(4)

1.5-V differential HSTL class I 

(3)

(4)

ac/package_outlines/cyc_c52006-html.html
background image

10–34

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

5.0-V Device Compatibility

Table 10–12

 only shows the limit on the static power consumed by an I/O 

standard. The amount of total power used at any moment could be much 
higher, and is based on the switching activities.

5.0-V Device 
Compatibility

A Cyclone II device may not correctly interoperate with a 5.0-V device if 
the output of the Cyclone II device is connected directly to the input of the 
5.0-V device. If V

OUT

 of the Cyclone II device is greater than V

CCIO

, the 

PMOS pull-up transistor still conducts if the pin is driving high, 
preventing an external pull-up resistor from pulling the signal to 5.0-V. 

A Cyclone II device can drive a 5.0-V LVTTL device by connecting the 
V

CCIO

 pins of the Cyclone II device to 3.3 V. This is because the output 

high voltage (V

OH

) of a 3.3-V interface meets the minimum high-level 

voltage of 2.4-V of a 5.0-V LVTTL device. (A Cyclone II device cannot 
drive a 5.0-V LVCMOS device.) 

Because the Cyclone II devices are 3.3-V, 64- and 32-bit, 66- and 33-MHz 
PCI and 64-bit 133-MHz PCI-X compliant, the input circuitry accepts a 
maximum high-level input voltage (V

IH

) of 4.1-V. To drive a Cyclone II 

device with a 5.0-V device, you must connect a resistor (R

2

) between the 

Cyclone II device and the 5.0-V device. Refer to 

Figure 10–21

.

1.5-V differential HSTL class II 

(3)

16 

(4)

LVDS, RSDS and mini-LVDS

12

12

Notes to 

Table 10–12

(1)

The DC power specification of each I/O standard depends on the current sourcing and sinking capabilities of the 
I/O buffer programmed with that standard, as well as the load being driven. LVTTL and LVCMOS, and 2.5-, 1.8-, 
and 1.5-V outputs are not included in the static power calculations because they normally do not have resistor 
loads in real applications. The voltage swing is rail-to-rail with capacitive load only. There is no DC current in the 
system. 

(2)

This I

PIN 

value represents the DC current specification for the default current strength of the I/O standard. The I

PIN

 

varies with programmable drive strength and is the same as the drive strength as set in Quartus II software. Refer 
to the 

Cyclone II Architecture

 chapter in volume 1 of the 

Cyclone II Device Handbook

 for more information on the 

programmable drive strength feature of voltage referenced I/O standards.

(3)

The current value obtained for differential HSTL and differential SSTL standards is per pin and not per differential 
pair, as opposed to the per-pair current value of LVDS standard.

(4)

This I/O standard is only supported for clock input pins and 

PLL_OUT

 pins.

Table 10–12. Cyclone II I/O Standard DC Current Specification (Preliminary) (Part 2 of 2)

I/O Standard

I

PIN

 (mA)

Top and Bottom Banks

Side Banks

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–35

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

Figure 10–21. Driving a Cyclone II Device with a 5.0-Volt Device

If V

CCIO

 is between 3.0 V and 3.6 V and the PCI clamping diode is enabled, 

the voltage at point B in 

Figure 10–21

 is 4.3 V or less. To limit large current 

draw from the 5.0-V device, R

should be small enough for a fast signal 

rise time and large enough so that it does not violate the high-level output 
current (I

OH

) specifications of the devices driving the trace. The PCI 

clamping diode in the Cyclone II device can support 25 mA of current. 

To compute the required value of R

2

, first calculate the model of the 

pull-up transistors on the 5.0-V device. This output resistor (R

1

) can be 

modeled by dividing the 5.0-V device supply voltage (V

CC

) by the 

I

OH

: R

1

= V

CC

/I

OH

.

Figure 10–22

 shows an example of typical output drive characteristics of 

a 5.0-V device.

5.0 V ± 0.25 V 

V

CC

Model as R

1

  

R

2

V

CCIO

5.0 V Device 

Cyclone II Device 

I

I

PCI Clamp 

V

CCIO

3.0 - 3.4 V ± 0.25 V 

B

ac/package_outlines/cyc_c52006-html.html
background image

10–36

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Conclusion

Figure 10–22. Output Drive Characteristics of a 5.0-V Device

As shown above, R

1

 = 5.0-V/135 mA.

1

The values shown in data sheets usually reflect typical operating 
conditions. Subtract 20% from the data sheet value for guard 
band. This subtraction when applied in the example in 

Figure 10–22

 gives R

a value of 30

 

Ω

.

R

2

 should be selected so that it does not violate the driving device’s I

OH 

specification. For example, if the device has a maximum I

OH

 of 8 mA, 

given that the PCI clamping diode, V

IN

 = V

CCIO

 + 0.7-V = 3.7-V, and the 

maximum supply load of a 5.0-V device (V

CC

) is 5.25-V, the value of R

2

 can 

be calculated as follows:

This analysis assumes worst case conditions. If your system does not have 
a wide variation in voltage-supply levels, you can adjust these 
calculations accordingly.

1

Because 5.0-V device tolerance in Cyclone II devices requires use 
of the PCI clamp, and this clamp is activated during 
configuration, 5.0-V signals may not be driven into the device 
until it is configured.

Conclusion

Cyclone II device I/O capabilities enable you to keep pace with 
increasing design complexity utilizing a low-cost FPGA device family. 
Support for I/O standards including SSTL and LVDS compatibility allow 
Cyclone II devices to fit into a wide variety of applications. The Quartus II 

Typical I

o

Ou

t

pu

t

 

Cu

rr

en

t

 (mA)

V

Ou

t

pu

t

 Vol

t

age (V)

0

30

60

90

1

2

3

4

5

120

150
135

V

CCI

N

= 5.0 

V

 

V

CCIO 

= 5.0 

V

 

I

OL 

I

OH 

R

2

 = (5.25 V – 3.7 V) – (8 mA × 30 

Ω

) = 164 

Ω

8 mA

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–37

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

software makes it easy to use these I/O standards in Cyclone II device 
designs. After design compilation, the software also provides clear, visual 
representations of pads and pins and the selected I/O standards. Taking 
advantage of the support of these I/O standards in Cyclone II devices 
allows you to lower your design costs without compromising design 
flexibility or complexity.

References

For more information on the I/O standards referred to in this document, 
refer to the following sources:

Stub Series Terminated Logic for 2.5-V (SSTL-2), JESD8-9A, 
Electronic Industries Association, December 2000.

1.5-V +/- 0.1-V (Normal Range) and 0.9-V - 1.6-V (Wide Range) 
Power Supply Voltage and Interface Standard for Non-terminated 
Digital Integrated Circuits, JESD8-11, Electronic Industries 
Association, October 2000.

1.8-V +/- 0.15-V (Normal Range) and 1.2-V - 1.95-V (Wide Range) 
Power Supply Voltage and Interface Standard for Non-terminated 
Digital Integrated Circuits, JESD8-7, Electronic Industries 
Association, February 1997.

2.5-V +/- 0.2-V (Normal Range) and 1.8-V to 2.7-V (Wide Range) 
Power Supply Voltage and Interface Standard for Non-terminated 
Digital Integrated Circuits, JESD8-5, Electronic Industries 
Association, October 1995.

Interface Standard for Nominal 3-V/ 3.3-V Supply Digital Integrated 
Circuits, JESD8-B, Electronic Industries Association, September 1999.

PCI Local Bus Specification, Revision 2.2, PCI Special Interest Group, 
December 1998.

Electrical Characteristics of Low Voltage Differential Signaling 
(LVDS) Interface Circuits, ANSI/TIA/EIA-644, American National 
Standards Institute/Telecommunications Industry/Electronic 
Industries Association, October 1995.

ac/package_outlines/cyc_c52006-html.html
background image

10–38

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Referenced Documents

Referenced 
Documents

This chapter references the following documents:

Altera Reliability Report

AN 75: High-Speed Board Designs

Cyclone II Architecture

 chapter in volume 1 of the 

Cyclone II Device 

Handbook

Cyclone II Device Family Data Sheet

, section 1 

of the

 Cyclone II Device 

Handbook

DC Characteristics and Timing Specifications

 

chapter in volume 1 of the

 

Cyclone II Device Handbook

External Memory Interfaces

 chapter in volume 1 of the 

Cyclone II Device 

Handbook

High Speed Differential Interfaces in Cyclone II Devices

 

chapter in 

volume 1 of the

 Cyclone II Device Handbook

Hot Socketing & Power-On Reset

 

chapter in volume 1 of the 

Cyclone II 

Device Handbook

I/O Management

 

chapter in volume 2 of the 

Quartus II Handbook

Document 
Revision History

Table 10–13

 shows the revision history for this document.

Table 10–13. Document Revision History

Date and 

Document 

Version

Changes Made

Summary of Changes

February 2008 
v2.4

Added 

“Referenced Documents”

 section.

Updated 

“Differential Pad Placement 

Guidelines”

 section.

February 2007 
v2.3

Added document revision history.

Updated 

“Introduction”

 and its feetpara 

note.

Updated 

Note (2)

 in 

Table 10–4

.

Updated 

“Differential LVPECL”

 section.

Updated 

“Differential Pad Placement 

Guidelines”

 section.

Updated 

“Output Pads”

 section.

Added new sectio

“5.0-V Device 

Compatibility”

 with two new figures.

Added reference detail for ESD 
specifications.

Added information about differential 
placement restrictions applying only to pins 
in the same bank.

Added information that Cyclone II device 
supports LVDS on clock inputs at 3.3V 
V

CCIO

.

Added more information on DC placement 
guidelines.

Added information stating SSTL and HSTL 
outputs can be closer than 2 pads from 
V

REF

..

Added 5.0 Device tolerence solution.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

10–39

February 2008

Cyclone II Device Handbook, Volume 1

Selectable I/O Standards in Cyclone II Devices

November 2005 
v2.1

Updated 

Tables 10–2

 and 

10–3

.

Added PCI Express information.

Updated 

Table 10–6

.

July 2005 v2.0

Updated 

Table 10–1

.

November 2004 
v1.1

Updated 

Table 10–7

.

June 2004 v1.0

Added document to the Cyclone II Device 
Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

10–40

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2008

Document Revision History

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

11–1

February 2007

11. High-Speed Differential

Interfaces in Cyclone II

Devices

Introduction

From high-speed backplane applications to high-end switch boxes, 
low-voltage differential signaling (LVDS) is the technology of choice. 
LVDS is a low-voltage differential signaling standard, allowing higher 
noise immunity than single-ended I/O technologies. Its low-voltage 
swing allows for high-speed data transfers, low power consumption, and 
reduced electromagnetic interference (EMI). LVDS I/O signaling is a data 
interface standard defined in the TIA/EIA-644 and IEEE Std. 1596.3 
specifications.

The reduced swing differential signaling (RSDS) and mini-LVDS 
standards are derivatives of the LVDS standard. The RSDS and 
mini-LVDS I/O standards are similar in electrical characteristics to 
LVDS, but have a smaller voltage swing and therefore provide increased 
power benefits and reduced EMI. National Semiconductor Corporation 
and Texas Instruments introduced the RSDS and mini-LVDS 
specifications, respectively. Currently, many designers use these 
specifications for flat panel display links between the controller and the 
drivers that drive display column drivers. Cyclone

®

II devices support 

the RSDS and mini-LVDS I/O standards at speeds up to 311 megabits per 
second (Mbps) at the transmitter. 

Altera

®

 Cyclone II devices can transmit and receive data through LVDS 

signals at a data rate of up to 640 Mbps and 805 Mbps, respectively. For 
the LVDS transmitter and receiver, the Cyclone II device’s input and 
output pins support serialization and deserialization through internal 
logic.

This chapter describes how to use Cyclone II I/O pins for differential 
signaling and contains the following topics:

Cyclone II high-speed I/O banks

Cyclone II high-speed I/O interface

LVDS, RSDS, mini-LVDS, LVPECL, differential HSTL, and 
differential SSTL I/O standards support in Cyclone II devices

High-speed I/O timing in Cyclone II devices

Design guidelines

Cyclone II High-
Speed I/O Banks

Cyclone II device I/O banks are shown in 

Figures 11–1

 and 

11–2

. Th

EP2C5 and EP2C8 devices offer four I/O banks and EP2C15, EP2C20, 
EP2C35, EP2C50, and EP2C70 devices offer eight I/O banks. A subset of 

CII51011-2.2

ac/package_outlines/cyc_c52006-html.html
background image

11–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II High-Speed I/O Banks

pins in each I/O bank (on both rows and columns) support the high-
speed I/O interface. Cyclone II pin tables list the pins that support the 
high-speed I/O interface.

Figure 11–1. I/O Banks in EP2C5 & EP2C8 Devices

Notes to 

Figure 11–1

:

(1)

The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output 
pins.

(2)

The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock 
pins.

(3)

The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock 
pins.

I/O Bank 2

I/O Bank 3

I/O Bank 4

I/O Bank 1

All I/O Banks Support

  

3.3-V LVTTL/LVCMOS

 

 

 

2.5-V LVTTL/LVCMOS

  

1.8-V LVTTL/LVCMOS

  

1.5-V LVCMOS

  

LVDS

  

RSDS

  

mini-LVDS

  

LVPECL (1)

 

 

SSTL-2 Class I and II

  

SSTL-18 Class I

  

HSTL-18 Class I

  

HSTL-15 Class I

 

 

Differential SSTL-2 (2)

  

Differential SSTL-18 (2)

  

Differential HSTL-18 (3)

  

Differential HSTL-15 (3)

I/O Bank 3
Also Supports the 
3.3-V PCI & PCI-X
I/O Standards

I/O Bank 1

Also Supports the

3.3-V PCI & PCI-X

I/O Standards

Individual

Power Bus

I/O Bank 2 Also Supports

the SSTL-18 Class II,

HSTL-18 Class II, & HSTL-15

Class II I/O Standards

I/O Bank 4 Also Supports

the SSTL-18 Class II,

HSTL-18 Class II, & HSTL-15

Class II I/O Standards

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

11–3

February 2007

Cyclone II Device Handbook, Volume 1

High-Speed Differential Interfaces in Cyclone II Devices

Figure 11–2. I/O Banks in EP2C15, EP2C20, EP2C35, EP2C50 & EP2C70 Devices

Notes to 

Figure 11–2

:

(1)

The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output 
pins.

(2)

The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock 
pins.

(3)

The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock 
pins.

Cyclone II 
High-Speed I/O 
Interface

Cyclone II devices provide a multi-protocol interface that allows 
communication between a variety of I/O standards, including LVDS, 
LVPECL, RSDS, mini-LVDS, differential HSTL, and differential SSTL. 
This feature makes the Cyclone II device family ideal for applications that 
require multiple I/O standards, such as protocol translation.

I/O Bank 2

Regular I/O Block

Bank 8

Regular I/O Block

Bank 7

I/O Bank 3

I/O Bank 4

I/O Bank 1

I/O Bank 5

I/O Bank 6

Individual

Power Bus

All I/O Banks Support

  

3.3-V LVTTL/LVCMOS

 

 

 

2.5-V LVTTL/LVCMOS

  

1.8-V LVTTL/LVCMOS

  

1.5-V LVCMOS

  

LVDS

  

RSDS

  

mini-LVDS

  

LVPECL (1)

 

 

SSTL-2 Class I and II

  

SSTL-18 Class I

  

HSTL-18 Class I

  

HSTL-15 Class I

 

 

Differential SSTL-2 (2)

  

Differential SSTL-18 (2)

  

Differential HSTL-18 (3)

  

Differential HSTL-15 (3)

I/O Banks 3 & 4 Also Support

the SSTL-18 Class II,

HSTL-18 Class II, & HSTL-15

Class II I/O Standards

I/O Banks 7 & 8 Also Support

the SSTL-18 Class II,

HSTL-18 Class II, & HSTL-15

Class II I/O Standards

I/O Banks 5 & 6 Also
Support the 3.3-V PCI
& PCI-X I/O Standards

I/O Banks 1 & 2 Also

Support the 3.3-V PCI

& PCI-X I/O Standards

ac/package_outlines/cyc_c52006-html.html
background image

11–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Standards Support

You can use I/O pins and internal logic to implement a high-speed I/O 
receiver and transmitter in Cyclone II devices. Cyclone II devices do not 
contain dedicated serialization or deserialization circuitry. Therefore, 
shift registers, internal global phase-locked loops (PLLs), and I/O cells 
are used to perform serial-to-parallel conversions on incoming data and 
parallel-to-serial conversion on outgoing data.

I/O Standards 
Support

This section provides information on the I/O standards that Cyclone II 
devices support.

LVDS Standard Support in Cyclone II Devices

The LVDS I/O standard is a high-speed, low-voltage swing, low power, 
and general purpose I/O interface standard. The Cyclone II device meets 
the ANSI/TIA/EIA-644 standard.

I/O banks on all four sides of the Cyclone II device support LVDS 
channels. See the pin tables on the Altera web site for the number of LVDS 
channels supported throughout different family members. Cyclone II 
LVDS receivers (input) support a data rate of up to 805 Mbps while LVDS 
transmitters (output) support up to 640 Mbps. The maximum internal 
clock frequency for a receiver and for a transmitter is 402.5 MHz. The 
maximum input data rate of 805 Mbps and the maximum output data 
rate of 640 Mbps is only achieved when DDIO registers are used. The 
LVDS standard does not require an input reference voltage; however, it 
does require a 100-

Ω

 termination resistor between the two signals at the 

input buffer.

f

For LVDS data rates in Cyclone II devices with different speed grades, 
see the 

DC Characteristics & Timing Specifications

 chapter of the 

Cyclone II 

Device Handbook

.

Table 11–1

 shows LVDS I/O specifications.

Table 11–1. LVDS I/O Specifications (Part 1 of 2)

Note (1)

Symbol

Parameter

Condition

Min

Typ

Max

Units

V

CCINT

Supply voltage

1.15

1.2

1.25

V

V

CCIO

I/O supply voltage

2.375

2.5

2.625

V

V

OD 

Differential output voltage R

L

 = 100

Ω

 250

600

mV

Δ

V

OD

Change in V

OD

 between 

H and L

R

L

 = 100

Ω

50

mV

V

OS

Output offset voltage

R

L

 = 100

Ω

1.125

1.25

1.375

V

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

11–5

February 2007

Cyclone II Device Handbook, Volume 1

High-Speed Differential Interfaces in Cyclone II Devices

LVDS Receiver & Transmitter

Figure 11–3

 shows a simple point-to-point LVDS application where the 

source of the data is an LVDS transmitter. These LVDS signals are 
typically transmitted over a pair of printed circuit board (PCB) traces, but 
a combination of a PCB trace, connectors, and cables is a common 
application setup.

Figure 11–3. Typical LVDS Application

 

Figures 11–4

 an

11–5

 show the signaling levels for LVDS receiver inputs 

and transmitter outputs, respectively.

V

I D

Input differential voltage 
(single-ended)

0.1

0.65

V

V

I C M

Input common mode 
voltage

0.1

2.0

V

Δ

V

OS

Change in V

OS

 between 

H and L

R

L

 = 100

Ω

50

mV

R

L

Receiver differential input 
resistor

90

100

110

 

Ω

Note to 

Table 11–1

:

(1)

The specifications apply at the resistor network output.

Table 11–1. LVDS I/O Specifications (Part 2 of 2)

Note (1)

Symbol

Parameter

Condition

Min

Typ

Max

Units

Transmitting Device

Cyclone II Device

100 

Ω

Cyclone II

Logic
Array

170 

Ω

100 

Ω

120 

Ω

120 

Ω

Input Buffer

Output Buffer

Receiving Device

txout +

txout -

rxin +

rxin -

txout +

txout -

rxin +

rxin -

ac/package_outlines/cyc_c52006-html.html
background image

11–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Standards Support

Figure 11–4. Receiver Input Waveforms for the LVDS Differential I/O Standard

Note to 

Figure 11–4

:

(1)

The p – n waveform is a function of the positive channel (p) and the negative channel (n).

Figure 11–5. Transmitter Output Waveform for the LVDS Differential I/O Standard

Note (2)

Notes to 

Figure 11–5

:

(1)

The V

OD

 specifications apply at the resistor network output.

(2)

The p – n waveform is a function of the positive channel (p) and the negative channel (n).

Differential Waveform (Mathematical Function of Positive & Negative Channel)

VID

VID

VID

0 V

 n 

(1)

Single-Ended Waveform

Positive Channel (p) = V

OH

Negative Channel (n) = V

OL

Ground

V

ID

V

ICM

Differential Waveform (Mathematical Function of Positive & Negative Channel)

VOD

VOD

0 V

 n 

(2)

Single-Ended Waveform

Positive Channel (p) = V

OH

Negative Channel (n) = V

OL

Ground

V

OD

V

OS

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

11–7

February 2007

Cyclone II Device Handbook, Volume 1

High-Speed Differential Interfaces in Cyclone II Devices

RSDS I/O Standard Support in Cyclone II Devices

The RSDS specification is used in chip-to-chip applications between the 
timing controller and the column drivers on display panels. Cyclone II 
devices meet the National Semiconductor Corporation RSDS Interface 
Specification and support the RSDS output standard. 

Table 11–2

 shows 

the RSDS electrical characteristics for Cyclone II devices.

Figure 11–6

 shows the RSDS transmitter output signal waveforms.

Figure 11–6. Transmitter Output Signal Level Waveforms for RSDS

Note (1)

Notes to 

Figure 11–6

:

(1)

The V

OD

 specifications apply at the resistor network output.

(2)

The p – n waveform is a function of the positive channel (p) and the negative channel (n).

Table 11–2. RSDS Electrical Characteristics for Cyclone II Devices

Note (1)

Symbol

Parameter

Condition

Min

Typ

Max

Unit

V

C C I O

Output supply voltage

2.375

2.5

2.625

V

V

OD

 

(2)

Differential output voltage

R

L

= 100

Ω

100

600

mV

V

OS 

(3)

Output offset voltage

R

L

= 100

Ω

1.125

1.25

1.375

V

T

r

/T

f

Transition time

20% to 80%

500

ps

Notes to 

Table 11–2

:

(1)

The specifications apply at the resistor network output.

(2)

V

OD

 = V

OH

 - V

OL

.

(3)

V

OS

 = (V

OH

 + V

OL

) / 2.

Sin

g

le-Ended Waveform

Differential Waveform (Mathematical Function of Positive & Ne

g

ative Channel)

Positi

v

e Channel (p) = 

V

OH

N

egati

v

e Channel (n) = 

V

OL

Gro

u

nd

V

OD

V

OD

V

OD

V

OS

V

 n 

(2)

ac/package_outlines/cyc_c52006-html.html
background image

11–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Standards Support

Designing with RSDS

Cyclone II devices support the RSDS output standard using the LVDS 
I/O buffer types. For transmitters, the LVDS output buffer can be used 
with the external resistor network shown in 

Figure 11–7

.

Figure 11–7. RSDS Resistor Network

Note (1)

Note to 

Figure 11–7

:

(1)

R

S

 

= 120

Ω

 and R

= 170

Ω

.

f

For more information on the RSDS I/O standard, see the RSDS 
specification from the National Semiconductor web site 

(www.national.com)

.

A resistor network is required to attenuate the LVDS output voltage 
swing to meet the RSDS specifications. The resistor network values can be 
modified to reduce power or improve the noise margin. The resistor 
values chosen should satisfy the following equation:

Additional simulations using the IBIS models should be performed to 
validate that custom resistor values meet the RSDS requirements.

Single Resistor RSDS Solution

The external single resistor solution reduces the external resistor count 
while still achieving the required signaling level for RSDS. To transmit 
the RSDS signal, an external resistor (

R

P

)

 is connected in parallel between 

the two adjacent I/O pins on the board as shown in 

Figure 11–8

. The 

recommended value of the resistor

 R

P

 is 100

Ω

.

RSDS Receiver

RL = 100 

Ω

 50 

Ω

Cyclone II Device

Resistor Network

1 inch

LVDS Transmitter

RP

 50 

Ω

+

=

RP

2

RS 

×

RP

2

50

Ω

RS    

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

11–9

February 2007

Cyclone II Device Handbook, Volume 1

High-Speed Differential Interfaces in Cyclone II Devices

Figure 11–8. RSDS Single Resistor Network

Note (1)

Note to 

Figure 11–8

:

(1)

R

p

 

= 100

Ω

.

RSDS Software Support

When designing for the RSDS I/O standard, assign the RSDS I/O 
standard to the I/O pins intended for RSDS in the Quartus

®

II software. 

Contact Altera Applications for reference designs.

mini-LVDS Standard Support in Cyclone II Devices

The mini-LVDS specification defines its use in chip-to-chip applications 
between the timing controller and the column drivers on display panels. 
Cyclone II devices meet the Texas Instruments mini-LVDS Interface 
Specification and support the mini-LVDS output standard. 

Table 11–3

 

shows the mini-LVDS electrical characteristics for Cyclone II devices.

RSDS Receiver

RL = 100 

Ω

 50 

Ω

Cyclone II Device

Resistor Network

1 inch

LVDS Transmitter

RP

 50 

Ω

Table 11–3. mini-LVDS Electrical Characteristics for Cyclone II Devices

Note (1)

Symbol

Parameters

Condition

Min

Typ

Max

Units

V

CCIO

Output supply voltage

2.375

2.5

2.625

V

V

OD

 

(2)

Differential output voltage

R

L

 = 100

Ω

300

600

mV

V

OS 

(3)

Output offset voltage

R

L

 = 100

Ω

1125

1250

1375

mV

T

r

 / T

f

Transition time

20% to 80%

500

ps

Notes to 

Table 11–3

:

(1)

The V

OD

 specifications apply at the resistor network output.

(2)

V

OD

 = V

OH

 – V

OL

.

(3)

V

OS

 = (V

OH

 + V

OL

) / 2.

ac/package_outlines/cyc_c52006-html.html
background image

11–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Standards Support

Figure 11–9

 shows the mini-LVDS receiver and transmitter signal 

waveforms.

Figure 11–9. Transmitter Output Signal Level Waveforms for mini-LVDS

Note (1)

Note to 

Figure 11–9

:

(1)

The V

OD

 specifications apply at the resistor network output.

Designing with mini-LVDS

Similar to RSDS, Cyclone II devices support the mini-LVDS output 
standard using the LVDS I/O buffer types. For transmitters, the LVDS 
output buffer can be used with the external resistor network shown in 

Figure 11–10

. The resistor values chosen should satisfy the equation on 

page 11-8.

V

OD

V

OD

0 V

Differential Waveform

Single-Ended Waveform

Positive Channel (p) = V

OH

Negative Channel (n) = V

OL

Ground

V

OD

V

OS

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

11–11

February 2007

Cyclone II Device Handbook, Volume 1

High-Speed Differential Interfaces in Cyclone II Devices

Figure 11–10. mini-LVDS Resistor Network

Note to 

Figure 11–10

:

(1)

R

S

 

= 120

Ω

 and R

= 170

Ω

.

mini-LVDS Software Support

When designing for the mini-LVDS I/O standard, assign the mini-LVDS 
I/O standard to the I/O pins intended for mini-LVDS in the Quartus II 
software. Contact Altera Applications for reference designs.

LVPECL Support in Cyclone II

The LVPECL I/O standard is a differential interface standard requiring a 
3.3-V V

CCIO

 and is used in applications involving video graphics, 

telecommunications, data communications, and clock distribution. The 
high-speed, low-voltage swing LVPECL I/O standard uses a positive 
power supply and is similar to LVDS. However, LVPECL has a larger 
differential output voltage swing than LVDS. Cyclone II devices support 
the LVPECL input standard at the clock input pins only. 

Table 11–4

 shows 

the LVPECL electrical characteristics for Cyclone II devices. 

Figure 11–11

 

shows the LVPECL I/O interface.

mini-LVDS Receiver

RL = 100 

Ω

 50 

Ω

Cyclone II Device

Resistor Network

1 inch

LVDS Transmitter

RS

RP

RS

 50 

Ω

Table 11–4. LVPECL Electrical Characteristics for Cyclone II Devices

Symbol

Parameters

Condition

Min

Typ

Max

Units

V

CCIO

Output supply voltage

3.135

3.3

3.465

V

V

IH

Input high voltage

2,100

2,880

mV

V

IL

Input low voltage

0

2,200

mV

V

ID

 

Differential input voltage

Peak to peak

100

600

950

mV

ac/package_outlines/cyc_c52006-html.html
background image

11–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

I/O Standards Support

Figure 11–11. LVPECL I/O Interface

Differential SSTL Support in Cyclone II Devices

The differential SSTL I/O standard is a memory bus standard used for 
applications such as high-speed double data rate (DDR) SDRAM 
interfaces. The differential SSTL I/O standard is similar to voltage 
referenced SSTL and requires two differential inputs with an external 
termination voltage (V

TT

) of 0.5

×

V

CCIO

 to which termination resistors 

are connected. A 2.5-V output source voltage is required for differential 
SSTL-2, while a 1.8-V output source voltage is required for differential 
SSTL-18. The differential SSTL output standard is only supported at 

PLLCLKOUT

 pins using two single-ended SSTL output buffers 

programmed to have opposite polarity. 

The differential SSTL input standard is supported at the global clock 
(

GCLK

) pins only, treating differential inputs as two single-ended SSTL, 

and only decoding one of them.

f

For SSTL signaling characteristics, see the 

DC Characteristics & Timing 

Specification

 chapter and the 

Selectable I/O Standards in Cyclone II Devices

 

chapter in Volume 1 of the 

Cyclone II Device Handbook

.

Figures 11–12

 and 

11–13

 show the differential SSTL class I and II 

interfaces, respectively.

LVDS Transmitter

Cyclone II Receiver 

100 

Ω

Z = 50 

Ω

 

Z = 50 

Ω

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

11–13

February 2007

Cyclone II Device Handbook, Volume 1

High-Speed Differential Interfaces in Cyclone II Devices

Figure 11–12. Differential SSTL Class I Interface

Figure 11–13. Differential SSTL Class II Interface

Differential HSTL Support in Cyclone II Devices

The differential HSTL AC and DC specifications are the same as the HSTL 
single-ended specifications. The differential HSTL I/O standard is 
available on the 

GCLK

 pins only, treating differential inputs as two single-

ended HSTL, and only decoding one of them. The differential HSTL 
output I/O standard is only supported at the 

PLLCLKOUT

 pins using two 

single-ended HSTL output buffers with the second output programmed 
as inverted. The standard requires two differential inputs with an 
external termination voltage (V

TT

) of 0.5

×

V

CCIO 

to which termination 

resistors are connected. 

f

For the HSTL signaling characteristics, see the 

DC Characteristics & 

Timing Specifications

 chapter and the 

Selectable I/O Standards in Cyclone II 

Devices

 chapter in Volume 1 of the 

Cyclone II Device Handbook.

Output Buffer

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 

V

TT

25 

Ω

25 

Ω

Output Buffer

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 

V

TT

50 

Ω

50 

Ω

V

TT

 

V

TT

 

25 

Ω

25 

Ω

ac/package_outlines/cyc_c52006-html.html
background image

11–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

High-Speed I/O Timing in Cyclone II Devices

Figures 11–14

 and 

11–15

 show differential HSTL class I and II interfaces, 

respectively.

Figure 11–14. Differential HSTL Class I Interface

Figure 11–15. Differential HSTL Class II Interface

High-Speed I/O 
Timing in 
Cyclone II 
Devices

This section discusses the timing budget, waveforms, and specifications 
for source-synchronous signaling in Cyclone II devices. LVDS, LVPECL, 
RSDS, and mini-LVDS I/O standards enable high-speed data 
transmission. Timing for these high-speed signals is based on skew 
between the data and the clock signals.

High-speed differential data transmission requires timing parameters 
provided by integrated circuit (IC) vendors and requires consideration of 
board skew, cable skew, and clock jitter. This section provides details on 
high-speed I/O standards timing parameters in Cyclone II devices.

Output Buffer

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 

V

TT

Output Buffer

Receiver 

Z0 = 50 

Ω

50 

Ω

50 

Ω

Z0 = 50 

Ω

V

TT

 

V

TT

50 

Ω

50 

Ω

V

TT

 

V

TT

 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

11–15

February 2007

Cyclone II Device Handbook, Volume 1

High-Speed Differential Interfaces in Cyclone II Devices

Table 11–5

 defines the parameters of the timing diagram shown in 

Figure 11–16

Figure 11–17

 shows the Cyclone II high-speed I/O timing 

budget.

Figure 11–16. High-Speed I/O Timing Diagram

Table 11–5. High-Speed I/O Timing Definitions

Parameter

Symbol

Description

Transmitter channel-to-
channel skew 

(1)

TCCS

The timing difference between the fastest and slowest output edges, 
including t

CO

 variation and clock skew. The clock is included in the 

TCCS measurement.

Sampling window

SW

The period of time during which the data must be valid in order for you 
to capture it correctly. The setup and hold times determine the ideal 
strobe position within the sampling window. 
T

SW

= T

SU

+ T

hd

+ PLL jitter.

Receiver input skew margin

RSKM

RSKM is defined by the total margin left after accounting for the 
sampling window and TCCS. The RSKM equation is: RSKM = (TUI 
– SW – TCCS) / 2.

Input jitter tolerance (peak-
to-peak)

Allowed input jitter on the input clock to the PLL that is tolerable while 
maintaining PLL lock.

Output jitter (peak-to-peak)

Peak-to-peak output jitter from the PLL.

Note to 

Table 11–5

:

(1)

The TCCS specification applies to the entire bank of LVDS as long as the SERDES logic are placed within the LAB 
adjacent to the output pins.

Samplin

g

 Window (SW)

Time Unit Interval (TUI)

RSKM

TCCS

RSKM

TCCS

Internal Clock

External 

Input Clock

Receiver 

Input Data

ac/package_outlines/cyc_c52006-html.html
background image

11–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Design Guidelines

Figure 11–17. Cyclone II High-Speed I/O Timing Budget

Note (1)

Note to 

Figure 11–17

:

(1)

The equation for the high-speed I/O timing budget is: Period = 0.5/TCCS + RSKM + SW + RSKM + 0.5/TCCS.

Design 
Guidelines

This section provides guidelines for designing with Cyclone II devices.

Differential Pad Placement Guidelines

To maintain an acceptable noise level on the V

CCIO

 supply, there are 

restrictions on placement of single-ended I/O pins in relation to 
differential pads. 

f

See the guidelines in the 

Selectable I/O Standards in Cyclone II Devices

 

chapter in Volume 1 of the 

Cyclone II Device Handbook

 for placing single-

ended pads with respect to differential pads in Cyclone II devices.

Board Design Considerations

This section explains how to get the optimal performance from the 
Cyclone II I/O interface and ensure first-time success in implementing a 
functional design with optimal signal quality. The critical issues of 
controlled impedance of traces and connectors, differential routing, and 
termination techniques must be considered to get the best performance 
from the IC. The Cyclone II device generates signals that travel over the 
media at frequencies as high as 805 Mbps. Use the following general 
guidelines for improved signal quality:

Base board designs on controlled differential impedance. Calculate 
and compare all parameters such as trace width, trace thickness, and 
the distance between two differential traces.

Internal Clock Period

RSKM      

0.5 

×

 TCCS

RSKM      

0.5 

×

 TCCS

SW

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

11–17

February 2007

Cyclone II Device Handbook, Volume 1

High-Speed Differential Interfaces in Cyclone II Devices

Maintain equal distance between traces in LVDS pairs, as much as 
possible. Routing the pair of traces close to each other maximizes the 
common-mode rejection ratio (CMRR).

Longer traces have more inductance and capacitance. These traces 
should be as short as possible to limit signal integrity issues.

Place termination resistors as close to receiver input pins as possible.

Use surface mount components.

Avoid 90

°

 or 45

°

 corners.

Use high-performance connectors. 

Design backplane and card traces so that trace impedance matches 
the connector’s and/or the termination’s impedance.

Keep equal number of vias for both signal traces.

Create equal trace lengths to avoid skew between signals. Unequal 
trace lengths result in misplaced crossing points and decrease system 
margins as the channel-to-channel skew (TCCS) value increases.

Limit vias because they cause discontinuities.

Use the common bypass capacitor values such as 0.001, 0.01, and 
0.1 µF to decouple the high-speed PLL power and ground planes.

Keep switching transistor-to-transistor logic (TTL) signals away 
from differential signals to avoid possible noise coupling.

Do not route TTL clock signals to areas under or above the 
differential signals.

Analyze system-level signals.

For PCB layout guidelines, see 

AN 224: High-Speed Board Layout 

Guidelines.

Conclusion

Cyclone II differential I/O capabilities enable you to keep pace with 
increasing design complexity. Support for I/O standards including 
LVDS, LVPECL, RSDS, mini-LVDS, differential SSTL and differential 
HSTL allows Cyclone II devices to fit into a wide variety of applications. 
Taking advantage of these I/O capabilities and Cyclone II pricing allows 
you to lower your design costs while remaining on the cutting edge of 
technology.

ac/package_outlines/cyc_c52006-html.html
background image

11–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

Document 
Revision History

Table 11–6

 shows the revision history for this document.

Table 11–6. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v2.2

Added document revision history.

Added 

Note (1)

 to 

Table 11–1

.

Updated 

Figure 11–5

 and added 

Note (1)

Added 

Note (1)

 to 

Table 11–2

.

Updated 

Figure 11–6

 and added 

Note (1)

Added 

Note (1)

 to 

Table 11–3

.

Added 

Note (1)

 to 

Figure 11–9

.

Added information stating 
LVDS/RSDS/mini-LVDS 
I/O standards 
specifications apply at the 
external resistors network 
output.

November 2005 
v2.1

Updated 

Table 11–2

.

Updated 

Figures 11–7

 through 

11–9

.

Added Resistor Network Solution for RSDS.

Updated note for mini-LVDS Resistor Network table.

July 2005 v2.0

Updated 

“I/O Standards Support”

 section.

Updated 

Tables 11–1

 through 

11–3

.

November 2004 
v1.1

Updated 

Table 11–1

.

Updated 

Figures 11–4

11–5

11–7

, and 

11–9

.

June 2004, v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

Section V–1

Preliminary

Section V. DSP

This section provides information for design and optimization of digital 
signal processing (DSP) functions and arithmetic operations using the 
embedded multiplier blocks.

This section includes the following chapter:

Chapter 12, Embedded Multipliers in Cyclone II Devices

Revision History 

Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Section V–2

 

Altera Corporation

Preliminary

Revision History

Cyclone II Device Handbook, Volume 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

12–1

February 2007

12. Embedded Multipliers in

Cyclone II Devices

Introduction

Use Cyclone

®

 II FPGAs alone or as digital signal processing (DSP) 

co-processors to improve price-to-performance ratios for DSP 
applications. You can implement high-performance yet low-cost DSP 
systems with the following Cyclone II device features and design 
support: 

Up to 150 18 x 18 multipliers

Up to 1.1 Mbit of on-chip embedded memory

High-speed interface to external memory 

DSP Intellectual Property (IP) cores 

DSP Builder interface to the Mathworks Simulink and Matlab design 
environment 

DSP Development Kit, Cyclone II Edition

This chapter focuses on the Cyclone II embedded multiplier blocks.

Cyclone II devices have embedded multiplier blocks optimized for 
multiplier-intensive low-cost DSP applications. These embedded 
multipliers combined with the flexibility of programmable logic devices 
(PLDs), provide you with the ability to efficiently implement various cost 
sensitive DSP functions easily. Consumer-based application systems such 
as digital television (DTV) and home entertainment systems typically 
require a cost effective solution for implementing multipliers to perform 
signal processing functions like finite impulse response (FIR) filters, fast 
Fourier transform (FFT) functions, and discrete cosine transform (DCT) 
functions.

Along with the embedded multipliers, the M4K memory blocks in 
Cyclone II devices also support various soft multiplier implementations. 
These, in combination with the embedded multipliers increase the 
available number of multipliers in Cyclone II devices and provide the 
user with a wide variety of implementation options and flexibility when 
designing their systems.

f

See the Cyclone II Device Family Data Sheet section in Volume 1 of the 

Cyclone II Device Handbook

 for more information on Cyclone II 

devices.

CII51012-1.2

ac/package_outlines/cyc_c52006-html.html
background image

12–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Embedded Multiplier Block Overview

Embedded 
Multiplier Block 
Overview

Each Cyclone II device has one to three columns of embedded multipliers 
that implement multiplication functions. 

Figure 12–1

 shows one of the 

embedded multiplier columns with the surrounding LABs. Each 
embedded multiplier can be configured to support one 18 × 18 multiplier 
or two 9 × 9 multipliers.

Figure 12–1. Embedded Multipliers Arranged in Columns with Adjacent LABs

Embedded

Multiplier

Embedded

Multiplier

Column

1 LAB

Row

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

12–3

February 2007

Cyclone II Device Handbook, Volume 1

Embedded Multipliers in Cyclone II Devices

The number of embedded multipliers per column and the number of 
columns available increases with device density. 

Table 12–1

 shows the 

number of embedded multipliers in each Cyclone II device and the 
multipliers that you can implement.

In addition to the embedded multipliers, you can also implement soft 
multipliers using Cyclone II M4K memory blocks. The availability of soft 
multipliers increases the number of multipliers available within the 
device

Table 12–2

 shows the total number of multipliers available in 

Cyclone II devices using embedded multipliers and soft multipliers.

Table 12–1. Number of Embedded Multipliers in Cyclone II Devices

Device

Embedded 

Multipliers

9 × 9 Multipliers 

(1)

18 × 18 

Multipliers 

(1)

EP2C5

13

26

13

EP2C8

18

36

18

EP2C20

26

52

26

EP2C35

35

70

35

EP2C50

86

172

86

EP2C70

150

300

150

Note to 

Table 12–1

:

(1)

Each device has either the number of 9 × 9 or 18 × 18 multipliers shown. The total 
number of multipliers for each device is not the sum of all the multipliers.

Table 12–2. Number of Multipliers in Cyclone II Devices

Device

Embedded Multipliers 

(18 × 18)

Soft Multipliers 

(16 × 16) 

(1)

Total Multipliers 

(2)

EP2C5

13

26

39 

EP2C8

18

36

54

EP2C20

26

52

78

EP2C35

35

105

140

EP2C50

86

129

215

EP2C70

150

250

400

Notes to 

Table 12–2

:

(1)

Soft multipliers are implemented in sum of multiplication mode. The M4K 
memory blocks are configured with 18-bit data widths to support 16-bit 
coefficients. The sum of the coefficients requires 18 bits of resolution to account for 
overflow.

(2)

The total number of multipliers may vary according to the multiplier mode used.

ac/package_outlines/cyc_c52006-html.html
background image

12–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Architecture

See the 

Cyclone II Memory Blocks

 

chapter in Volume 1 of the 

Cyclone II 

Device Handbook

 for more information on Cyclone II M4K memory 

blocks.

f

Refer to 

AN 306: Techniques for Implementing Multipliers in FPGA Devices

 

for more information on soft multipliers.

Architecture

Each embedded multiplier consists of the following elements:

Multiplier stage

Input and output registers

Input and output interfaces

Figure 12–2

 shows the multiplier block architecture.

Figure 12–2. Multiplier Block Architecture

Note to 

Figure 12–2

:

(1)

If necessary, you can send these signals through one register to match the data 
signal path.

Input Registers

You can send each multiplier input signal into an input register or directly 
into the multiplier in 9- or 18-bit sections depending on the operational 
mode of the multiplier. You can send each multiplier input signal through 
a register independently of each other (e.g., you can send the multiplier’s 

CLRN

D

Q

ENA

Data A

Data B

aclr

clock

ena

signa 

(1)

signb 

(1)

CLRN

D

Q

ENA

CLRN

D

Q

ENA

Data Out

Embedded Multiplier Block

Output

Register

Input

Register

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

12–5

February 2007

Cyclone II Device Handbook, Volume 1

Embedded Multipliers in Cyclone II Devices

data A signal through a register and send the data B signal directly to the 
multiplier). The following control signals are available to each register 
within the embedded multiplier:

clock

clock enable

asynchronous clear

All input and output registers within a single embedded multiplier are 
fed by the same clock, clock enable, or asynchronous clear signal.

Multiplier Stage

The multiplier stage supports 9 × 9 or 18 × 18 multipliers as well as other 
smaller multipliers in between these configurations. See 

“Operational 

Modes” on page 12–6

 for details. Depending on the data width or 

operational mode of the multiplier, a single embedded multiplier can 
perform one or two multiplications in parallel.

Each multiplier operand can be a unique signed or unsigned number. 
Two signals, 

signa

 and 

signb

, control whether a multiplier’s input is a 

signed or unsigned value. If the 

signa

 signal is high, the data A operand 

is a signed number, and if the 

signa

 signal is low, the data A operand is 

an unsigned number. 

Table 12–3

 shows the sign of the multiplication 

result for the various operand sign representations. The result of the 
multiplication is signed if any one of the operands is a signed value.

There is only one 

signa

 and one 

signb

 signal for each embedded 

multiplier. The 

signa

 and 

signb

 signals can be changed dynamically to 

modify the sign representation of the input operands at run time. You can 
send the 

signa

 and 

signb

 signals through a dedicated input register. 

The multiplier offers full precision regardless of the sign representation.

Table 12–3. Multiplier Sign Representation

Data A

Data B

Result

signa Value

Logic Level

signb Value

Logic Level

Unsigned

Low

Unsigned

Low

Unsigned

Unsigned

Low

Signed

High

Signed

Signed

High

Unsigned

Low

Signed

Signed

High

Signed

High

Signed

ac/package_outlines/cyc_c52006-html.html
background image

12–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Operational Modes

1

When the 

signa

 and 

signb

 signals are unused, the Quartus

®

II 

software sets the multiplier to perform unsigned multiplication 
by default.

Output Registers

You can choose to register the embedded multiplier output using the 
output registers in 18- or 36-bit sections depending on the operational 
mode of the multiplier. The following control signals are available to each 
output register within the embedded multiplier:

clock

clock enable

asynchronous clear

All input and output registers within a single embedded multiplier are 
fed by the same clock, clock enable, or asynchronous clear signal.

f

See the 

Cyclone II Architecture

 chapter in Volume 1 of the 

Cyclone II 

Device Handbook

 for more information on the embedded multiplier 

routing and interface. 

Operational 
Modes

The embedded multiplier can be used in one of two operational modes, 
depending on the application needs:

One 18-bit multiplier

Up to two 9-bit independent multipliers

The Quartus II software includes megafunctions used to control the mode 
of operation of the multipliers. After you have made the appropriate 
parameter settings using the megafunction’s MegaWizard

®

 Plug-In 

Manager, the Quartus II software automatically configures the embedded 
multiplier.

1

The Cyclone II embedded multipliers can also be used to 
implement multiplier adder and multiplier accumulator 
functions where the multiplier portion of the function is 
implemented using embedded multipliers and the adder or 
accumulator function is implemented in logic elements (LEs).

f

For more information on megafunction and Quartus II support for 
Cyclone II embedded multipliers, see the 

“Software Support”

 section.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

12–7

February 2007

Cyclone II Device Handbook, Volume 1

Embedded Multipliers in Cyclone II Devices

18-Bit Multipliers

Each embedded multiplier can be configured to support a single 
18 × 18 multiplier for input widths from 10- to 18-bits. 

Figure 12–3

 shows 

the embedded multiplier configured to support an 18-bit multiplier.

Figure 12–3. 18-Bit Multiplier Mode

Note to 

Figure 12–3

(1)

If necessary, you can send these signals through one register to match the data signal path.

All 18-bit multiplier inputs and results can be independently sent through 
registers. The multiplier inputs can accept signed integers, unsigned 
integers or a combination of both. Additionally, you can change the 

signa

 and 

signb

 signals dynamically and can send these signals 

through dedicated input registers.

9-Bit Multipliers

Each embedded multiplier can also be configured to support two 
9 × 9 independent multipliers for input widths up to 9-bits. 

Figure 12–4

 

shows the embedded multiplier configured to support two 9-bit 
multipliers.

CLRN

D

Q

ENA

Data A [17..0]

Data B [17..0]

aclr

clock

ena

signa 

(1)

signb 

(1)

CLRN

D

Q

ENA

CLRN

D

Q

ENA

Data Out [35..0]

18 

×

 18 Multiplier

Embedded Multiplier

ac/package_outlines/cyc_c52006-html.html
background image

12–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Operational Modes

Figure 12–4. 9-Bit Multiplier Mode

Note to 

Figure 12–4

:

(1)

If necessary, you can send these signals through one register to match the data signal path.

All 9-bit multiplier inputs and results can be independently sent through 
registers. The multiplier inputs can accept signed integers, unsigned 
integers, or a combination of both. Each embedded multiplier only has 
one 

signa

 signal to control the sign representation of both data A inputs 

(one for each 9 × 9 multiplier) and one 

signb

 signal to control the sign 

representation of both data B inputs. Therefore, all of the data A inputs 
feeding the same embedded multiplier must have the same sign 
representation. Similarly, all of the data B inputs feeding the same 
embedded multiplier must have the same sign representation. 

CLRN

D

Q

ENA

Data A 0 [8..0]

Data B 0 [8..0]

aclr

clock

ena

signa 

(1)

signb 

(1)

CLRN

D

Q

ENA

CLRN

D

Q

ENA

Data Out 0 [17..0]

×

 9 Multiplier

Embedded Multiplier

CLRN

D

Q

ENA

Data A 1 [8..0]

Data B 1 [8..0]

CLRN

D

Q

ENA

CLRN

D

Q

ENA

Data Out 1 [17..0]

×

 9 Multiplier

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

12–9

February 2007

Cyclone II Device Handbook, Volume 1

Embedded Multipliers in Cyclone II Devices

Software 
Support

Altera provides two methods for implementing multipliers in your 
design using embedded multiplier resources: instantiation and inference. 
Both methods use the following three Quartus II megafunctions:

lpm_mult

altmult_add

altmult_accum

You can instantiate the megafunctions in the Quartus II software to use 
the embedded multipliers. You can use the 

lpm_mult

 and 

altmult_add

 megafunctions to implement multipliers. Additionally, 

you can use the 

altmult_add

 megafunctions to implement multiplier-

adders where the embedded multiplier is used to implement the multiply 
function and the adder function is implemented in LEs. The 

altmult_accum

 megafunction implements multiply accumulate 

functions where the embedded multiplier implements the multiplier and 
the accumulator function is implemented in LEs.

f

See Quartus II On-Line Help for instructions on using the megafunctions 
and the MegaWizard Plug-In Manager.

f

For information on our complete DSP Design and Intellectual Property 
offerings, see 

www.Altera.com

.

You can also infer the megafunctions by creating an HDL design and 
synthesize it using Quartus II integrated synthesis or a third-party 
synthesis tool that recognizes and infers the appropriate multiplier 
megafunction. Using either method, the Quartus II software maps the 
multiplier functionality to the embedded multipliers during compilation.

f

See the Synthesis section in Volume 1 of the 

Quartus II Handbook

 for 

more information.

Conclusion

The Cyclone II device embedded multipliers are optimized to support 
multiplier-intensive DSP applications such as FIR filters, FFT functions 
and encoders. These embedded multipliers can be configured to 
implement multipliers of various bit widths up to 18-bits to suit a 
particular application resulting in efficient resource utilization and 
improved performance and data throughput. The Quartus II software, 
together with the LeonardoSpectrum and Synplify software provide a 
complete and easy-to-use flow for implementing multiplier functions 
using embedded multipliers.

ac/package_outlines/cyc_c52006-html.html
background image

12–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

Document 
Revision History

Table 12–4

 shows the revision history for this document.

Table 12–4. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v1.2

Added document revision history.

Updated 

“Software Support”

 section.

Removed reference to 
third-party synthesis tool: 
LeonardoSpectrum and 
Synplify.

November 2005 
v2.1

Updated Introduction.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

Section VI–1

Preliminary

Section VI. Configuration

& Test

This section provides configuration information for all of the supported 
configuration schemes for Cyclone

®

II devices. These configuration 

schemes use either a microprocessor, configuration device, or download 
cable. There is detailed information on how to design with Altera

®

 

configuration devices. The last chapter provides information on JTAG 
support in Cyclone II devices.

This section includes the following chapters:

Chapter 13, Configuring Cyclone II Devices

Chapter 14, IEEE 1149.1 (JTAG) Boundary-Scan Testing for 
Cyclone II Devices

Revision History 

Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Section VI–2

 

Altera Corporation

Preliminary

Revision History

Cyclone II Device Handbook, Volume 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

13–1

February 2007

13. Configuring Cyclone II

Devices

Introduction

Cyclone

®

II devices use SRAM cells to store configuration data. Since 

SRAM memory is volatile, configuration data must be downloaded to 
Cyclone II devices each time the device powers up. You can use the active 
serial (AS) configuration scheme, which can operate at a 

DCLK

 frequency 

up to 40 MHz, to configure Cyclone II devices. You can also use the 
passive serial (PS) and Joint Test Action Group (JTAG)-based 
configuration schemes to configure Cyclone II devices. Additionally, 
Cyclone II devices can receive a compressed configuration bitstream and 
decompress this data on-the-fly, reducing storage requirements and 
configuration time.

This chapter explains the Cyclone II configuration features and describes 
how to configure Cyclone II devices using the supported configuration 
schemes. This chapter also includes configuration pin descriptions and 
the Cyclone II configuration file format.

f

For more information on setting device configuration options or creating 
configuration files, see the 

Software Settings

 chapter in the 

Configuration 

Handbook

.

Cyclone II 
Configuration 
Overview

You can use the AS, PS, and JTAG configuration schemes to configure 
Cyclone II devices. You can select which configuration scheme to use by 
driving the Cyclone II device 

MSEL

 pins either high or low as shown in 

Table 13–1

. The 

MSEL

 pins are powered by the V

CCIO

 power supply of the 

bank they reside in. The 

MSEL[1..0]

 pins have 9-k

Ω

 internal pull-down 

resistors that are always active. During power-on reset (POR) and 
reconfiguration, the 

MSEL

 pins have to be at LVTTL V

IL

 or V

IH

 levels to be 

considered a logic low or logic high, respectively. Therefore, to avoid any 
problems with detecting an incorrect configuration scheme, you should 
connect the 

MSEL[]

 pins to the V

CCIO

 of the I/O bank they reside in and 

GND without any pull-up or pull-down resistors. The 

MSEL[]

 pins 

should not be driven by a microprocessor or another device.

CII51013-3.1

ac/package_outlines/cyc_c52006-html.html
background image

13–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Cyclone II Configuration Overview

You can download configuration data to Cyclone II FPGAs with the AS, 
PS, or JTAG interfaces using the options in 

Table 13–2

.

Table 13–1. Cyclone II Configuration Schemes

Configuration Scheme

MSEL1

MSEL0

AS (20 MHz) 

0

0

PS

0

1

Fast AS (40 MHz) 

(1)

1

0

JTAG-based Configuration 

(2)

(3)

(3)

Notes to 

Table 13–1

:

(1)

Only the EPCS16 and EPCS64 devices support a DCLK up to 40 MHz clock; other 
EPCS devices support a DCLK up to 20 MHz. Refer to the 

Serial Configuration 

Devices Data Sheet

 for more information.

(2)

JTAG-based configuration takes precedence over other configuration schemes, 
which means 

MSEL

 pin settings are ignored.

(3)

Do not leave the 

MSEL

 pins floating; connect them to V

CCIO

 or ground. These pins 

support the non-JTAG configuration scheme used in production. If you are only 
using JTAG configuration, you should connect the 

MSEL

 pins to ground.

Table 13–2. Cyclone II Device Configuration Schemes

Configuration Scheme

Description

AS configuration

Configuration using serial configuration 
devices (EPCS1, EPCS4, EPCS16 or 
EPCS64 devices)

PS configuration

Configuration using enhanced configuration 
devices (EPC4, EPC8, and EPC16 devices), 
EPC2 and EPC1 configuration devices, an 
intelligent host (microprocessor), or a 
download cable

JTAG-based configuration

Configuration via JTAG pins using a 
download cable, an intelligent host 
(microprocessor), or the Jam™ Standard 
Test and Programming Language (STAPL)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–3

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Configuration 
File Format

Table 13–3

 shows the approximate uncompressed configuration file sizes 

for Cyclone II devices. To calculate the amount of storage space required 
for multiple device configurations, add the file size of each device 
together.

Use the data in 

Table 13–3

 only to estimate the file size before design 

compilation. Different configuration file formats, such as a Hexadecimal 
(

.hex

) or Tabular Text File (

.ttf

) format, have different file sizes. However, 

for any specific version of the Quartus

®

 II software, any design targeted 

for the same device has the same uncompressed configuration file size. If 
compression is used, the file size can vary after each compilation since the 
compression ratio is dependent on the design.

Configuration 
Data 
Compression

Cyclone II devices support configuration data decompression, which 
saves configuration memory space and time. This feature allows you to 
store compressed configuration data in configuration devices or other 
memory and transmit this compressed bitstream to Cyclone II devices. 
During configuration, the Cyclone II device decompresses the bitstream 
in real time and programs its SRAM cells.

1

Preliminary data indicates that compression reduces 
configuration bitstream size by 35 to 55%.

Cyclone II devices support decompression in the AS and PS 
configuration schemes. Decompression is not supported in JTAG-based 
configuration. 

Table 13–3. Cyclone II Raw Binary File (.rbf) Sizes

Note (1)

Device

Data Size (Bits)

Data Size (Bytes)

EP2C5

1,265,792

152,998

EP2C8

1,983,536

247,974

EP2C15

3,892,496

486,562

EP2C20

3,892,496

486,562

EP2C35

6,858,656

857,332

EP2C50

9,963,392

1,245,424

EP2C70

14,319,216

1,789,902

Note to 

Table 13–3

:

(1)

These values are preliminary.

ac/package_outlines/cyc_c52006-html.html
background image

13–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Configuration Data Compression

Although they both use the same compression algorithm, the 
decompression feature supported by Cyclone II devices is different from 
the decompression feature in enhanced configuration devices (EPC16, 
EPC8, and EPC4 devices). The data decompression feature in the 
enhanced configuration devices allows them to store compressed data 
and decompress the bitstream before transmitting it to the target devices.

In PS mode, you should use the Cyclone II decompression feature since 
sending compressed configuration data reduces configuration time. You 
should not use both the Cyclone II device and the enhanced configuration 
device decompression features simultaneously. The compression 
algorithm is not intended to be recursive and could expand the 
configuration file instead of compressing it further.

You should use the Cyclone II decompression feature during AS 
configuration if you need to save configuration memory space in the 
serial configuration device.

When you enable compression, the Quartus II software generates 
configuration files with compressed configuration data. This compressed 
file reduces the storage requirements in the configuration device or flash, 
and decreases the time needed to transmit the bitstream to the Cyclone II 
device. The time required by a Cyclone II device to decompress a 
configuration file is less than the time needed to transmit the 
configuration data to the FPGA.

There are two methods to enable compression for Cyclone II bitstreams: 
before design compilation (in the Compiler Settings menu) and after 
design compilation (in the 

Convert Programming Files

 window). 

To enable compression in the project's compiler settings, select 

Device

 

under the Assignments menu to bring up the settings window. After 
selecting your Cyclone II device open the 

Device & Pin Options

 

window, and in the 

General settings

 tab enable the check box for 

Generate compressed bitstreams

 (see 

Figure 13–1

). 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–5

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–1. Enabling Compression for Cyclone II Bitstreams in Compiler 
Settings

You can also use the following steps to enable compression when creating 
programming files from the Convert Programming Files window.

1.

Click 

Convert Programming Files

 (File menu). 

2.

Select the Programming File type. Only Programmer Object Files 
(

.pof

), SRAM HEXOUT, RBF, or TTF files support compression.

3.

For POFs, select a configuration device.

4.

Select 

Add File

 and add a Cyclone II SRAM Object File(s) (

.sof

).

5.

Select the name of the file you added to the SOF Data area and click 
on 

Properties

.

6.

Check the 

Compression

 check box.

ac/package_outlines/cyc_c52006-html.html
background image

13–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Active Serial Configuration (Serial Configuration Devices)

When multiple Cyclone II devices are cascaded, the compression feature 
can be selectively enabled for each device in the chain. 

Figure 13–2

 

depicts a chain of two Cyclone II devices. The first Cyclone II device has 
compression enabled and therefore receives a compressed bitstream from 
the configuration device. The second Cyclone II device has the 
compression feature disabled and receives uncompressed data.

Figure 13–2. Compressed & Uncompressed Configuration Data in a 
Programming File

You can generate programming files (for example, POF files) for this 
setup in the Quartus II software.

Active Serial 
Configuration 
(Serial 
Configuration 
Devices)

In the AS configuration scheme, Cyclone II devices are configured using 
a serial configuration device. These configuration devices are low-cost 
devices with non-volatile memory that feature a simple, four-pin 
interface and a small form factor. These features make serial 
configuration devices an ideal low-cost configuration solution.

f

For more information on serial configuration devices, see the 

Serial 

Configuration Devices Data Sheet

 in the Configuration Handbook.

nCE

GND

nCEO

Decompression

Controller

Cyclone II

Device

nCE

nCEO

N.C.

Decompression

Controller

Cyclone II

Device

Serial or Enhanced

Configuration

Device

Serial Data

Compressed

Uncompressed

V

CC

10 k

Ω

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–7

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Serial configuration devices provide a serial interface to access 
configuration data. During device configuration, Cyclone II devices read 
configuration data via the serial interface, decompress data if necessary, 
and configure their SRAM cells. The FPGA controls the configuration 
interface in the AS configuration scheme, while the external host (e.g., the 
configuration device or microprocessor) controls the interface in the PS 
configuration scheme.

1

The Cyclone II decompression feature is available when 
configuring your Cyclone II device using AS mode.

Table 13–4

 shows the 

MSEL

 pin settings when using the AS configuration 

scheme.

Single Device AS Configuration

Serial configuration devices have a four-pin interface: serial clock input 
(

DCLK

), serial data output (

DATA

), AS data input (

ASDI

), and an 

active-low chip select (

nCS

). This four-pin interface connects to Cyclone II 

device pins, as shown in 

Figure 13–3

.

Table 13–4. Cyclone II Configuration Schemes

Configuration Scheme

MSEL1

MSEL0

AS (20 MHz) 

0

0

Fast AS (40 MHz) 

(1)

1

0

Note to 

Table 13–4

:

(1)

Only the EPCS16 and EPCS64 devices support a DCLK up to 40 MHz clock; other 
EPCS devices support a DCLK up to 20 MHz. Refer to the 

Serial Configuration 

Devices Data Sheet

 for more information.

ac/package_outlines/cyc_c52006-html.html
background image

13–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Active Serial Configuration (Serial Configuration Devices)

Figure 13–3. Single Device AS Configuration

Notes to 

Figure 13–3

:

(1)

Connect the pull-up resistors to a 3.3-V supply.

(2)

Cyclone II devices use the 

ASDO

 to 

ASDI

 path to control the configuration device.

(3)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not 

feed another device’s 

nCE

 pin.

Upon power-up, the Cyclone II device goes through a POR. During POR, 
the device resets, holds 

nSTATUS

 and 

CONF_DONE

 low, and tri-states all 

user I/O pins. After POR, which typically lasts 100 ms, the Cyclone II 
device releases 

nSTATUS

 and enters configuration mode when the 

external 10-k

Ω

 resistor pulls the 

nSTATUS

 pin high. Once the FPGA 

successfully exits POR, all user I/O pins continue to be tri-stated. 
Cyclone II devices have weak pull-up resistors on the user I/O pins 
which are on before and during configuration.

f

The value of the weak pull-up resistors on the I/O pins that are on 
before and during configuration are available in the 

DC Characteristics & 

Timing Specifications

 chapter of the 

Cyclone II Device Handbook

.

The configuration cycle consists of the reset, configuration, and 
initialization stages.

DATA

DCLK

nCS

ASDI

DATA0

DCLK

nCSO

ASDO

Serial Config

u

ration

De

v

ice

Cyclone II  FPGA

10 k

Ω

10 k

Ω

V

CC

10 k

Ω

V

CC

V

CC

G

N

D

nCEO

nCE

nSTATUS

nCO

N

FIG

CO

N

F_DO

N

E

(2)

MSEL1

MSEL0

G

N

D

N

.C.

(1)

(1)

(1)

V

CC

(3)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–9

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Reset Stage

When 

nCONFIG

 or 

nSTATUS

 are low, the device is in reset. After POR, the 

Cyclone II device releases 

nSTATUS

. An external 10-k

Ω

 pull-up resistor 

pulls the 

nSTATUS

 signal high, and the Cyclone II device enters 

configuration mode.

1

V

CCINT

 and V

CCIO

 of the banks where the configuration and 

JTAG pins reside need to be fully powered to the appropriate 
voltage levels in order to begin the configuration process. 

Configuration Stage

The serial clock (

DCLK

) generated by the Cyclone II device controls the 

entire configuration cycle and provides the timing for the serial interface. 
Cyclone II devices use an internal oscillator to generate 

DCLK

. Using the 

MSEL[]

 pins, you can select either a 20- or 40-MHz oscillator. Although 

you can select either 20- or 40-MHz oscillator when designing with serial 
configuration devices, the 40-MHz oscillator provides faster 
configuration times. There is some variation in the internal oscillator 
frequency because of the process, temperature, and voltage conditions in 
Cyclone II devices. The internal oscillator is designed such that its 
maximum frequency is guaranteed to meet EPCS device specifications.

Table 13–5

 shows the AS 

DCLK

 output frequencies.

In both AS and Fast AS configuration schemes, the serial configuration 
device latches input and control signals on the rising edge of 

DCLK

 and 

drives out configuration data on the falling edge. Cyclone II devices drive 
out control signals on the falling edge of 

DCLK

 and latch configuration 

data on the falling edge of 

DCLK

.

In configuration mode, the Cyclone II device enables the serial 
configuration device by driving its 

nCSO

 output pin low, which connects 

to the chip select (

nCS

) pin of the configuration device. The Cyclone II 

device uses the serial clock (

DCLK

) and serial data output (

ASDO

) pins to 

send operation commands and/or read address signals to the serial 

Table 13–5. AS DCLK Output Frequency

Note (1)

Oscillator Selected

Minimum

Typical

Maximum

Units

40 MHz 

20

26

40

MHz

20 MHz 

10

13

20

MHz

Note to 

Table 13–5

:

(1)

These values are preliminary.

ac/package_outlines/cyc_c52006-html.html
background image

13–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Active Serial Configuration (Serial Configuration Devices)

configuration device. The configuration device then provides data on its 
serial data output (

DATA

) pin, which connects to the 

DATA0

 input of the 

Cyclone II device.

After the Cyclone II device receives all the configuration bits, it releases 
the open-drain 

CONF_DONE

 pin, which is then pulled high by an external 

10-k

Ω

 resistor. Also, the Cyclone II device stops driving the 

DCLK

 signal. 

Initialization begins only after the 

CONF_DONE

 signal reaches a logic high 

level. The 

CONF_DONE

 pin must have an external 10-k

Ω

 pull-up resistor 

in order for the device to initialize. All AS configuration pins (

DATA0

DCLK

nCSO

, and 

ASDO

) have weak internal pull-up resistors which are 

always active. After configuration, these pins are set as input tri-stated 
and are pulled high by the internal weak pull-up resistors.

Initialization Stage

In Cyclone II devices, the initialization clock source is either the 
Cyclone II 10-MHz (typical) internal oscillator (separate from the AS 
internal oscillator) or the optional 

CLKUSR

 pin. The internal oscillator is 

the default clock source for initialization. If the internal oscillator is used, 
the Cyclone II device provides itself with enough clock cycles for proper 
initialization. The advantage of using the internal oscillator is you do not 
need to send additional clock cycles from an external source to the 

CLKUSR

 pin during the initialization stage. Additionally, you can use the 

CLKUSR

 pin as a user I/O pin.

If you want to delay the initialization of the device, you can use the 

CLKUSR

 pin option. Using the 

CLKUSR

 pin allows you to control when 

your device enters user mode. The device can be delayed from entering 
user mode for an indefinite amount of time. When you enable the 

User 

Supplied Start-Up Clock

 option, the 

CLKUSR

 pin is the initialization 

clock source. Supplying a clock on 

CLKUSR

 does not affect the 

configuration process. After all configuration data has been accepted and 

CONF_DONE

 goes high, Cyclone II devices require 299 clock cycles to 

initialize properly and support a 

CLKUSR

 f

MAX

 of 100 MHz. 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–11

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Cyclone II devices offer an optional 

INIT_DONE

 pin which signals the 

end of initialization and the start of user mode with a low-to-high 
transition. The 

Enable INIT_DONE output

 option is available in the 

Quartus II software from the 

General

 tab of the 

Device & Pin Options

 

window. If you use the 

INIT_DONE

 pin, an external 10-k

Ω

 pull-up 

resistor is required to pull the signal high when 

nCONFIG

 is low and 

during the beginning of configuration. Once the optional bit to enable 

INIT_DONE

 is programmed into the device (during the first frame of 

configuration data), the 

INIT_DONE

 pin goes low. When initialization is 

complete, the 

INIT_DONE

 pin is released and pulled high. This 

low-to-high transition signals that the FPGA has entered user mode. If 
you do not use the 

INIT_DONE

 pin, the initialization period is complete 

after 

CONF_DONE

 goes high and 299 clock cycles are sent to the 

CLKUSR

 

pin or after the time t

CF2UM

 (see 

Table 13–8

) if the Cyclone II device uses 

the internal oscillator.

User Mode

When initialization is complete, the FPGA enters user mode. In user 
mode, the user I/O pins no longer have weak pull-up resistors and 
function as assigned in your design.

When the Cyclone II device is in user mode, you can initiate 
reconfiguration by pulling the 

nCONFIG

 signal low. The 

nCONFIG

 signal 

should be low for at least 2 µs. When 

nCONFIG

 is pulled low, the 

Cyclone II device is reset and enters the reset stage. The Cyclone II device 
also pulls 

nSTATUS

 and 

CONF_DONE

 low and all I/O pins are tri-stated. 

Once 

nCONFIG

 returns to a logic high level and 

nSTATUS

 is released by 

the Cyclone II device, reconfiguration begins.

Error During Configuration

If an error occurs during configuration, the Cyclone II device drives the 

nSTATUS

 signal low to indicate a data frame error, and the 

CONF_DONE

 

signal stays low. If you enable the 

Auto-restart configuration after error

 

option in the Quartus II software from the 

General

 tab of the 

Device & 

Pin Options

 dialog box, the Cyclone II device resets the serial 

configuration device by pulsing 

nCSO

, releases 

nSTATUS

 after a reset 

time-out period (about 40 µs), and retries configuration. If the 

Auto-restart configuration after error

 option is turned off, the external 

system must monitor 

nSTATUS

 for errors and then pull 

nCONFIG

 low for 

at least 2 µs to restart configuration. 

1

If you use the optional 

CLKUSR

 pin and the 

nCONFIG

 pin is 

pulled low to restart configuration during device initialization, 
ensure 

CLKUSR

 continues to toggle during the time 

nSTATUS

 is 

low (a maximum of 40 

μ

s).

ac/package_outlines/cyc_c52006-html.html
background image

13–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Active Serial Configuration (Serial Configuration Devices)

f

For more information on configuration issues, see the 

Debugging 

Configuration Problems

 chapter of the 

Configuration Handbook

 and the 

FPGA Configuration Troubleshooter on the Altera web site 
(

www.altera.com

).

Multiple Device AS Configuration

You can configure multiple Cyclone II devices using a single serial 
configuration device. You can cascade multiple Cyclone II devices using 
the chip-enable (

nCE

) and chip-enable-out (

nCEO

) pins. Connect the 

nCE

 

pin of the first device in the chain to ground and connect the 

nCEO

 pin to 

the 

nCE

 pin of the next device in the chain. Use an external 10-k

Ω

 pull-up 

resistor to pull the 

nCEO

 signal high to its V

CCIO

 level to help the internal 

weak pull-up resistor. When the first device captures all of its 
configuration data from the bitstream, it transitions its 

nCEO

 pin low, 

initiating the configuration of the next device in the chain. You can leave 
the 

nCEO

 pin of the last device unconnected or use it as a user I/O pin 

after configuration if the last device in chain is a Cyclone II device. 

1

The Quartus II software sets the Cyclone II device 

nCEO

 pin as 

an output pin driving to ground by default. If the device is in a 
chain, and the 

nCEO

 pin is connected to the next device’s 

nCE

 

pin, you must make sure that the 

nCEO

 pin is not used as a user 

I/O pin after configuration. The software setting is in the 

Dual-Purpose Pins

 tab of the 

Device & Pin Options

 dialog box 

in Quartus II software.

The first Cyclone II device in the chain is the configuration master and 
controls the configuration of the entire chain. Select the AS configuration 
scheme for the first Cyclone II device and the PS configuration scheme for 
the remaining Cyclone II devices (configuration slaves). Any other 
Altera

®

 device that supports PS configuration can also be part of the chain 

as a configuration slave. In a multiple device chain, the 

nCONFIG

nSTATUS

CONF_DONE

DCLK

, and 

DATA0

 pins of each device in the chain 

are connected (see 

Figure 13–4

). 

Figure 13–4

 shows the pin connections 

for this setup.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–13

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–4. Multiple Device AS Configuration

Notes to 

Figure 13–4

:

(1)

Connect the pull-up resistors to a 3.3-V supply.

(2)

Connect the pull-up resistor to the V

CCIO

 supply voltage of I/O bank that the 

nCEO

 pin resides in.

(3)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed another device’s 

nCE

 pin.

As shown in 

Figure 13–4

, the 

nSTATUS

 and 

CONF_DONE

 pins on all target 

FPGAs are connected together with external pull-up resistors. These pins 
are open-drain bidirectional pins on the FPGAs. When the first device 
asserts 

nCEO

 (after receiving all of its configuration data), it releases its 

CONF_DONE

 pin. However, the subsequent devices in the chain keep the 

CONF_DONE

 signal low until they receive their configuration data. When 

all the target FPGAs in the chain have received their configuration data 
and have released 

CONF_DONE

, the pull-up resistor pulls this signal high, 

and all devices simultaneously enter initialization mode. 

DATA

DCLK

nCS

ASDI

DATA0

DCLK

nCSO

ASDO

Serial Configuration

Device

Cyclone II FPGA

Master Device

10 k

Ω

10 k

Ω

V

CC

V

CC

GND

nCEO

nCE

nSTATUS
CONF_DONE

DATA0

DCLK

Cyclone II FPGA

Slave Device

nCEO

nCE

nSTATUS
CONF_DONE

10 k

Ω

V

CC

nCONFIG

nCONFIG

MSEL1

MSEL0

GND

V

CC  

N.C.

MSEL1

MSEL0

GND

(1)

(1)

(1)

10 k

Ω

V

CC

(2)

(3)

V

CC  

ac/package_outlines/cyc_c52006-html.html
background image

13–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Active Serial Configuration (Serial Configuration Devices)

During initialization, the initialization clock source is either the 
Cyclone II 10 MHz (typical) internal oscillator (separate from the AS 
internal oscillator) or the optional 

CLKUSR

 pin. By default, the internal 

oscillator is the clock source for initialization. If the internal oscillator is 
used, the Cyclone II device provides itself with enough clock cycles for 
proper initialization. The advantage of using the internal oscillator is you 
do not need to send additional clock cycles from an external source to the 

CLKUSR

 pin during the initialization stage. You can also make use of the 

CLKUSR

 pin as a user I/O pin, which means you have an additional user 

I/O pin.

If you want to delay the initialization of the devices in the chain, you can 
use the 

CLKUSR

 pin option. The 

CLKUSR

 pin allows you to control when 

your device enters user mode. This feature also allows you to control the 
order of when each device enters user mode by feeding a separate clock 
to each device’s 

CLKUSR

 pin. By using the 

CLKUSR

 pins, you can choose 

any device in the multiple device chain to enter user mode first and have 
the other devices enter user mode at a later time.

Different device families may require a different number of initialization 
clock cycles. Therefore, if your multiple device chain consists of devices 
from different families, the devices may enter user mode at a slightly 
different time due to the different number of initialization clock cycles 
required. However, if the number of initialization clock cycles is similar 
across different device families or if the devices are from the same family, 
then the devices enter user mode at the same time. See the respective 
device family handbook for more information about the number of 
initialization clock cycles required.

If an error occurs at any point during configuration, the FPGA with the 
error drives the 

nSTATUS

 signal low. If you enable the 

Auto-restart 

configuration after error

 option, the entire chain begins reconfiguration 

after a reset time-out period (a maximum of 40 µs). If the 

Auto-restart 

configuration after error

 option is turned off, a microprocessor or 

controller must monitor 

nSTATUS

 for errors and then pulse 

nCONFIG

 low 

to restart configuration. The microprocessor or controller can pulse 

nCONFIG

 if it is under system control rather than tied to V

CC

.

1

While you can cascade Cyclone II devices, serial configuration 
devices cannot be cascaded or chained together.

1

If you use the optional 

CLKUSR

 pin and the 

nCONFIG

 is pulled 

low to restart configuration during device initialization, make 
sure the 

CLKUSR

 pin continues to toggle while 

nSTATUS

 is low 

(a maximum of 40 µs).

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–15

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

If the configuration bitstream size exceeds the capacity of a serial 
configuration device, you must select a larger configuration device 
and/or enable the compression feature. When configuring multiple 
devices, the size of the bitstream is the sum of the individual devices' 
configuration bitstreams.

Configuring Multiple Cyclone II Devices with the Same Design

Certain designs require you to configure multiple Cyclone II devices with 
the same design through a configuration bitstream or SOF. You can do 
this through one of two methods, as described in this section. For both 
methods, the serial configuration devices cannot be cascaded or chained 
together.

Multiple SOFs

In the first method, two copies of the SOF file are stored in the serial 
configuration device. Use the first copy to configure the master Cyclone II 
device and the second copy to configure all remaining slave devices 
concurrently. In this setup, the master Cyclone II device is in AS mode, 
and the slave Cyclone II devices are in PS mode (

MSEL=01

). See 

Figure 13–5

.

To configure four identical Cyclone II devices with the same SOF file, 
connect the three slave devices for concurrent configuration as shown in 

Figure 13–5

. Th

nCEO

 pin from the master device drives the 

nCE

 input 

pins on all three slave devices. Connect the configuration device’s 

DATA

 

and 

DCLK

 pins to the Cyclone II device’s 

DATA

 and 

DCLK

 pins in parallel. 

During the first configuration cycle, the master device reads its 
configuration data from the serial configuration device while holding 

nCEO

 high. After completing its configuration cycle, the master drives 

nCE

 low and transmits the second copy of the configuration data to all 

three slave devices, configuring them simultaneously. 

The advantage of using the setup in 

Figure 13–5

 is that you can have a 

different SOF file for the Cyclone II master device. However, all the 
Cyclone II slave devices must be configured with the same SOF file. The 
SOF files in this configuration method can be either compressed or 
uncompressed.

1

You can still use this method if the master and slave Cyclone II 
devices use the same SOF.

ac/package_outlines/cyc_c52006-html.html
background image

13–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Active Serial Configuration (Serial Configuration Devices)

Figure 13–5. Multiple Device AS Configuration When FPGAs Receive the Same Data with Multiple SOFs

Notes to 

Figure 13–5

:

(1)

Connect the pull-up resistors to a 3.3-V supply. 

(2)

Connect the pull-up resistor to the V

CCIO

 supply voltage of I/O bank that the 

nCEO

 pin resides in.

(3)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed another device’s 

nCE

 pin.

Cyclone II Device Master

nSTATUS

CONF_DONE

nCONFIG

nCE

DATA0

DCLK

nCSO

nCEO

MSEL0

MSEL1

ASDO

Data

DCLK

nCS

ASDI

Cyclone II Device Slave

nSTATUS

CONF_DONE

nCONFIG

nCE

N.C.

DATA0

DCLK

nCEO

MSEL0

MSEL1

V

CC

Cyclone II Device Slave

nSTATUS

CONF_DONE

nCONFIG

nCE

N.C.

DATA0

DCLK

nCEO

MSEL0

MSEL1

V

CC

V

CC

Cyclone II Device Slave

nSTATUS

CONF_DONE

nCONFIG

nCE

N.C.

DATA0

DCLK

nCEO

MSEL0

MSEL1

V

CC

V

CC

V

CC

V

CC

V

CC

Serial

Configuration

Device

(1)

(1)

(1)

(3)

(4)

(4)

(4)

10 k

9

10 k

9

10 k

9

10 k

9

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–17

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Single SOF

The second method configures both the master and slave Cyclone II 
devices with the same SOF. The serial configuration device stores one 
copy of the SOF file. This setup is shown in 

Figure 13–6

 where the master 

is setup in AS mode, and the slave devices are setup in PS mode 
(

MSEL=01

). You could setup one or more slave devices in the chain and 

all the slave devices are setup in the same way as shown in 

Figure 13–6

Figure 13–6. Multiple Device AS Configuration When FPGAs Receive the Same Data with a Single SOF

Notes to 

Figure 13–6

:

(1)

Connect the pull-up resistors to a 3.3-V supply. 

(2)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed another device’s 

nCE

 pin.

In this setup, all the Cyclone II devices in the chain are connected for 
concurrent configuration. This can reduce the AS configuration time 
because all the Cyclone II devices are configured in one configuration 
cycle. Connect the 

nCE

 input pins of all the Cyclone II devices to ground. 

You can either leave the 

nCEO

 output pins on all the Cyclone II devices 

unconnected or use the 

nCEO

 output pins as normal user I/O pins. The 

DATA

 and 

DCLK

 pins are connected in parallel to all the Cyclone II 

devices. 

Cyclone II De

v

ice Master

nSTATUS

CO

N

F_DO

N

E

nCO

N

FIG

nCE

DATA0

DCLK

nCSO

nCEO

MSEL0

MSEL1

ASDO

Data

DCLK

nCS

ASDI

Cyclone II De

v

ice Sla

v

e 1

nSTATUS

CO

N

F_DO

N

E

nCO

N

FIG

nCE

DATA0

DCLK

MSEL0

MSEL1

V

CC

V

CC

V

CC

V

CC

V

CC

Serial

Config

u

ration

De

v

ice

(1)

(1)

(1)

(3)

B

u

ffe

rs

10 k

Ω

10 k

Ω

10 k

Ω

N

.C.

nCEO

(3)

N

.C.

Cyclone II De

v

ice Sla

v

e 2

nSTATUS

CO

N

F_DO

N

E

nCO

N

FIG

nCE

DATA0

DCLK

MSEL0

MSEL1

V

CC

nCEO

(3)

N

.C.

ac/package_outlines/cyc_c52006-html.html
background image

13–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Active Serial Configuration (Serial Configuration Devices)

You should put a buffer before the 

DATA

 and 

DCLK

 output from the 

master Cyclone II device to avoid signal strength and signal integrity 
issues. The buffer should not significantly change the 

DATA

-to-

DCLK

 

relationships or delay them with respect to other AS signals (

ASDI

 and 

nCS

). Also, the buffer should only drive the slave Cyclone II devices, so 

that the timing between the master Cyclone II device and serial 
configuration device is unaffected.

This configuration method supports both compressed and uncompressed 
SOFs. Therefore, if the configuration bitstream size exceeds the capacity 
of a serial configuration device, you can enable the compression feature 
in the SOF file used or you can select a larger serial configuration device.

Estimating AS Configuration Time

The AS configuration time is the time it takes to transfer data from the 
serial configuration device to the Cyclone II device. The Cyclone II 

DCLK

 

output (generated from an internal oscillator) clocks this serial interface. 
As listed in 

Table 13–5

, if you are using the 40-MHz oscillator, the 

DCLK

 

minimum frequency is 20 MHz (50 ns). Therefore, the maximum 
configuration time estimate for an EP2C5 device (1,223,980 bits of 
uncompressed data) is:

RBF size × (maximum 

DCLK

 period / 1 bit per 

DCLK

 cycle) = 

estimated maximum configuration time

1,223,980 bits × (50 ns / 1 bit) = 61.2 ms

To estimate the typical configuration time, use the typical 

DCLK

 period 

listed in 

Table 13–5

. With a typical 

DCLK

 period of 38.46 ns, the typical 

configuration time is 47.1 ms. Enabling compression reduces the amount 
of configuration data that is transmitted to the Cyclone II device, which 
also reduces configuration time. On average, compression reduces 
configuration time by 50%. 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–19

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Programming Serial Configuration Devices

Serial configuration devices are non-volatile, flash-memory-based 
devices. You can program these devices in-system using the 
USB-Blaster™ or ByteBlaster™ II download cable. Alternatively, you can 
program them using the Altera Programming Unit (APU), supported 
third-party programmers, or a microprocessor with the SRunner 
software driver.

You can use the AS programming interface to program serial 
configuration devices in-system. During in-system programming, the 
download cable disables FPGA access to the AS interface by driving the 

nCE

 pin high. Cyclone II devices are also held in reset by pulling the 

nCONFIG

 signal low. After programming is complete, the download 

cable releases the 

nCE

 and 

nCONFIG

 signals, allowing the pull-down and 

pull-up resistor to drive GND and V

CC

, respectively. 

Figure 13–7

 shows 

the download cable connections to the serial configuration device. 

f

For more information on the USB-Blaster download cable, see the 

USB-Blaster USB Port Download Cable Data Sheet

. For more information 

on the ByteBlaster II cable, see the 

ByteBlaster II Download Cable Data 

Sheet

.

ac/package_outlines/cyc_c52006-html.html
background image

13–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Active Serial Configuration (Serial Configuration Devices)

Figure 13–7. In-System Programming of Serial Configuration Devices

Notes to 

Figure 13–7

:

(1)

Connect these pull-up resistors to 3.3-V supply.

(2)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

(3)

Power up the ByteBlaster II or USB Blaster cable’s V

CC

 with a 3.3-V supply.

You can use the Quartus II software with the APU and the appropriate 
configuration device programming adapter to program serial 
configuration devices. All serial configuration devices are offered in an 
8-pin or 16-pin small outline integrated circuit (SOIC) package and can be 
programmed using the PLMSEPC-8 adapter.

DATA

DCLK

nCS

ASDI

DATA0

DCLK

nCSO

nCE

nCO

N

FIG

nSTATUS

nCEO

CO

N

F_DO

N

E

ASDO

V

CC

V

CC

V

CC

V

CC

10 k

Ω

10 k

Ω

10 k

Ω

10 k

Ω

Cyclone II FPGA

Serial

Config

u

ration

De

v

ice

Pi

n

 1

MSEL1

MSEL0

G

N

D

ByteBla

s

te

r

 II o

r

 U

S

B Bla

s

te

r

 

10-Pi

n

 Male Heade

r

(2)

N

.C.

(1)

(1)

(1)

(3)

V

CC

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–21

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Altera programming hardware (APU) or other third-party programming 
hardware can be used to program blank serial configuration devices 
before they are mounted onto PCBs. Alternatively, you can use an on-
board microprocessor to program the serial configuration device on the 
PCB using C-based software drivers provided by Altera (i.e., the SRunner 
software driver).

A serial configuration device can be programmed in-system by an 
external microprocessor using SRunner. SRunner is a software driver 
developed for embedded serial configuration device programming, 
which can be easily customized to fit in different embedded systems. 
SRunner can read a Raw Programming Data File (

.rpd

) and write to the 

serial configuration devices. The serial configuration device 
programming time using SRunner is comparable to the programming 
time when using the Quartus II Programmer.

f

For more information about SRunner, see the 

SRunner: An Embedded 

Solution for EPCS Programming White Paper

 and the source code on the 

Altera web site at www.altera.com. For more information on 
programming serial configuration devices, see the 

Serial Configuration 

Devices Data Sheet

 in the 

Configuration Handbook

.

Figure 13–8

 shows the timing waveform for the AS configuration scheme 

using a serial configuration device.

Figure 13–8. AS Configuration Timing

Read Address

bit 

N

 

 1

bit 

N

bit 1

bit 0

299 Cycles

nSTATUS

nCONFIG

CONF_DONE

nCSO

DCLK

ASDO

DATA0

INIT_DONE

User I/O

User Mode 

t

CF2ST1

t

H

t

SU

t

CH

t

CL

Tri-stated with internal

pull-up resistor.

ac/package_outlines/cyc_c52006-html.html
background image

13–22

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

PS Configuration 

You can use an Altera configuration device, a download cable, or an 
intelligent host, such as a MAX

®

II device or microprocessor to configure 

a Cyclone II device with the PS scheme. In the PS scheme, an external host 
(configuration device, MAX II device, embedded processor, or host PC) 
controls configuration. Configuration data is input to the target 
Cyclone II devices via the 

DATA0

 pin at each rising edge of 

DCLK

.

1

The Cyclone II decompression feature is fully available when 
configuring your Cyclone II device using PS mode.

Table 13–6

 shows the 

MSEL

 pin settings when using the PS configuration 

scheme.

Single Device PS Configuration Using a MAX II Device as an 
External Host

In the PS configuration scheme, you can use a MAX II device as an 
intelligent host that controls the transfer of configuration data from a 
storage device, such as flash memory, to the target Cyclone II device. 
Configuration data can be stored in RBF, HEX, or TTF format. 

Figure 13–9

 

shows the configuration interface connections between the Cyclone II 
device and a MAX II device for single device configuration.

Table 13–6. Cyclone II MSEL Pin Settings for PS Configuration Schemes

Configuration Scheme

MSEL1

MSEL0

PS

0

1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–23

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–9. Single Device PS Configuration Using an External Host

Notes to 

Figure 13–9

:

(1)

Connect the pull-up resistor to a supply that provides an acceptable input signal for the device. V

CC

 should be high 

enough to meet the VIH specification of the I/O on the device and the external host.

(2)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

Upon power-up, the Cyclone II device goes through a POR, which lasts 
approximately 100 ms. During POR, the device resets, holds 

nSTATUS

 

low, and tri-states all user I/O pins. Once the FPGA successfully exits 
POR, all user I/O pins continue to be tri-stated. 

f

The value of the weak pull-up resistors on the I/O pins that are on before 
and during configuration can be found in the 

Cyclone II Device Handbook

.

The configuration cycle consists of three stages: reset, configuration, and 
initialization.

Reset Stage

While the Cyclone II device’s 

nCONFIG

 or 

nSTATUS

 pins are low, the 

device is in reset. To initiate configuration, the MAX II device must 
transition the Cyclone II 

nCONFIG

 pin from low to high.

1

V

CCINT

 and V

CCIO

 of the banks where the configuration and 

JTAG pins reside need to be fully powered to the appropriate 
voltage levels in order to begin the configuration process. 

When the Cyclone II 

nCONFIG

 pin transitions high, the Cyclone II device 

comes out of reset and releases the open-drain 

nSTATUS

 pin, which is 

then pulled high by an external 10-k

Ω

 pull-up resistor. Once 

nSTATUS

 is 

released, the FPGA is ready to receive configuration data and the MAX II 
device can start the configuration at any time. 

External Host

(MAX II Device or

Microprocessor)

CONF_DONE

nSTATUS

nCE

DATA0

nCONFIG

Cyclone II Device

Memory

ADDR

DATA0

GND

MSEL1

VCC. 

(1)

VCC. 

(1)

10 k

Ω

10 k

Ω

GND

DCLK

nCEO

N.C. 

(2)

MSEL0

VCC

ac/package_outlines/cyc_c52006-html.html
background image

13–24

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

Configuration Stage

After the Cyclone II device’s 

nSTATUS

 pin transitions high, the MAX II 

device should send the configuration data on the 

DATA0

 pin one bit at a 

time. If you are using configuration data in RBF, HEX, or TTF format, 
send the least significant bit (LSB) of each data byte first. For example, if 
the RBF contains the byte sequence 02 1B EE 01 FA, you should transmit 
the serial bitstream 

0100-0000 1101-1000 0111-0111 1000-0000 

0101-1111

 to the device first.

The Cyclone II device receives configuration data on its 

DATA0

 pin and 

the clock on the 

DCLK

 pin. Data is latched into the FPGA on the rising 

edge of 

DCLK

. Data is continuously clocked into the target device until the 

CONF_DONE

 pin transitions high. After the Cyclone II device receives all 

the configuration data successfully, it releases the open-drain 

CONF_DONE

 pin, which is pulled high by an external 10-k

Ω

 pull-up 

resistor. A low-to-high transition on 

CONF_DONE

 indicates configuration 

is complete and initialization of the device can begin. The 

CONF_DONE

 

pin must have an external 10-k

Ω

 pull-up resistor in order for the device 

to initialize.

The configuration clock (

DCLK

) speed must be below the specified system 

frequency (see 

Table 13–7

) to ensure correct configuration. No maximum 

DCLK

 period exists, which means you can pause configuration by halting 

DCLK

 for an indefinite amount of time.

Initialization Stage

In Cyclone II devices, the initialization clock source is either the 
Cyclone II internal oscillator (typically 10 MHz) or the optional 

CLKUSR

 

pin. The internal oscillator is the default clock source for initialization. If 
you use the internal oscillator, the Cyclone II device makes sure to 
provide enough clock cycles for proper initialization. Therefore, if the 
internal oscillator is the initialization clock source, sending the entire 
configuration file to the device is sufficient to configure and initialize the 
device. You do not need to provide additional clock cycles externally 
during the initialization stage. Driving 

DCLK

 back to the device after 

configuration is complete does not affect device operation. Additionally, 
if you use the internal oscillator as the clock source, you can use the 

CLKUSR

 pin as a user I/O pin.

If you want to delay the initialization of the device, you can use the 

CLKUSR

 pin. Using the 

CLKUSR

 pin allows you to control when your 

device enters user mode. You can delay the device from entering user 
mode for an indefinite amount of time. 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–25

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

The 

Enable user-supplied start-up clock (CLKUSR)

 option can be 

turned on in the Quartus II software from the 

General

 tab of the 

Device 

& Pin Options

 dialog box. Supplying a clock on 

CLKUSR

 does not affect 

the configuration process. After all configuration data has been accepted 
and 

CONF_DONE

 goes high, Cyclone II devices require 299 clock cycles to 

initialize properly and support a 

CLKUSR

 f

MAX

 of 100 MHz.

1

If the optional 

CLKUSR

 pin is being used and 

nCONFIG

 is pulled 

low to restart configuration during device initialization, you 
need to ensure that 

CLKUSR

 continues toggling during the time 

nSTATUS

 is low (maximum of 40 µs).

An optional 

INIT_DONE

 pin signals the end of initialization and the start 

of user mode with a low-to-high transition. By default, the 

INIT_DONE

 

output is disabled. You can enable the 

INIT_DONE

 output by turning on 

the 

Enable INIT_DONE output

 option in the Quartus II software. If you 

use the 

INIT_DONE

 pin, an external 10-k

Ω

 pull-up resistor pulls the pin 

high when 

nCONFIG

 is low and during the beginning of configuration. 

Once the optional bit to enable 

INIT_DONE

 is programmed into the 

device (during the first frame of configuration data), the 

INIT_DONE

 pin 

transitions low. When initialization is complete, the 

INIT_DONE

 pin is 

released and pulled high. The MAX II device must be able to detect this 
low-to-high transition, which signals the FPGA has entered user mode.

If you want to use the 

INIT_DONE

 pin as a user I/O pin, you should wait 

for the maximum value of t

CD2UM

 (see 

Table 13–7

) after the 

CONF_DONE

 

signal transitions high so to ensure the Cyclone II device has been 
initialized properly and is in user mode.

Make sure the MAX II device does not drive the 

CONF_DONE

 signal low 

during configuration, initialization, and before the device enters user 
mode.

User Mode

When initialization is complete, the Cyclone II device enters user mode. 
In user mode, the user I/O pins no longer have pull-up resistors and 
function as assigned in your design. 

To ensure 

DCLK

 and 

DATA0

 are not left floating at the end of 

configuration, the MAX II device must drive them either high or low, 
which ever is convenient on your PCB. The Cyclone II device 

DATA0

 pin 

is not available as a user I/O pin after configuration.

When the FPGA is in user mode, you can initiate a reconfiguration by 
transitioning the 

nCONFIG

 pin low-to-high. The 

nCONFIG

 pin must be 

low for at least 2 µs. When the 

nCONFIG

 transitions low, the Cyclone II 

ac/package_outlines/cyc_c52006-html.html
background image

13–26

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

device also pulls 

nSTATUS

 and 

CONF_DONE

 low and tri-states all I/O 

pins. Once the 

nCONFIG

 pin returns to a logic high level and the 

Cyclone II device releases the 

nSTATUS

 pin, the MAX II device can begin 

reconfiguration.

Error During Configuration

If an error occurs during configuration, the Cyclone II device transitions 
its 

nSTATUS

 pin low, resetting itself internally. The low signal on the 

nSTATUS

 pin tells the MAX II device that there is an error. If you turn on 

the 

Auto-restart configuration after error

 option in the Quartus II 

software, the Cyclone II device releases 

nSTATUS

 after a reset time-out 

period (maximum of 40 µs). After 

nSTATUS

 is released and pulled high 

by a pull-up resistor, the MAX II device can try to reconfigure the target 
device without needing to pulse 

nCONFIG

 low. If this option is turned off, 

the MAX II device must generate a low-to-high transition (with a low 
pulse of at least 2 µs) on 

nCONFIG

 to restart the configuration process.

The MAX II device can also monitor the 

CONF_DONE

 and 

INIT_DONE

 

pins to ensure successful configuration. The MAX II device must monitor 
the Cyclone II device's 

CONF_DONE

 pin to detect errors and determine 

when programming completes. If all configuration data is sent, but 

CONF_DONE

 or 

INIT_DONE

 do not transition high, the MAX II device 

must reconfigure the target device.

f

For more information on configuration issues, see the 

Debugging 

Configuration Problems

 chapter of the 

Configuration Handbook

 and the 

FPGA Configuration Troubleshooter on the Altera web site 
(

www.altera.com

).

Multiple Device PS Configuration Using a MAX II Device as an 
External Host

Figure 13–10

 shows how to configure multiple devices using a MAX II 

device. This circuit is similar to the PS configuration circuit for a single 
device, except Cyclone II devices are cascaded for multiple device 
configuration.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–27

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–10. Multiple Device PS Configuration Using an External Host

Notes to 

Figure 13–10

:

(1)

The pull-up resistor should be connected to a supply that provides an acceptable input signal for all devices in the 
chain. V

CC

 should be high enough to meet the V

IH

 specification of the I/O on the devices and the external host.

(2)

Connect the pull-up resistor to the V

CCIO

 supply voltage of I/O bank that the 

nCEO

 pin resides in.

(3)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed another device’s 

nCE

 pin.

In multiple device PS configuration, connect the first Cyclone II device’s 

nCE

 pin to GND and connect the 

nCEO

 pin to the 

nCE

 pin of the next 

Cyclone II device in the chain. Use an external 10-k

Ω

 pull-up resistor to 

pull the Cyclone II device’s 

nCEO

 pin high to its V

CCIO

 level to help the 

internal weak pull-up resistor when the 

nCEO

 pin feeds next Cyclone II 

device's 

nCE

 pin. The input to the 

nCE

 pin of the last Cyclone II device in 

the chain comes from the previous Cyclone II device. After the first 
device completes configuration in a multiple device configuration chain, 
its 

nCEO

 pin transitions low to activate the second device’s 

nCE

 pin, 

which prompts the second device to begin configuration. The second 
device in the chain begins configuration within one clock cycle. 
Therefore, the MAX II device begins to transfer data to the next Cyclone II 
device without interruption. The 

nCEO

 pin is a dual-purpose pin in 

Cyclone II devices. You can leave the 

nCEO

 pin of the last device 

unconnected or use it as a user I/O pin after configuration if the last 
device in chain is a Cyclone II device. 

1

The Quartus II software sets the Cyclone II device 

nCEO

 pin as a 

dedicated output by default. If the 

nCEO

 pin feeds the next 

device’s 

nCE

 pin, you must make sure that the 

nCEO

 pin is not 

used as a user I/O after configuration. This software setting is in 
the 

Dual-Purpose Pins

 tab of the 

Device & Pin Options

 dialog 

box in Quartus II software.

External Host

(MAX II Device or

Microprocessor)

CONF_DONE

nSTATUS

nCE

DATA0

nCONFIG

Cyclone II Device 1

Memory

ADDR

DATA0

GND

MSEL0

MSEL1

VCC 

(1)

VCC 

(1)

10 k

Ω

10 k

Ω

GND

DCLK

CONF_DONE

nSTATUS

nCE

DATA0

nCONFIG

MSEL0

MSEL1

GND

DCLK

nCEO

nCEO

N.C. 

(3) 

VCC 

(2)

10 k

Ω

Cyclone II Device 2

VCC

VCC

ac/package_outlines/cyc_c52006-html.html
background image

13–28

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

You must connect all other configuration pins (

nCONFIG

nSTATUS

DCLK

DATA0

, and 

CONF_DONE

) to every Cyclone II device in the chain. 

The configuration signals may require buffering to ensure signal integrity 
and prevent clock skew problems. You should buffer the 

DCLK

 and 

DATA

 

lines for every fourth device. Because all device 

CONF_DONE

 pins are tied 

together, all devices initialize and enter user mode at the same time.

Since all 

nSTATUS

 and 

CONF_DONE

 pins are connected, if any Cyclone II 

device detects an error, configuration stops for the entire chain and the 
entire chain must be reconfigured. For example, if the first Cyclone II 
detects an error, it resets the chain by pulling its 

nSTATUS

 pin low. This 

behavior is similar to a single Cyclone II device detecting an error.

If the 

Auto-restart configuration after error

 option is turned on, the 

Cyclone II devices release their 

nSTATUS

 pins after a reset time-out 

period (maximum of 40 µs). After all 

nSTATUS

 pins are released and 

pulled high, the MAX II device reconfigures the chain without pulsing 

nCONFIG

 low. If the 

Auto-restart configuration after error

 option is 

turned off, the MAX II device must generate a low-to-high transition 
(with a low pulse of at least 2 µs) on 

nCONFIG

 to restart the configuration 

process.

If you want to delay the initialization of the devices in the chain, you can 
use the 

CLKUSR

 pin option. The 

CLKUSR

 pin allows you to control when 

your device enters user mode. This feature also allows you to control the 
order of when each device enters user mode by feeding a separate clock 
to each device’s 

CLKUSR

 pin. By using the 

CLKUSR

 pins, you can choose 

any device in the multiple device chain to enter user mode first and have 
the other devices enter user mode at a later time.

Different device families may require a different number of initialization 
clock cycles. Therefore, if your multiple device chain consists of devices 
from different families, the devices may enter user mode at a slightly 
different time due to the different number of initialization clock cycles 
required. However, if the number of initialization clock cycles is similar 
across different device families or if the devices are from the same family, 
then the devices enter user mode at the same time. See the respective 
device family handbook for more information about the number of 
initialization clock cycles required.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–29

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

If your system has multiple Cyclone II devices (in the same density and 
package) with the same configuration data, you can configure them in 
one configuration cycle by connecting all device’s 

nCE

 pins to ground and 

connecting all the Cyclone II device’s configuration pins (

nCONFIG

nSTATUS

DCLK

DATA0

, and 

CONF_DONE

) together. You can also use the 

nCEO

 pin as a user I/O pin after configuration. The configuration signals 

may require buffering to ensure signal integrity and prevent clock skew 
problems. Make sure the 

DCLK

 and 

DATA

 lines are buffered for every 

fourth device. All devices start and complete configuration at the same 
time

Figure 13–11

 shows multiple device PS configuration when both 

Cyclone II devices are receiving the same configuration data.

Figure 13–11. Multiple Device PS Configuration When Both FPGAs Receive the Same Data

Notes to 

Figure 13–11

:

(1)

The pull-up resistor should be connected to a supply that provides an acceptable input signal for all devices in the 
chain. V

CC

 should be high enough to meet the V

IH

 specification of the I/O on the devices and the external host.

(2)

The 

nCEO

 pins of both devices can be left unconnected or used as user I/O pins when configuring the same 

configuration data into multiple devices.

You can use a single configuration chain to configure Cyclone II devices 
with other Altera devices. Connect all the Cyclone II device’s and all 
other Altera device’s 

CONF_DONE

 and 

nSTATUS

 pins together so all 

devices in the chain complete configuration at the same time or that an 
error reported by one device initiates reconfiguration in all devices.

f

For more information on configuring multiple Altera devices in the same 
configuration chain, see 

Configuring Mixed Altera FPGA Chains

 in the 

Configuration Handbook

.

External Host

(MAX II Device

or Microprocessor)

CONF_DONE

nSTATUS

nCE

DATA0

nCONFIG

Cyclone II Device

Memory

ADDR

DATA0

GND

MSEL0

MSEL1

VCC 

(1)

VCC 

(1)

10 k

Ω

10 k

Ω

GND

DCLK

CONF_DONE

nSTATUS

nCE

DATA0

nCONFIG

MSEL0

MSEL1

GND

DCLK

nCEO

N.C. 

(2) 

Cyclone II Device

nCEO

N.C. 

(3) 

GND

VCC

VCC

ac/package_outlines/cyc_c52006-html.html
background image

13–30

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

PS Configuration Timing

A PS configuration must meet the setup and hold timing parameters and 
the maximum clock frequency. When using a microprocessor or another 
intelligent host to control the PS interface, ensure that you meet these 
timing requirements.

Figure 13–12

 shows the timing waveform for PS configuration for 

Cyclone II devices.

Figure 13–12. PS Configuration Timing Waveform

Note (1)

Notes to 

Figure 13–12

:

(1)

The beginning of this waveform shows the device in user mode. In user mode, 

nCONFIG

nSTATUS

 and 

CONF_DONE

 

are at logic high levels. When 

nCONFIG

 is pulled low, a reconfiguration cycle begins.

(2)

Upon power-up, the Cyclone II device holds 

nSTATUS

 low for the time of the POR delay.

(3)

Upon power-up, before and during configuration, 

CONF_DONE

 is low.

(4)

In user mode, drive 

DCLK

 either high or low when using the PS configuration scheme, whichever is more 

convenient. When using the AS configuration scheme, 

DCLK

 is a Cyclone II output pin and should not be driven 

externally. 

(5)

Do not leave the 

DATA

 pin floating after configuration. Drive it high or low, whichever is more convenient.

nCONFIG

nSTATUS 

(2)

CONF_DONE 

(3)

DCLK 

(4)

DATA

User I/O

INIT_DONE

Bit 0

Bit 1

Bit 2

Bit 3

Bit 

n

t

CD2UM

t

CF2ST1

t

CF2CD

t

CFG

t

CH

t

CL

t

DH

t

DSU

t

CF2CK

t

STATUS

t

CLK

t

CF2ST0

t

ST2CK

User Mode

(5)

Tri-stated with internal pull-up resistor

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–31

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Table 13–7

 defines the timing parameters for Cyclone II devices for PS 

configuration.

f

Device configuration options and how to create configuration files are 
discussed further in the 

Software Settings

 section in Volume 2 of the 

Configuration Handbook

.

PS Configuration Using a Microprocessor

In the PS configuration scheme, a microprocessor can control the transfer 
of configuration data from a storage device, such as flash memory, to the 
target Cyclone II device. 

Table 13–7. PS Timing Parameters for Cyclone II Devices

Symbol Parameter

Minimum

Maximum

Units

t

P O R

POR delay 

(1)

100

ms

t

C F 2 C D

nCONFIG

 low to 

CONF_DONE

 low 

 800

ns

t

C F 2 S T 0

nCONFIG

 low to 

nSTATUS

 low

 800

ns

t

C F G

nCONFIG

 low pulse width 

2

 

µs

t

S TAT U S

nSTATUS

 low pulse width

10

40 

(2)

µs

t

C F 2 S T 1

nCONFIG

 high to 

nSTATUS

 high

 40 

(2)

µs

t

C F 2 C K

nCONFIG

 high to first rising edge on 

DCLK

 

40

 µs

t

S T 2 C K

nSTATUS

 high to first rising edge on 

DCLK

 

1

 

µs

t

D S U

Data setup time before rising edge on 

DCLK

 

7

 

ns

t

D H

Data hold time after rising edge on 

DCLK

 

0

 

ns

t

C H

DCLK

 high time

4

 

ns

t

C L

DCLK

 low time 

4

 

ns

t

C L K

DCLK

 period 

10

 ns

f

M A X

DCLK

 frequency 

 100

MHz

t

C D 2 U M

CONF_DONE

 high to user mode 

(3)

18

40

µs

t

C D 2 C U

CONF_DONE

 high to 

CLKUSR

 enabled

4 × maximum 

DCLK

 

period

t

C D 2 U M C

CONF_DONE

 high to user mode with 

CLKUSR

 

option on

t

C D 2 C U

 + (299 × 

CLKUSR

 

period)

Notes to 

Table 13–7

:

(1)

The POR delay minimum of 100 ms only applies for non “A” devices. 

(2)

This value is applicable if users do not delay configuration by extending the 

nCONFIG

 or 

nSTATUS

 low pulse 

width.

(3)

The minimum and maximum numbers apply only if the internal oscillator is chosen as the clock source for starting 
the device.

ac/package_outlines/cyc_c52006-html.html
background image

13–32

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

f

All information in the 

“Single Device PS Configuration Using a MAX II 

Device as an External Host” on page 13–22

 section is also applicable 

when using a microprocessor as an external host. Refer to that section for 
all configuration information. 

The MicroBlaster™ software driver allows you to configure Altera 
FPGAs, including Cyclone II devices, through the ByteBlaster II or 
ByteBlasterMV cable in PS mode. The MicroBlaster software driver 
supports a RBF programming input file and is targeted for embedded PS 
configuration. The source code is developed for the Windows NT 
operating system, although you can customize it to run on other 
operating systems.

1

Since the Cyclone II device can decompress the compressed 
configuration data on-the-fly during PS configuration, the 
MicroBlaster software can accept a compressed RBF file as its 
input file.

f

For more information on the MicroBlaster software driver, see the 

Configuring the MicroBlaster Passive Serial Software Driver White Paper

 and 

source files on the Altera web site at 

www.altera.com

.

If you turn on the 

Enable user-supplied start-up clock (CLKUSR)

 option 

in the Quartus II software, the Cyclone II devices does not enter user 
mode after the MicroBlaster has transmitted all the configuration data in 
the RBF file. You need to supply enough initialization clock cycles to 

CLKUSR

 pin to enter user mode. 

Single Device PS Configuration Using a Configuration Device

You can use an Altera configuration device (for example, an EPC2, EPC1, 
or enhanced configuration device) to configure Cyclone II devices using 
a serial configuration bitstream. Configuration data is stored in the 
configuration device. 

Figure 13–13

 shows the configuration interface 

connections between the Cyclone II device and a configuration device.

1

The figures in this chapter only show the configuration-related 
pins and the configuration pin connections between the 
configuration device and the FPGA.

f

For more information on enhanced configuration devices and flash 
interface pins (e.g., 

PGM[2..0]

EXCLK

PORSEL

A[20..0]

, and 

DQ[15..0]

), see the 

Enhanced Configuration Devices (EPC4, EPC8 & 

EPC16) Data Sheet

.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–33

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–13. Single Device PS Configuration Using an Enhanced 
Configuration Device

Notes to 

Figure 13–13

:

(1)

The pull-up resistor should be connected to the same supply voltage as the 
configuration device. This pull-up resistor is 10 k

Ω

(2)

The 

nINIT_CONF

 pin is available on enhanced configuration devices and has an 

internal pull-up resistor that is always active, meaning an external pull-up resistor 
should not be used on the 

nINIT_CONF

 to 

nCONFIG

 line. The 

nINIT_CONF

 pin 

does not need to be connected if its functionality is not used. If 

nINIT_CONF

 is not 

used, 

nCONFIG

 must be pulled to V

CC

 either directly or through a resistor (if 

reconfiguration is required, a resistor is necessary).

(3)

The enhanced configuration devices’ 

OE

 and 

nCS

 pins have internal 

programmable pull-up resistors. If internal pull-up resistors are used, external 
pull-up resistors should not be used on these pins. The internal pull-up resistors 
are used by default in the Quartus II software. To turn off the internal pull-up 
resistors, check the 

Disable nCS and OE pull-ups on configuration device

 option 

when generating programming files.

(4)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not 

feed other device’s 

nCE

 pin.

f

The value of the internal pull-up resistors on the enhanced configuration 
devices and EPC2 devices can be found in the 

Enhanced Configuration 

Devices (EPC4, EPC8, & EPC16) Data Sheet

 or the 

Configuration Devices for 

SRAM-based LUT Devices Data Sheet

.

When using enhanced configuration devices or EPC2 devices, you can 
connect the Cyclone II 

nCONFIG

 pin to the configuration device 

nINIT_CONF

 pin, which allows the 

INIT_CONF

 JTAG instruction to 

initiate FPGA configuration. You do not need to connect the 

nINIT_CONF

 pin if you are not using it. If 

nINIT_CONF

 is not used or not 

available (e.g., on EPC1 devices), pull the 

nCONFIG

 signal to V

CC

 either 

directly or through a resistor (if reconfiguration is required, a resistor is 
necessary). An internal pull-up resistor on the 

nINIT_CONF

 pin is always 

active in enhanced configuration devices and EPC2 devices. Therefore, 
you do not need an external pull-up if 

nCONFIG

 is connected to 

nINIT_CONF

.

Cyclone II FPGA

DCLK
DATA
OE
nCS
nINIT_CONF 

(2)

MSEL0
MSEL1

DCLK

DATA0

nSTATUS

CONF_DONE

nCONFIG

VCC

VCC

GND

(1)

(1)

nCE

nCEO

N.C. 

(4)

(3)

(3)

Enhanced

Configuration

Device

10 k

Ω

10 k

Ω

10 k

Ω

VCC

VCC 

(1)

GND

ac/package_outlines/cyc_c52006-html.html
background image

13–34

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

Upon power-up, the Cyclone II device goes through a POR. During POR, 
the device reset, holds 

nSTATUS

 and 

CONF_DONE

 low, and tri-states all 

user I/O pins. After POR, which typically lasts 100 ms, the Cyclone II 
FPGA releases 

nSTATUS

 and enters configuration mode when this signal 

is pulled high by the external 10-k

Ω

 resistor. Once the FPGA successfully 

exits POR, all user I/O pins continue to be tri-stated. Cyclone II devices 
have weak pull-up resistors on the user I/O pins which are on before and 
during configuration.

The configuration device also goes through a POR delay to allow the 
power supply to stabilize. The maximum POR time for EPC2 or EPC1 
devices is 200 ms. The POR time for enhanced configuration devices can 
be set to 100 ms or 2 ms, depending on the enhanced configuration 
device’s 

PORSEL

 pin setting. If the 

PORSEL

 pin is connected to ground, 

the POR delay is 100 ms. If the 

PORSEL

 pin is connected to V

CC

, the POR 

delay is 2 ms. You must power the Cyclone II device before or during the 
enhanced configuration device POR time. During POR, the configuration 
device transitions its 

OE

 pin low. This low signal delays configuration 

because the 

OE

 pin is connected to the target device’s 

nSTATUS

 pin. When 

the target and configuration devices complete POR, they both release the 

nSTATUS

 to 

OE

 line, which is then pulled high by a pull-up resistor.

When the power supplies have reached the appropriate operating 
voltages, the target FPGA senses the low-to-high transition on 

nCONFIG

 

and initiates the configuration cycle. The configuration cycle consists of 
three stages: reset, configuration, and initialization. 

1

The Cyclone II device does not have a 

PORSEL

 pin.

Reset Stage

While 

nCONFIG

 or 

nSTATUS

 is low, the device is in reset. You can delay 

configuration by holding the 

nCONFIG

 or 

nSTATUS

 pin low.

1

V

CCINT

 and V

CCIO

 of the banks where the configuration and 

JTAG pins reside need to be fully powered to the appropriate 
voltage levels in order to begin the configuration process. 

When the 

nCONFIG

 signal goes high, the device comes out of reset and 

releases the 

nSTATUS

 pin, which is pulled high by a pull-up resistor. 

Enhanced configuration and EPC2 devices have an optional internal 
pull-up resistor on the 

OE

 pin. You can turn on this option in the 

Quartus II software from the 

General

 tab of the 

Device & Pin Options

 

dialog box. If this internal pull-up resistor is not used, you need to 
connect an external 10-k

Ω

 pull-up resistor to the 

OE

 and 

nSTATUS

 line. 

Once 

nSTATUS

 is released, the FPGA is ready to receive configuration 

data and the configuration stage begins. 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–35

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Configuration Stage

When the 

nSTATUS

 pin transitions high, the configuration device’s 

OE

 

pin also transitions high and the configuration device clocks data out 
serially to the FPGA using its internal oscillator. The Cyclone II device 
receives configuration data on its 

DATA0

 pin and the clock is received on 

the 

DCLK

 pin. Data is latched into the FPGA on the rising edge of 

DCLK

.

After the FPGA has received all configuration data successfully, it 
releases the open-drain 

CONF_DONE

 pin, which is pulled high by a pull-

up resistor. Since the Cyclone II device’s 

CONF_DONE

 pin is tied to the 

configuration device's 

nCS

 pin, the configuration device is disabled when 

CONF_DONE

 goes high. Enhanced configuration and EPC2 devices have 

an optional internal pull-up resistor on the 

nCS

 pin. You can turn this 

option on in the Quartus II software from the 

General

 tab of the 

Device 

& Pin Options

 dialog box. If you do not use this internal pull-up resistor, 

you need to connect an external 10-k

Ω

 pull-up resistor to the 

nCS

 and 

CONF_DONE

 line. A low-to-high transition on 

CONF_DONE

 indicates 

configuration is complete, and the device can begin initialization.

Initialization Stage

In Cyclone II devices, the default initialization clock source is the 
Cyclone II internal oscillator (typically 10 MHz). Cyclone II devices can 
also use the optional 

CLKUSR

 pin. If your design uses the internal 

oscillator, the Cyclone II device supplies itself with enough clock cycles 
for proper initialization. The advantage of using the internal oscillator is 
you do not need to use another device or source to send additional clock 
cycles to the 

CLKUSR

 pin during the initialization stage. Additionally, you 

can use of the 

CLKUSR

 pin as a user I/O pin, which means you have an 

additional user I/O pin.

If you want to delay the initialization of the device, you can use the 

CLKUSR

 pin. Using the 

CLKUSR

 pin allows you to control when the 

Cyclone II device enters user mode. You can delay the Cyclone II devices 
from entering user mode for an indefinite amount of time. You can turn 
on the 

Enable user-supplied start-up clock (CLKUSR)

 option in the 

Quartus II software from the 

General

 tab of the 

Device & Pin Options

 

dialog box. Supplying a clock on 

CLKUSR

 does not affect the 

configuration process. After all configuration data is accepted and 

CONF_DONE

 goes high, Cyclone II devices require 299 clock cycles to 

properly initialize and support a 

CLKUSR

 f

MAX

 of 100 MHz. 

An optional 

INIT_DONE

 pin is available, which signals the end of 

initialization and the start of user mode with a low-to-high transition. The 

Enable INIT_DONE output

 option is available in the Quartus II software 

from the 

General

 tab of the 

Device & Pin Options

 dialog box. If you use 

the 

INIT_DONE

 pin, an external 10-k

Ω

 pull-up resistor pulls it high when 

ac/package_outlines/cyc_c52006-html.html
background image

13–36

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

nCONFIG

 is low and during the beginning of configuration. Once the 

optional bit to enable 

INIT_DONE

 is programmed into the device (during 

the first frame of configuration data), the 

INIT_DONE

 pin goes low. When 

initialization is complete, the 

INIT_DONE

 pin is released and pulled high. 

This low-to-high transition signals that the FPGA has entered user mode. 
If you do not use the 

INIT_DONE

 pin, the initialization period is complete 

after the 

CONF_DONE

 signal transitions high and 299 clock cycles are sent 

to the 

CLKUSR

 pin or after the time t

CF2UM

 (see 

Table 13–7

) if the 

Cyclone II device uses the internal oscillator.

After successful configuration, if you intend to synchronize the 
initialization of multiple devices that are not in the same configuration 
chain, your system must not pull the 

CONF_DONE

 signal low to delay 

initialization. Instead, use the optional 

CLKUSR

 pin to synchronize the 

initialization of multiple devices that are not in the same configuration 
chain. Devices in the same configuration chain initialize together if their 

CONF_DONE

 pins are tied together. 

1

If the optional 

CLKUSR

 pin is being used and 

nCONFIG

 is pulled 

low to restart configuration during device initialization, you 
need to ensure that 

CLKUSR

 continues toggling during the time 

nSTATUS

 is low (maximum of 40 µs).

User Mode

When initialization is complete, the FPGA enters user mode. In user 
mode, the user I/O pins do not have weak pull-up resistors and function 
as assigned in your design. Enhanced configuration devices and EPC2 
devices drive 

DCLK

 low and 

DATA0

 high (EPC1 devices drive the 

DCLK

 

pin low and tri-state the 

DATA

 pin) at the end of configuration.

When the FPGA is in user mode, pull the 

nCONFIG

 pin low to begin 

reconfiguration. The 

nCONFIG

 pin should be low for at least 2 µs. When 

nCONFIG

 transitions low, the Cyclone II device also pulls the 

nSTATUS

 

and 

CONF_DONE

 pins low and all I/O pins are tri-stated. Because 

CONF_DONE

 transitions low, this activates the configuration device since 

it will see its 

nCS

 pin transition low. Once 

nCONFIG

 returns to a logic high 

level and 

nSTATUS

 is released by the FPGA, reconfiguration begins.

Error During Configuration

If an error occurs during configuration, the Cyclone II drives its 

nSTATUS

 

pin low, resetting itself internally. Since the 

nSTATUS

 pin is tied to OE, 

the configuration device is also reset. If you turn on the 

Auto-restart 

configuration after error

 option in the Quartus II software from the 

General

 tab of the 

Device & Pin Options

 dialog box, the FPGA 

automatically initiates reconfiguration if an error occurs. The Cyclone II 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–37

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

device releases its 

nSTATUS

 pin after a reset time-out period (maximum 

of 40 µs). When the 

nSTATUS

 pin is released and pulled high by a pull-up 

resistor, the configuration device reconfigures the chain. If this option is 
turned off, the external system must monitor 

nSTATUS

 for errors and 

then pulse 

nCONFIG

 low for at least 2 µs to restart configuration. The 

external system can pulse the 

nCONFIG

 pin if the pin is under system 

control rather than tied to V

CC

.

Additionally, if the configuration device sends all of its data and then 
detects that the 

CONF_DONE

 pin has not transitioned high, it recognizes 

that the FPGA has not configured successfully. Enhanced configuration 
devices wait for 64 

DCLK

 cycles after the last configuration bit was sent for 

the 

CONF_DONE

 pin to transition high. EPC2 devices wait for 16 

DCLK

 

cycles. After that, the configuration device pulls its OE pin low, which in 
turn drives the target device’s 

nSTATUS

 pin low. If you turn on the 

Auto-

restart configuration after error

 option in the Quartus II software, the 

target device resets and then releases its 

nSTATUS

 pin after a reset time-

out period (maximum of 40 µs). When 

nSTATUS

 transitions high again, 

the configuration device reconfigures the FPGA.

f

For more information on configuration issues, see the 

Debugging 

Configuration Problems

 chapter of the 

Configuration Handbook

 and the 

FPGA Configuration Troubleshooter on the Altera web site 
(

www.altera.com

).

Multiple Device PS Configuration Using a Configuration Device

You can use Altera enhanced configuration devices (EPC16, EPC8, and 
EPC4 devices) or EPC2 and EPC1 configuration devices to configure 
multiple Cyclone II devices in a PS configuration chain. 

Figure 13–14

 shows how to configure multiple devices with an enhanced 

configuration device. This circuit is similar to the configuration device 
circuit for a single device, except Cyclone II devices are cascaded for 
multiple device configuration. 

ac/package_outlines/cyc_c52006-html.html
background image

13–38

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

Figure 13–14. Multiple Device PS Configuration Using an Enhanced Configuration Device

Notes to 

Figure 13–14

:

(1)

The pull-up resistor should be connected to the same supply voltage as the configuration device.

(2)

The 

nINIT_CONF

 pin is available on enhanced configuration devices and has an internal pull-up resistor that is 

always active, meaning an external pull-up resistor should not be used on the 

nINIT_CONF

 to 

nCONFIG

 line. The 

nINIT_CONF

 pin does not need to be connected if its functionality is not used. If 

nINIT_CONF

 is not used, 

nCONFIG

 

must be pulled to V

CC

 either directly or through a resistor (if reconfiguration is required, a resistor is necessary).

(3)

The enhanced configuration devices’ 

OE

 and 

nCS

 pins have internal programmable pull-up resistors. If internal 

pull-up resistors are used, external pull-up resistors should not be used on these pins. The internal pull-up resistors 
are used by default in the Quartus II software. To turn off the internal pull-up resistors, check the 

Disable nCS and 

OE pull-ups on configuration device

 option when generating programming files.

(4)

Connect the pull-up resistor to the V

CCIO

 supply voltage of I/O bank that the 

nCEO

 pin resides in.

(5)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

1

You cannot cascade enhanced configuration devices (EPC16, 
EPC8, and EPC4 devices).

When configuring multiple devices, you must generate the configuration 
device's POF from each project's SOF. You can combine multiple SOFs 
using the 

Convert Programming Files

 window in the Quartus II 

software.

f

For more information on how to create configuration files for multiple 
device configuration chains, see the 

Software Settings

 section in Volume 2 

of the 

Configuration Handbook

.

When configuring multiple devices with the PS scheme, connect the first 
Cyclone II device’s 

nCE

 pin to GND and connect its 

nCEO

 pin to the 

nCE

 

pin of the Cyclone II device in the chain. Use an external 10-k

Ω

 pull-up 

resistor to pull the Cyclone II device’s 

nCEO

 pin to the V

CCIO

 level when 

Enhanced 

Configuration

Device

DCLK
DATA
OE
nCS
nINIT_CONF 

(2)

DCLK

DATA0

nSTATUS

CONF_DONE

nCONFIG

VCC

VCC

GND

nCE

MSEL0

MSEL1

DCLK

DATA0

nSTATUS

CONF_DONE

nCONFIG

GND

nCE

MSEL0

MSEL1

nCEO

Cyclone II Device 1

(1)

VCC

(1)

(3)

nCEO 

Cyclone II Device 2

(3)

N.C.

10 k

Ω

VCC

(4)

(5)

10 k

Ω

10 k

Ω

(3)

(3)

GND

VCC

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–39

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

it feeds the next device’s 

nCE

 pin. After the first device in the chain 

completes configuration, its 

nCEO

 pin transitions low to activate the 

second device's 

nCE

 pin, which prompts the second device to begin 

configuration. You can leave the 

nCEO

 pin of the last device unconnected 

or use it as a user I/O pin after configuration. The 

nCEO

 pin is a 

dual-purpose pin in Cyclone II devices. 

1

The Quartus II software sets the Cyclone II device 

nCEO

 pin as 

an output pin driving to ground by default. If the device is in a 
chain, and the 

nCEO

 pin is connected to the next device’s 

nCE

 

pin, you must make sure that the 

nCEO

 pin is not used as a user 

I/O pin after configuration. This software setting is in the 

Dual-Purpose Pins

 tab of the 

Device & Pin Options

 dialog box 

in Quartus II software.

Connect all other configuration pins (

nCONFIG

nSTATUS

DCLK

DATA0

and 

CONF_DONE

) to every Cyclone II device in the chain. The 

configuration signals may require buffering to ensure signal integrity and 
prevent clock skew problems. Buffer the 

DCLK

 and 

DATA

 lines for every 

fourth device.

When configuring multiple devices, configuration does not begin until all 
devices release their 

OE

 or 

nSTATUS

 pins. Similarly, since all device 

CONF_DONE

 pins are tied together, all devices initialize and enter user 

mode at the same time.

You should not pull 

CONF_DONE

 low to delay initialization. Instead, use 

the Quartus II software’s 

User-Supplied Start-Up Clock

 option to 

synchronize the initialization of multiple devices that are not in the same 
configuration chain. Devices in the same configuration chain initialize 
together since their 

CONF_DONE

 pins are tied together.

Since all 

nSTATUS

 and 

CONF_DONE

 pins are connected, if any device 

detects an error, configuration stops for the entire chain and the entire 
chain must be reconfigured. For example, if there is an error when 
configuring the first Cyclone II device, it resets the chain by pulling its 

nSTATUS

 pin low. This low signal drives the 

OE

 pin low on the enhanced 

configuration device and drives 

nSTATUS

 low on all FPGAs, which 

causes them to enter a reset state. 

If the 

Auto-restart configuration after error

 option is turned on, the 

devices automatically initiate reconfiguration if an error occurs. The 
FPGAs release their 

nSTATUS

 pins after a reset time-out period (40 µs 

maximum). When all the 

nSTATUS

 pins are released and pulled high, the 

configuration device reconfigures the chain. If the 

Auto-restart 

configuration after error

 option is turned off, a microprocessor or 

controller must monitor the 

nSTATUS

 pin for errors and then pulse 

ac/package_outlines/cyc_c52006-html.html
background image

13–40

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

nCONFIG

 low for at least 2 µs to restart configuration. The microprocessor 

or controller can only transition the 

nCONFIG

 pin low if the pin is under 

system control and not tied to V

CC

.

The enhanced configuration devices support parallel configuration of up 
to eight devices. The 

n

-bit (

n

 = 1, 2, 4, or 8) PS configuration mode allows 

enhanced configuration devices to concurrently configure a chain of 
FPGAs. These devices do not have to be the same device family or 
density; they can be any combination of Altera FPGAs with different 
designs. An individual enhanced configuration device 

DATA

 pin is 

available for each targeted FPGA. Each 

DATA

 line can also feed a chain of 

FPGAs. 

Figure 13–15

 shows how to concurrently configure multiple 

devices using an enhanced configuration device.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–41

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–15. Concurrent PS Configuration of Multiple Devices Using an Enhanced Configuration Device

Notes to 

Table 13–15

:

(1)

The pull-up resistor should be connected to the same supply voltage as the configuration device.

(2)

The 

nINIT_CONF

 pin is available on enhanced configuration devices and has an internal pull-up resistor that is 

always active, meaning an external pull-up resistor should not be used on the 

nINIT_CONF

 to 

nCONFIG

 line. The 

nINIT_CONF

 pin does not need to be connected if its functionality is not used. If 

nINIT_CONF

 is not used, 

nCONFIG

 

must be pulled to V

CC

 either directly or through a resistor (if reconfiguration is required, a resistor is necessary).

(3)

The enhanced configuration devices’ 

OE

 and 

nCS

 pins have internal programmable pull-up resistors. If internal 

pull-up resistors are used, external pull-up resistors should not be used on these pins. The internal pull-up resistors 
are used by default in the Quartus II software. To turn off the internal pull-up resistors, check the 

Disable nCS and 

OE pull-ups on configuration device

 option when generating programming files.

(4)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

The Quartus II software only allows you to set 

n

 to 1, 2, 4, or 8. However, 

you can use these modes to configure any number of devices from 1 to 8. 
For example, if you configure three FPGAs, you would use the 4-bit PS 
mode. For the 

DATA0

DATA1

, and 

DATA2

 lines, the corresponding SOF 

data is transmitted from the configuration device to the FPGA. For 

MSEL1
MSEL0

DCLK

DATA0

nSTATUS

CONF_DONE

nCONFIG

V

CC

GND

(3)

(4)

nCE

(3)

Cyclone II Device 1

V

CC

MSEL1
MSEL0

DCLK

DATA0

nCONFIG

nCE

MSEL1
MSEL0

DCLK

DATA0

GND

GND

DCLK
DATA0

OE 

(3)

nCS 

(3)

nINIT_CONF 

(2)

DATA1

DATA[2..6]

nSTATUS

CONF_DONE

nSTATUS

CONF_DONE

nCONFIG

nCE

DATA 7 

10 k

Ω

10 k

Ω

Cyclone II Device 2

Cyclone II Device 8

N.C.

nCEO

N.C.

nCEO

N.C.

nCEO

(1)

(1)

Enhanced

Configuration

Device

GND

VCC

GND

VCC

GND

VCC

(4)

(4)

ac/package_outlines/cyc_c52006-html.html
background image

13–42

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

DATA3

, you can leave the corresponding bit 3 line blank in the Quartus II 

software. On the printed circuit board (PCB), leave the 

DATA3

 line from 

the enhanced configuration device unconnected. Use the Quartus II

 

Convert Programming Files

 window (Tools menu) setup for this scheme.

You can also connect two FPGAs to one of the configuration device’s 

DATA

 pins while the other 

DATA

 pins drive one device each. For example, 

you could use the 2-bit PS mode to drive two FPGAs with 

DATA

 bit 0 (two 

EP2C5 devices) and the third device (an EP2C8 device) with 

DATA

 bit 1. 

In this example, the memory space required for 

DATA

 bit 0 is the sum of 

the SOF file size for the two EP2C5 devices.

1,223,980 bits + 1,223,980 bits = 2,447,960 bits

The memory space required for 

DATA

 bit 1 is the SOF file size for on 

EP2C8 device (1,983,792 bits). Since the memory space required for 

DATA

 

bit 0 is larger than the memory space required for 

DATA

 bit 1, the size of 

the POF file is 2 × 2,447,960 = 4,895,920.

f

For more information on using 

n

-bit PS modes with enhanced 

configuration devices, see the 

Using Altera Enhanced Configuration Devices

 

in the 

Configuration Handbook

.

When configuring SRAM-based devices using 

n

-bit PS modes, use 

Table 13–8

 to select the appropriate configuration mode for the fastest 

configuration times.

Table 13–8. Recommended Configuration Using n-Bit PS Modes

Number of Devices 

(1)

Recommended Configuration Mode

1

1-bit  PS

2

2-bit  PS

3

4-bit  PS

4

4-bit  PS

5

8-bit  PS

6

8-bit  PS

7

8-bit  PS

8

8-bit  PS

Note to 

Table 13–8

:

(1)

Assume that each 

DATA

 line is only configuring one device, not a daisy chain of 

devices.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–43

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

If your design has multiple Cyclone II devices of the same density and 
package that contain the same configuration data, connect the 

nCE

 inputs 

to GND and leave the 

nCEO

 pins floating. You can also use the 

nCEO

 pin 

as a user I/O pin. Connect the configuration device 

nCONFIG

nSTATUS

DCLK

DATA0

, and 

CONF_DONE

 pins to each Cyclone II device in the 

chain. The configuration signals may require buffering to ensure signal 
integrity and prevent clock skew problems. Make sure that the 

DCLK

 and 

DATA

 lines are buffered for every fourth device. All devices start and 

complete configuration at the same time. 

Figure 13–16

 shows multiple 

device PS configuration when the Cyclone II devices are receiving the 
same configuration data.

ac/package_outlines/cyc_c52006-html.html
background image

13–44

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

Figure 13–16. Multiple Device PS Configuration Using an Enhanced Configuration Device When FPGAs 
Receive the Same Data

Notes to 

Figure 13–16

:

(1)

The pull-up resistor should be connected to the same supply voltage as the configuration device.

(2)

The 

nINIT_CONF

 pin is available on enhanced configuration devices and has an internal pull-up resistor that is 

always active, meaning an external pull-up resistor should not be used on the 

nINIT_CONF

 to 

nCONFIG

 line. The 

nINIT_CONF

 pin does not need to be connected if its functionality is not used. If 

nINIT_CONF

 is not used, 

nCONFIG

 

must be pulled to V

CC

 either directly or through a resistor (if reconfiguration is required, a resistor is necessary).

(3)

The enhanced configuration devices’ 

OE

 and 

nCS

 pins have internal programmable pull-up resistors. If internal 

pull-up resistors are used, external pull-up resistors should not be used on these pins. The internal pull-up resistors 
are used by default in the Quartus II software. To turn off the internal pull-up resistors, check the 

Disable nCS and 

OE pull-ups on configuration device

 option when generating programming files.

(4)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

You can cascade several EPC2 or EPC1 devices to configure multiple 
Cyclone II devices. The first configuration device in the chain is the 
master configuration device, and the subsequent devices are the slave 
devices. The master configuration device sends 

DCLK

 to the Cyclone II 

MSEL1
MSEL0

DCLK

DATA0

nCONFIG

V

CC

GND

(3)

nCE

(3)

V

CC

MSEL1
MSEL0

DCLK

DATA0

nSTATUS

CONF_DONE

nCONFIG

nCE

nSTATUS

CONF_DONE

MSEL1
MSEL0

DCLK

DATA0

nCONFIG

nCE

GND

GND

Cyclone II Device 1

Cyclone II Device 2

Cyclone II Device 8

DCLK
DATA0
OE
nCS
nINIT_CONF 

(2)

nSTATUS

CONF_DONE

N.C.

nCEO

N.C.

nCEO

N.C.

nCEO

(4)

(4)

(4)

(1)

(1)

10 k

Ω

10 k

Ω

(3)

(3)

Enhanced

Configuration

Device

GND

VCC

GND

VCC

GND

VCC

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–45

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

devices and to the slave configuration devices. Connect the first 
configuration device’s 

nCS

 pin to all the Cyclone II device’s 

CONF_DONE

 

pins, and connect the 

nCASC

 pin to the 

nCS

 pin of the next configuration 

device in the chain. Leave the 

nCASC

 pin of the last configuration device 

floating. When the master configuration device sends all the data to the 
Cyclone II device, the configuration device transitions the 

nCASC

 pin 

low, which drives 

nCS

 on the next configuration device. Because a 

configuration device requires less than one clock cycle to activate a 
subsequent configuration device, the data stream is uninterrupted.

1

Enhanced configuration devices (EPC16, EPC8, and EPC4 
devices) cannot be cascaded.

Since all 

nSTATUS

 and 

CONF_DONE

 pins are connected, if any device 

detects an error, the master configuration device stops configuration for 
the entire chain and the entire chain must be reconfigured. For example, 
if the master configuration device does not detect the Cyclone II device’s 

CONF_DONE

 pin transitioning high at the end of configuration, it resets 

the entire chain by transitioning its OE pin low. This low signal drives the 
OE pin low on the slave configuration device(s) and drives 

nSTATUS

 low 

on all Cyclone II devices, causing them to enter a reset state. This 
behavior is similar to the FPGA detecting an error in the configuration 
data.

Figure 13–17

 shows how to configure multiple devices using cascaded 

EPC2 or EPC1 devices.

ac/package_outlines/cyc_c52006-html.html
background image

13–46

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

Figure 13–17. Multiple Device PS Configuration Using Cascaded EPC2 or EPC1 Devices

Notes to 

Figure 13–17

:

(1)

The pull-up resistor should be connected to the same supply voltage as the configuration device.

(2)

The 

nINIT_CONF

 pin (available on enhanced configuration devices and EPC2 devices only) has an internal pull-up 

resistor that is always active, meaning an external pull-up resistor should not be used on the 

nINIT_CONF

 to 

nCONFIG

 line. The 

nINIT_CONF

 pin does not need to be connected if its functionality is not used. If 

nINIT_CONF

 

is not used or not available (e.g., on EPC1 devices), 

nCONFIG

 must be pulled to V

CC

 either directly or through a 

resistor (if reconfiguration is required, a resistor is necessary).

(3)

The enhanced configuration devices’ and EPC2 devices’ 

OE

 and 

nCS

 pins have internal programmable pull-up 

resistors. If internal pull-up resistors are used, external pull-up resistors should not be used on these pins. The 
internal pull-up resistors are used by default in the Quartus II software. To turn off the internal pull-up resistors, 
check the 

Disable nCS and OE pull-ups on configuration device option

 when generating programming files.

(4)

Use an external 10-k

Ω

 pull-up resistor to pull the 

nCEO

 pin high to the I/O bank V

CCIO

 level to help the internal 

weak pull-up when it feeds next device’s 

nCE

 pin.

(5)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

When using enhanced configuration devices or EPC2 devices, you can 
connect the Cyclone II device’s 

nCONFIG

 pin to the configuration 

device’s 

nINIT_CONF

 pin, which allows the 

INIT_CONF

 JTAG 

instruction to initiate FPGA configuration. You do not need to connect the 

nINIT_CONF

 pin if it is not used. If the 

nINIT_CONF

 pin is not used or 

not available (for example, on EPC1 devices), pull the 

nCONFIG

 pin to 

V

CC

 levels either directly or through a resistor (if reconfiguration is 

required, a resistor is necessary). An internal pull-up resistor on the 

nINIT_CONF

 pin is always active in the enhanced configuration devices 

and the EPC2 devices. Therefore, do not use an external pull-up resistor 
if you connect the 

nCONFIG

 pin to 

nINIT_CONF

. If you use multiple 

EPC2 devices to configure a Cyclone II device(s), only connect the first 
EPC2 device’s 

nINIT_CONF

 pin to the device's 

nCONFIG

 pin.

EPC2 or EPC1

Device 1

DCLK
DATA
OE
nCS
nINIT_CONF 

(2)

DCLK

DATA0

nSTATUS

CONF_DONE

nCONFIG

GND

nCE

VCC

VCC

VCC

DCLK
DATA
nCS
OE

MSEL0

MSEL1

DCLK

DATA0

nSTATUS

CONF_DONE

nCONFIG

GND

nCE

MSEL0

MSEL1

nCEO

(2)

nCASC

Cyclone II Device 1

(1)

VCC

(1)

(1)

(3)

(5)

nCEO 

nINIT_CONF 

Cyclone II Device 2

(3)

N.C.

EPC2 or EPC1

Device 2

10 k

Ω

10 k

Ω

10 k

Ω

(3)

(3)

GND

VCC

(4)

V

CC

10 k

Ω

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–47

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

You can use a single configuration chain to configure Cyclone II devices 
with other Altera devices. To ensure that all devices in the chain complete 
configuration at the same time or that an error flagged by one device 
initiates reconfiguration in all devices, connect all the Cyclone II device 

CONF_DONE

 pins and connect all Cyclone II device 

nSTATUS

 pins 

together.

f

For more information on configuring multiple Altera devices in the same 
configuration chain, see the 

Configuring Mixed Altera FPGA Chains

 

chapter in the 

Configuration Handbook

.

During PS configuration, the design must meet the setup and hold timing 
parameters and maximum 

DCLK

 frequency. The enhanced configuration 

and EPC2 devices are designed to meet these interface timing 
specifications.

Figure 13–18

 shows the timing waveform for the PS configuration scheme 

using a configuration device.

Figure 13–18. Cyclone II PS Configuration Using a Configuration Device Timing Waveform

Note to 

Figure 13–18

:

(1)

Cyclone II devices enter user mode 299 clock cycles after 

CONF_DONE

 goes high. The initialization clock can come 

from the Cyclone II internal oscillator or the 

CLKUSR

 pin.

f

For timing information, refer to the 

Enhanced Configuration Devices 

(EPC4, EPC8, and EPC16) Data Sheet

 or the 

Configuration Devices for 

SRAM-based LUT Devices Data Sheet

 in the 

Configuration Handbook

.

f

For more information on device configuration options and how to create 
configuration files, see the 

Software Settings

 section in Volume 2 of the 

Configuration Handbook

.

D

D

D

D

0

1

2

3

D

n

User Mode

CD2UM

 (1)

t

OEZX

t

POR

t

CH

t

CL

t

DSU

t

CO

t

DH

Tri-Stated with internal pull-up resistor

OE/nSTATUS

nCS/CONF_DONE

DCLK

DATA

User I/O

INIT_DONE

nINIT_CONF or
VCC/nCONFIG

ac/package_outlines/cyc_c52006-html.html
background image

13–48

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

PS Configuration Using a Download Cable

In PS configuration, an intelligent host (e.g., a PC) can use a download 
cable to transfer data from a storage device to the Cyclone II device. You 
can use the Altera USB-Blaster universal serial bus (USB) port download 
cable, MasterBlaster™ serial/USB communications cable, ByteBlaster II 
parallel port download cable, or the ByteBlasterMV™ parallel port as a 
download cable. 

Upon power up, the Cyclone II device goes through POR, which lasts 
approximately 100 ms for non “A” devices. During POR, the device 
resets, holds 

nSTATUS

 low, and tri-states all user I/O pins. Once the 

FPGA successfully exits POR, the 

nSTATUS

 pin is released and all user 

I/O pins continue to be tri-stated. 

f

The value of the weak pull-up resistors on the I/O pins that are on 
before and during configuration can be found in the 

Cyclone II Device 

Handbook

.

The configuration cycle consists of three stages: reset, configuration, and 
initialization. While the 

nCONFIG

 or 

nSTATUS

 pins are low, the device is 

in reset. To initiate configuration in this scheme, the download cable 
generates a low-to-high transition on the 

nCONFIG

 pin.

1

Make sure V

CCINT

 and V

CCIO

 for the banks where the 

configuration and JTAG pins reside are powered to the 
appropriate voltage levels in order to begin the configuration 
process. 

When 

nCONFIG

 transitions high, the Cyclone II device comes out of reset 

and begins configuration. The Cyclone II device releases the open-drain 

nSTATUS

 pin, which is then pulled high by an external 10-k

Ω

 pull-up 

resistor. Once 

nSTATUS

 transitions high, the Cyclone II device is ready to 

receive configuration data. The programming hardware or download 
cable then transmits the configuration data one bit at a time to the 
device’s 

DATA0

 pin. The configuration data is clocked into the target 

device until 

CONF_DONE

 goes high. The 

CONF_DONE

 pin must have an 

external 10-k

Ω

 pull-up resistor in order for the device to initialize.

When using a download cable, you cannot use the 

Auto-restart 

configuration after error

 option. You must manually restart 

configuration in the Quartus II software when an error occurs. 
Additionally, you cannot use the 

Enable user-supplied start-up clock 

(CLKUSR)

 option when programming the FPGA using the Quartus II 

programmer and download cable. This option is disabled in the SOF. 
Therefore, if you turn on the 

CLKUSR

 option, you do not need to provide 

a clock on 

CLKUSR

 when you are configuring the FPGA with the 

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–49

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Quartus II programmer and a download cable. 

Figure 13–19

 shows the PS 

configuration for Cyclone II devices using a USB-Blaster, MasterBlaster, 
ByteBlaster II or ByteBlasterMV cable.

Figure 13–19. PS Configuration Using a USB-Blaster, MasterBlaster, ByteBlaster II or ByteBlasterMV Cable

Notes to 

Figure 13–19

:

(1)

The pull-up resistor should be connected to the same supply voltage as the USB-Blaster, MasterBlaster (

VIO

 pin), 

ByteBlaster II, or ByteBlasterMV cable.

(2)

The pull-up resistors on 

DATA0

 and 

DCLK

 are only needed if the download cable is the only configuration scheme 

used on your board. This is to ensure that 

DATA0

 and 

DCLK

 are not left floating after configuration. For example, if 

you are also using a configuration device, the pull-up resistors on 

DATA0

 and 

DCLK

 are not needed.

(3)

Pin 6 of the header is a V

IO

 reference voltage for the MasterBlaster output driver. V

IO

 should match the device’s 

V

CCIO

. Refer to the 

MasterBlaster Serial/USB Communications Cable Data Sheet

 for this value. In the ByteBlasterMV, 

this pin is a no connect. In the USB-Blaster and ByteBlaster II, this pin is connected to 

nCE

 when it is used for AS 

programming, otherwise it is a no connect.

(4)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

You can use a download cable to configure multiple Cyclone II devices by 
connecting each device’s 

nCEO

 pin to the subsequent device’s 

nCE

 pin. 

Connect the first Cyclone II device’s 

nCE

 pin to GND and connect its 

nCEO

 pin to the 

nCE

 pin of the next device in the chain. Use an external 

10-k

Ω

 pull-up resistor to pull the 

nCEO

 pin high to V

CCIO

 when it feeds 

next device’s 

nCE

 pin. Connect all other configuration pins (

nCONFIG

nSTATUS

DCLK

DATA0

, and 

CONF_DONE

) on every device in the chain 

together. Because all 

CONF_DONE

 pins are connected, all devices in the 

chain initialize and enter user mode at the same time.

USB-Blaster, ByteBlaster II, 

MasterBlaster, 

or ByteBlasterMV 

 10-Pin Male Header

VCC 

(1)

VCC 

(1)

VCC

VCC 

(1)

Cyclone II Device

DCLK

nCONFIG

CONF_DONE

Shield

GND

MSEL1

MSEL0

10 k

Ω

10 k

Ω

10 k

Ω

nSTATUS

DATA0

Pin 1

nCE

GND

GND

VIO 

(3)

VCC

VCC 

(1)

10 k

Ω

(2)

VCC 

(1)

10 k

Ω

(2)

nCEO

N.C. 

(4)

ac/package_outlines/cyc_c52006-html.html
background image

13–50

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

In addition, because the 

nSTATUS

 pins are connected, all the Cyclone II 

devices in the chain stop configuration if any device detects an error. If 
this happens, you must manually restart configuration in the Quartus II 
software.

Figure 13–20

 shows how to configure multiple Cyclone II devices with a 

download cable.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–51

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–20. Multiple Device PS Configuration Using a USB-Blaster, MasterBlaster, ByteBlaster II or 
ByteBlasterMV Cable

Notes to 

Figure 13–20

:

(1)

The pull-up resistor should be connected to the same supply voltage as the USB-Blaster, MasterBlaster (

VIO

 pin), 

ByteBlaster II, or ByteBlasterMV cable.

(2)

The pull-up resistors on 

DATA0

 and 

DCLK

 are only needed if the download cable is the only configuration scheme 

used on your board. This is to ensure that 

DATA0

 and 

DCLK

 are not left floating after configuration. For example, if 

you are also using a configuration device, the pull-up resistors on 

DATA0

 and 

DCLK

 are not needed.

(3)

Pin 6 of the header is a V

IO

 reference voltage for the MasterBlaster output driver. V

IO

 should match the device's 

V

CCIO

. Refer to the MasterBlaster Serial/USB Communications Cable Data Sheet for this value. In the 

ByteBlasterMV, this pin is a no connect. In the USB-Blaster and ByteBlaster II, this pin is connected to 

nCE

 when it 

is used for AS programming, otherwise it is a no connect.

(4)

Connect the pull-up resistor to the V

CCIO

 supply voltage of I/O bank that the 

nCEO

 pin resides in.

(5)

The 

nCEO

 pin of the last device in chain can be left unconnected or used as a user I/O pin.

If you are using a download cable to configure Cyclone II devices on a 
PCB that also has configuration devices, you should electrically isolate 
the configuration devices from the target Cyclone II devices and cable. 
One way to isolate the configuration device is to add logic, such as a 
multiplexer, that can select between the configuration device and the 
cable. The multiplexer should allow bidirectional transfers on the 

nSTATUS

 and 

CONF_DONE

 signals. Additionally, you can add switches to 

Cyclone II FPGA 1

Cyclone II FPGA 2

MSEL0

nCE

nCONFIG

CONF_DONE

DCLK

nCE

nCEO

nCONFIG

CONF_DONE

DCLK

nCEO

GND

(Passive Serial Mode)

VCC 

(2)

VCC 

(1)

GND

VCC 

(1)

VCC 

(1)

nSTATUS

nSTATUS

DATA0

DATA0

MSEL1

MSEL0

MSEL1

10 k

Ω

10 k

Ω

10 k

Ω

Pin 1

USB-Blaster, ByteBlaster II, 

MasterBlaster, or ByteBlasterMV 

10-Pin Male Header

N.C. 

(5)

VIO

 

(3)

GND

VCC

GND

VCC

VCC 

(1)

10 k

Ω

(2)

VCC 

(1)

10 k

Ω

(2)

VCC 

(4)

10 k

Ω

ac/package_outlines/cyc_c52006-html.html
background image

13–52

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

PS Configuration

the five common signals (

nCONFIG

nSTATUS

DCLK

DATA0

, and 

CONF_DONE

) between the cable and the configuration device. You can 

also remove the configuration device from the board when configuring 
the FPGA with the cable. 

Figure 13–21

 shows a combination of a 

configuration device and a download cable to configure an FPGA.

Figure 13–21. PS Configuration with a Download Cable & Configuration Device Circuit

Notes to 

Figure 13–21

:

(1)

The pull-up resistor should be connected to the same supply voltage as the configuration device.

(2)

Pin 6 of the header is a V

IO

 reference voltage for the MasterBlaster output driver. V

IO

 should match the device’s 

V

CCIO

. Refer to the 

MasterBlaster Serial/USB Communications Cable Data Sheet

 for this value. In the ByteBlasterMV, 

this pin is a no connect. In the USB-Blaster and ByteBlaster II, this pin is connected to 

nCE

 when it is used for AS 

programming, otherwise it is a no connect.

(3)

You should not attempt configuration with a download cable while a configuration device is connected to a 
Cyclone II device. Instead, you should either remove the configuration device from its socket when using the 
download cable or place a switch on the five common signals between the download cable and the configuration 
device.

(4)

The 

nINIT_CONF

 pin (available on enhanced configuration devices and EPC2 devices only) has an internal pull-up 

resistor that is always active. This means an external pull-up resistor should not be used on the 

nINIT_CONF

 to 

nCONFIG

 line. The 

nINIT_CONF

 pin does not need to be connected if its functionality is not used. If 

nINIT_CONF

 

is not used or not available (e.g., on EPC1 devices), 

nCONFIG

 must be pulled to V

CC

 either directly or through a 

resistor (if reconfiguration is required, a resistor is necessary).

(5)

The enhanced configuration devices’ 

OE

 and 

nCS

 pins have internal programmable pull-up resistors. If internal 

pull-up resistors are used, external pull-up resistors should not be used on these pins. The internal pull-up resistors 
are used by default in the Quartus II software. To turn off the internal pull-up resistors, check the 

Disable nCS and 

OE pull-ups on configuration device

 option when generating programming files.

(6)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

Cyclone II FPGA

MSEL0

nCE

nCONFIG

CONF_DONE

DCLK

nCEO

GND

USB Blaster, ByteBlaster II, 

MasterBlaster, or ByteBlasterMV

10-Pin Male Header

(Passive Serial Mode)

V

CC

V

CC

V

CC

 

(1)

V

CC

 

(1)

nSTATUS

DATA0

MSEL1

10 k

Ω

10 k

Ω

10 k

Ω

Pin 1

DCLK
DATA
OE 

(5)

nCS 

(5)

nINIT_CONF 

(4)

Configuration 

Device

(3)

(3)

(3)

(3)

(3)

GND

VIO 

(2)

N.C. 

(6)

(1)

GND

V

CC

(4)

(5)

(5)

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–53

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

f

For more information on how to use the USB-Blaster, MasterBlaster, 
ByteBlaster II or ByteBlasterMV cables, refer to the following documents:

USB-Blaster USB Port Download Cable Data Sheet

MasterBlaster Serial/USB Communications Cable Data Sheet

ByteBlaster II Parallel Port Download Cable Data Sheet

ByteBlasterMV Parallel Port Download Cable Data Sheet

JTAG 
Configuration

The Joint Test Action Group (JTAG) has developed a specification for 
boundary-scan testing. This boundary-scan test (BST) architecture allows 
you to test components on PCBs with tight lead spacing. The BST 
architecture can test pin connections without using physical test probes 
and capture functional data while a device is operating normally. The 
JTAG circuitry can also be used to shift configuration data into the device. 
The Quartus II software automatically generates SOF files that can be 
used for JTAG configuration with a download cable in the Quartus II 
programmer.

f

For more information on JTAG boundary-scan testing, see the following 
documents:

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

 

chapter in Volume 2 of the 

Cyclone II Device Handbook

Jam Programming & Testing Language Specification

Cyclone II devices are designed such that JTAG instructions have 
precedence over any device configuration modes. This means that JTAG 
configuration can take place without waiting for other configuration 
modes to complete. For example, if you attempt JTAG configuration of 
Cyclone II devices during PS configuration, PS configuration terminates 
and JTAG configuration begins. If the Cyclone II 

MSEL

 pins are set to AS 

or fast AS mode, the Cyclone II device does not output a 

DCLK

 signal 

when JTAG configuration takes place.

1

You cannot use the Cyclone II decompression feature if you are 
configuring your Cyclone II device when using JTAG-based 
configuration.

ac/package_outlines/cyc_c52006-html.html
background image

13–54

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

JTAG Configuration

A device operating in JTAG mode uses the 

TDI

TDO

TMS

, and 

TCK

 pins. 

The 

TCK

 pin has a weak internal pull-down resistor while the other JTAG 

input pins, 

TDI

 and 

TMS

, have weak internal pull-up resistors. All user 

I/O pins are tri-stated during JTAG configuration. 

Table 13–9

 explains 

each JTAG pin's function.

1

The 

TDO

 output is powered by the V

CCIO

 power supply. If V

CCIO

 

is tied to 3.3-V, both the I/O pins and the JTAG 

TDO

 port drive 

at 3.3-V levels.

Table 13–9. Dedicated JTAG Pins

Pin Name

Pin Type

Description

TDI

Test data input Serial input pin for instructions as well as test 

and programming data. Data is shifted in on 
the rising edge of 

TCK

.

If the JTAG interface is not required on the 
board, the JTAG circuitry can be disabled by 
connecting this pin to V

C C

.

TDO

Test data 
output

Serial data output pin for instructions as well as 
test and programming data. Data is shifted out 
on the falling edge of 

TCK

. The pin is tri-stated 

if data is not being shifted out of the device. 
If the JTAG interface is not required on the 
board, the JTAG circuitry can be disabled by 
leaving this pin unconnected.

TMS

Test mode 
select

Input pin that provides the control signal to 
determine the transitions of the TAP controller 
state machine. Transitions within the state 
machine occur on the rising edge of 

TCK

Therefore, 

TMS

 must be set up before the 

rising edge of 

TCK

TMS

 is evaluated on the 

rising edge of 

TCK

.

If the JTAG interface is not required on the 
board, the JTAG circuitry can be disabled by 
connecting this pin to V

C C

.

TCK

Test clock 
input

The clock input to the BST circuitry. Some 
operations occur at the rising edge, while 
others occur at the falling edge. 
If the JTAG interface is not required on the 
board, the JTAG circuitry can be disabled by 
connecting this pin to GND.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–55

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Single Device JTAG Configuration

During JTAG configuration, you can use the USB-Blaster, MasterBlaster, 
ByteBlaster II, or ByteBlasterMV download cable to download data to the 
device. Configuring Cyclone II devices through a cable is similar to 
programming devices in system. 

Figure 13–22

 shows JTAG configuration 

of a single Cyclone II device using a download cable.

Figure 13–22. JTAG Configuration of a Single Device Using a Download Cable

Notes to 

Figure 13–22

:

(1)

The pull-up resistor should be connected to the same supply voltage as the USB-Blaster, MasterBlaster (

VIO

 pin), 

ByteBlaster II, or ByteBlasterMV cable.

(2)

Connect the 

nCONFIG

 and 

MSEL[1..0]

 pins to support a non-JTAG configuration scheme. If only JTAG 

configuration is used, connect the 

nCONFIG

 pin to V

CC

, and the 

MSEL[1..0]

 pins to ground. In addition, pull 

DCLK

 

and 

DATA0

 to either high or low, whichever is convenient on your board.

(3)

Pin 6 of the header is a V

IO

 reference voltage for the MasterBlaster output driver. V

IO

 should match the device’s 

V

CCIO

. Refer to the 

MasterBlaster Serial/USB Communications Cable Data Sheet

 for this value. In the ByteBlasterMV, 

this pin is a no connect. In the USB-Blaster and ByteBlaster II, this pin is connected to 

nCE

 when it is used for AS 

programming, otherwise it is a no connect.

(4)

nCE

 must be connected to GND or driven low for successful JTAG configuration.

(5)

The 

nCEO

 pin can be left unconnected or used as a user I/O pin when it does not feed other device’s 

nCE

 pin.

To configure a single device in a JTAG chain, the programming software 
places all other devices in BYPASS mode. In BYPASS mode, Cyclone II 
devices pass programming data from the TDI pin to the TDO pin through 
a single bypass register without being affected internally. This scheme 

nCE

nCEO

N.C. 

(5)

MSEL0
MSEL1

nCONFIG

CONF_DONE

VCC 

(1)

GND

VCC

GND

VCC

(2)

(2)

(4)

(1)

(1)

(1)

(1)

(2)

10 k

Ω

10 k

Ω

nSTATUS

USB-Blaster, ByteBlaster II, 

MasterBlaster, or ByteBlasterMV 

10-Pin Male Header 

(Top View)

TCK

TDO

TMS

TDI

GND

VIO 

(3)

Cyclone II Device

DATA0

DCLK

(2)

(2)

Pin 1

VCC

1 k

Ω

VCC

1 k

Ω

1 k

Ω

GND

ac/package_outlines/cyc_c52006-html.html
background image

13–56

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

JTAG Configuration

enables the programming software to program or verify the target device. 
Configuration data driven into the target device appears on the 

TDO

 pin 

one clock cycle later.

The Quartus II software verifies successful JTAG configuration upon 
completion. At the end of configuration, the software checks the 

CONF_DONE

 pin through the JTAG port. When the Quartus II software 

generates a JAM file for a multiple device chain, it contains instructions 
so that all the devices in the chain are initialized at the same time. If 

CONF_DONE

 is not high, the Quartus II software indicates that 

configuration has failed. If the 

CONF_DONE

 pin transitions high, the 

software indicates that configuration was successful. After the 
configuration bitstream is transmitted serially via the JTAG 

TDI

 port, the 

TCK

 port is clocked an additional 299 cycles to perform Cyclone II device 

initialization.

The 

Enable user-supplied start-up clock (CLKUSR)

 option has no affect 

on the device initialization since this option is disabled in the SOF when 
configuring the FPGA in JTAG using the Quartus II programmer and 
download cable. Therefore, if you turn on the 

CLKUSR

 option, you do not 

need to provide a clock on 

CLKUSR

 when you are configuring the FPGA 

with the Quartus II programmer and a download cable.

Cyclone II devices have dedicated JTAG pins that always function as 
JTAG pins. You can perform JTAG testing on Cyclone II devices before, 
after, and during configuration. Cyclone II devices support the BYPASS, 
IDCODE and SAMPLE instructions during configuration without 
interruption. All other JTAG instructions may only be issued by first 
interrupting configuration and reprogramming I/O pins using the 

CONFIG_IO

 instruction.

The 

CONFIG_IO

 instruction allows I/O buffers to be configured via the 

JTAG port. The 

CONFIG_IO

 instruction interrupts configuration. This 

instruction allows you to perform board-level testing before configuring 
the Cyclone II device or waiting for a configuration device to complete 
configuration. If you interrupt configuration, the Cyclone II device must 
be reconfigured via JTAG (

PULSE_CONFIG

 instruction) or by pulsing 

nCONFIG

 low after JTAG testing is complete.

f

For more information, see the 

MorphIO: An I/O Reconfiguration Solution 

for Altera

 

White Paper

.

The chip-wide reset (

DEV_CLRn

) and chip-wide output enable (

DEV_OE

pins on Cyclone II devices do not affect JTAG boundary-scan or 
programming operations. Toggling these pins does not affect JTAG 
operations (other than the usual boundary-scan operation).

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–57

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

When designing a Cyclone II board for JTAG configuration, use the 
guidelines in 

Table 13–10

 for the placement of the dedicated 

configuration pins. 

Figure 13–23

 shows JTAG configuration of a Cyclone II device with a 

microprocessor.

Table 13–10. Dedicated Configuration Pin Connections During JTAG 
Configuration 

Signal

Description

nCE

On all Cyclone II devices in the chain, 

nCE

 should be driven 

low by connecting it to ground, pulling it low via a resistor, or 
driving it by some control circuitry. For devices that are also in 
multiple device AS, or PS configuration chains, the 

nCE

 pins 

should be connected to GND during JTAG configuration or 
JTAG configured in the same order as the configuration chain.

nCEO

On all Cyclone II devices in the chain, 

nCEO

 can be used as a 

user I/O or connected to the 

nCE

 of the next device. If 

nCEO

 is 

connected to the 

nCE

 of the next device, the 

nCEO

 pin must 

be pulled high to V

C C I O

 by an external 10-k

Ω

 pull-up resistor 

to help the internal weak pull-up resistor. If the 

nCEO

 pin is not 

connected to the 

nCE

 pin of the next device, you can use it as 

a user I/O pin after configuration.

MSEL

These pins must not be left floating. These pins support 
whichever non-JTAG configuration is used in production. If 
only JTAG configuration is used, you should tie these pins to 
ground.

nCONFIG

Driven high by connecting to V

C C

, pulling up via a resistor, or 

driven high by some control circuitry.

nSTATUS

Pull to V

CC

 via a 10-k

Ω

 resistor. When configuring multiple 

devices in the same JTAG chain, each 

nSTATUS

 pin should 

be pulled up to V

CC

 individually. 

nSTATUS

 pulling low in the 

middle of JTAG configuration indicates that an error has 
occurred. 

CONF_DONE

Pull to V

CC

 via a 10-k

Ω

 resistor. When configuring multiple 

devices in the same JTAG chain, each 

CONF_DONE

 pin 

should be pulled up to V

CC

 individually. 

CONF_DONE

 going 

high at the end of JTAG configuration indicates successful 
configuration. 

DCLK

Should not be left floating. Drive low or high, whichever is more 
convenient on your board.

ac/package_outlines/cyc_c52006-html.html
background image

13–58

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

JTAG Configuration

Figure 13–23. JTAG Configuration of a Single Device Using a Microprocessor

Notes to 

Figure 13–23

:

(1)

The pull-up resistor should be connected to a supply that provides an acceptable 
input signal for all devices in the chain.

(2)

Connect the 

nCONFIG

 and 

MSEL[1..0]

 pins to support a non-JTAG 

configuration scheme. If only JTAG configuration is used, connect the 

nCONFIG

 

pin to V

CC

, and the 

MSEL[1..0]

 pins to ground. In addition, pull 

DCLK

 and 

DATA0

 to either high or low, whichever is convenient on your board.

(3)

nCE

 must be connected to GND or driven low for successful JTAG configuration.

(4)

If using an EPCS4 or EPCS1 device, set 

MSEL[1..0]

 to 

00

. See 

Table 13–4

 for more 

details.

JTAG Configuration of Multiple Devices

When programming a JTAG device chain, one JTAG-compatible header 
is connected to several devices. The number of devices in the JTAG chain 
is limited only by the drive capability of the download cable. When four 
or more devices are connected in a JTAG chain, Altera recommends 
buffering the TCK, TDI, and TMS pins with an on-board buffer. 

JTAG-chain device programming is ideal when the system contains 
multiple devices, or when testing your system using JTAG BST circuitry. 

Figure 13–24

 shows multiple device JTAG configuration.

nCONFIG
DATA0
DCLK
TDI
TCK
TMS

Microprocessor

Memory

ADDR

DATA

TDO

Cyclone II FPGA

nSTATUS

CONF_DONE

VCC

VCC

10 k

Ω

10 k

Ω

(2)

(2)

(4)

(2)

(2)

(1)

(1)

(3)

(2)

MSEL1
MSEL0

nCE

nCEO

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–59

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–24. JTAG Configuration of Multiple Devices Using a Download Cable

Notes to 

Figure 13–24

:

(1)

The pull-up resistor should be connected to the same supply voltage as the USB-Blaster, MasterBlaster (VIO pin), 
ByteBlaster II or ByteBlasterMV cable.

(2)

Connect the 

nCONFIG

 and 

MSEL[1..0]

 pins to support a non-JTAG configuration scheme. If only JTAG 

configuration is used, connect the 

nCONFIG

 pin to V

CC

, and the 

MSEL[1..0]

 pins to ground. In addition, pull 

DCLK

 

and 

DATA0

 to either high or low, whichever is convenient on your board.

(3)

Pin 6 of the header is a V

IO

 reference voltage for the MasterBlaster output driver. V

IO

 should match the device’s 

V

CCIO

. Refer to the 

MasterBlaster Serial/USB Communications Cable Data Sheet

 for this value. In the ByteBlasterMV 

cable, this pin is a no connect. In the USB-Blaster and ByteBlaster II cable, this pin is connected to 

nCE

 when it is 

used for AS programming, otherwise it is a no connect.

(4)

nCE

 must be connected to ground or driven low for successful JTAG configuration.

Connect the 

nCE

 pin to GND or pull it low during JTAG configuration. In 

multiple device AS and PS configuration chains, connect the first device's 

nCE

 pin to GND and connect its 

nCEO

 pin to the 

nCE

 pin of the next 

device in the chain or you can use it as a user I/O pin after configuration.

After the first device completes configuration in a multiple device 
configuration chain, its 

nCEO

 pin drives low to activate the second 

device’s 

nCE

 pin, which prompts the second device to begin 

configuration. Therefore, if these devices are also in a JTAG chain, you 
should make sure the 

nCE

 pins are connected to GND during JTAG 

configuration or that the devices are JTAG configured in the same order 
as the configuration chain. As long as the devices are JTAG configured in 
the same order as the multiple device configuration chain, the 

nCEO

 pin 

of the previous device drives the 

nCE

 pin of the next device low when it 

has successfully been JTAG configured.

TMS

TCK

USB-Blaster, ByteBlaster II, 

MasterBlaster,

 or ByteBlasterMV

10-Pin Male Header 

TDI

TDO

VCC

VCC

VCC

Pin 1

nSTATUS

nCONFIG
MSEL1

nCE

VCC

CONF_DONE

VCC

TMS

TCK

TDI

TDO

nCONFIG
MSEL1

nCE

VCC

CONF_DONE

VCC

TMS

TCK

TDI

TDO

nCONFIG
MSEL1

nCE

VCC

CONF_DONE

VCC

(2)
(2)

MSEL0

(2)

(2)
(2)

MSEL0

(2)

(2)

DCLK

DCLK

DCLK

(2)

(2)

(2)

DATA0

DATA0

DATA0

(2)

(2)

(1)

(1)

(1)

(1)

(1)

(1)

(4)

(4)

(4)

(2)

(2)

MSEL0

(2)

nCEO

nCEO

nCEO

VIO

(3)

Cyclone II FPGA

Cyclone II FPGA

Cyclone II FPGA

nSTATUS

nSTATUS

10 k

Ω

1 k

Ω

1 k

Ω

1 k

Ω

10 k

Ω

10 k

Ω

10 k

Ω

10 k

Ω

10 k

Ω

ac/package_outlines/cyc_c52006-html.html
background image

13–60

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

JTAG Configuration

1

The Quartus II software sets the Cyclone II device 

nCEO

 pin as 

an output pin driving to ground by default. If the 

nCEO

 pin 

inputs to the next device’s 

nCE

 pin, make sure that the 

nCEO

 pin 

is not used as a user I/O pin after configuration.

Other Altera devices that have JTAG support can be placed in the same 
JTAG chain for device programming and configuration.

f

For more information on configuring multiple Altera devices in the same 
configuration chain, see the 

Configuring Mixed Altera FPGA Chains

 

chapter in the 

Configuration Handbook

.

Jam STAPL

Jam STAPL, JEDEC standard JESD-71, is a standard file format for in-
system programmability (ISP). Jam STAPL supports programming or 
configuration of programmable devices and testing of electronic systems 
using the IEEE 1149.1 JTAG interface. Jam STAPL is a freely licensed open 
standard. The Jam player provides an interface for manipulating the IEEE 
Std. 1149.1 JTAG TAP state machine.

f

For more information on JTAG and Jam STAPL in embedded 
environments, see 

AN 122: Using Jam STAPL for ISP & ICR via an 

Embedded Processor

. To download the Jam player, go to the Altera web 

site (

www.altera.com

).

Configuring Cyclone II FPGAs with JRunner

JRunner is a software driver that allows you to configure Cyclone II 
devices through the ByteBlaster II or ByteBlasterMV cables in JTAG 
mode. The programming input file supported is in 

.rbf

 format. JRunner 

also requires a Chain Description File (

.cdf

) generated by the Quartus II 

software. JRunner is targeted for embedded JTAG configuration. The 
source code has been developed for the Windows NT operating system 
(OS). You can customize the code to make it run on your embedded 
platform. 

1

The RBF file used by the JRunner software driver can not be a 
compressed RBF file because JRunner uses JTAG-based 
configuration. During JTAG-based configuration, the real-time 
decompression feature is not available.

f

For more information on the JRunner software driver, see 

JRunner 

Software Driver: An Embedded Solution for PLD JTAG Configuration

 and the 

source files on the Altera web site.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–61

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Combining JTAG & Active Serial Configuration Schemes

You can combine the AS configuration scheme with JTAG-based 
configuration. Set the 

MSEL[1..0]

 pins to 00 (AS mode) or 10 (Fast AS 

mode)in this setup, which uses two 10-pin download cable headers on the 
board. The first header programs the serial configuration device in the 
system via the AS programming interface, and the second header 
configures the Cyclone II directly via the JTAG interface. 

If you try configuring the device using both schemes simultaneously, 
JTAG configuration takes precedence and AS configuration is 
terminated.

When a blank serial configuration device is attached to Cyclone II device, 
turn on the 

Halt on-chip configuration controller 

option under the Tools 

menu by clicking 

Options

. The Options dialog box appears. In the 

Category

 list, select 

Programmer

 before starting the JTAG configuration 

with the Quartus II programmer. This option stops the AS 
reconfiguration loop from a blank serial configuration device before 
starting the JTAG configuration. This includes using the Serial Flash 
Loader IP because JTAG is used for configuring the Cyclone II device.  
Users do not need to recompile their Quartus II designs after turning on 
this Option.

Programming Serial Configuration Devices In-System Using the 
JTAG Interface

Cyclone II devices in a single device chain or in a multiple device chain 
support in-system programming of a serial configuration device using 
the JTAG interface via the serial flash loader design. The board’s 
intelligent host or download cable can use the four JTAG pins on the 
Cyclone II device to program the serial configuration device in system, 
even if the host or download cable cannot access the configuration 
device’s configuration pins (

DCLK

DATA

ASDI

, and 

nCS

 pins). 

The serial flash loader design is a JTAG-based in-system programming 
solution for Altera serial configuration devices. The serial flash loader is 
a bridge design for the FPGA that uses its JTAG interface to access the 
EPCS JIC (JTAG Indirect Configuration Device Programming) file and 
then uses the AS interface to program the EPCS device. Both the JTAG 
interface and AS interface are bridged together inside the serial flash 
loader design.

In a multiple device chain, you only need to configure the master 
Cyclone II device which is controlling the serial configuration device. The 
slave devices in the multiple device chain which are configured by the 
serial configuration device do not need to be configured when using this 

ac/package_outlines/cyc_c52006-html.html
background image

13–62

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

JTAG Configuration

feature. To use this feature successfully, set the 

MSEL[1..0]

 pins of the 

master Cyclone II device to select the AS configuration scheme or fast AS 
configuration scheme (see 

Table 13–1

).

1

The Quartus II software version 4.1 and higher supports serial 
configuration device ISP through an FPGA JTAG interface using 
a JIC file.

The serial configuration device in-system programming through the 
Cyclone II JTAG interface has three stages, which are described in the 
following sections.

Loading the Serial Flash Loader Design

The serial flash loader design is a design inside the Cyclone II device that 
bridges the JTAG interface and AS interface inside the Cyclone II device 
using glue logic.

The intelligent host uses the JTAG interface to configure the master 
Cyclone II device with a serial flash loader design. The serial flash loader 
design allows the master Cyclone II device to control the access of four 
serial configuration device pins, also known as the Active Serial Memory 
Interface (ASMI) pins, through the JTAG interface. The ASMI pins are the 
serial clock input (

DCLK

), serial data output (

DATA

), AS data input (

ASDI

), 

and an active-low chip select (

nCS

) pins.

If you configure a master Cyclone II device with a serial flash loader 
design, the master Cyclone II device can enter user mode even though the 
slave devices in the multiple device chain are not being configured. The 
master Cyclone II device can enter user mode with a serial flash loader 
design even though the 

CONF_DONE

 signal is externally held low by the 

other slave devices in chain. 

Figure 13–25

 shows the JTAG configuration 

of a single Cyclone II device with a serial flash loader design.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–63

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Figure 13–25. JTAG Configuration of a Single Device Using a Download Cable

Notes to 

Figure 13–25

:

(1)

The pull-up resistor should be connected to the same supply voltage as the USB Blaster, MasterBlaster (V

IO

 pin), 

ByteBlaster II, or ByteBlasterMV cable.

(2)

The 

nCONFIG

MSEL[1..0]

 pins should be connected to support a non-JTAG configuration scheme. If only JTAG 

configuration is used, connect 

nCONFIG

 to V

CC

, and 

MSEL[1..0] 

to ground. Pull 

DCLK

 either high or low, 

whichever is convenient on your board.

(3)

Pin 6 of the header is a V

IO

 

reference voltage for the MasterBlaster output driver. V

IO

 should match the device’s 

V

CCIO

. Refer to the 

MasterBlaster Serial/USB Communications Cable Data Sheet

 for this value. In the ByteBlasterMV 

cable, this pin is a no connect. In the USB Blaster and ByteBlaster II cables, this pin is connected to 

nCE

 when it is 

used for active serial programming, otherwise it is a no connect.

(4)

nCE

 must be connected to GND or driven low for successful JTAG configuration.

ISP of Serial Configuration Device

In the second stage, the serial flash loader design in the master Cyclone II 
device allows you to write the configuration data for the device chain into 
the serial configuration device by using the Cyclone II JTAG interface. 
The JTAG interface sends the programming data for the serial 
configuration device to the Cyclone II device first. The Cyclone II device 
then uses the ASMI pins to transmit the data to the serial configuration 
device. 

nCE 

(4)

MSEL0

nCONFIG

CONF_DONE

V

CC

 

(1)

V

CC

GND

V

CC 

(1)

GND

V

CC 

(1)

(2)

V

CC

 

(1)

1 k

Ω

10 k

Ω

V

CC 

(1)

10 k

Ω

10 k

Ω

1 k

Ω

nSTATUS

Pin 1

USB Blaster, ByteBlaster II,

MasterBlaster, or

ByteBlasterMV 10-Pin Male

Header (Top View)

GND

TCK

TDO

TMS

TDI

1 k

Ω

GND

V

IO

 

(3)

Cyclone II Device

nCE0

N.C.

MSEL1

DCLK

nCSO

ASDO

DATA0

DCLK

nCS

ASDI

DATA

(2)

Serial Configuration Device

Serial

Flash

Loader

ac/package_outlines/cyc_c52006-html.html
background image

13–64

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Device Configuration Pins

Reconfiguration

After all the configuration data is written into the serial configuration 
device successfully, the Cyclone II device does not reconfigure by itself. 
The intelligent host issues the 

PULSE_NCONFIG

 JTAG instruction to 

initialize the reconfiguration process. During reconfiguration, the master 
Cyclone II device is reset and the serial flash loader design no longer 
exists in the Cyclone II device and the serial configuration device 
configures all the devices in the chain with your user design.

Device 
Configuration 
Pins

This section describes the connections and functionality of all the 
configuration related pins on the Cyclone II device

Table 13–11

 describes 

the dedicated configuration pins, which are required to be connected 
properly on your board for successful configuration. Some of these pins 
may not be required for your configuration schemes.

Table 13–11. Dedicated Configuration Pins on the Cyclone II Device (Part 1 of 5)

Pin Name

User 

Mode

Configuration 

Scheme

Pin Type

Description

MSEL[1..0]

N/A

All

Input

This pin is a two-bit configuration input that sets the 
Cyclone II device configuration scheme. See 

Table 13–1

 for the appropriate settings.

You must connect these pins to V

C C I O

 or ground.

The 

MSEL[1..0]

 pins have 9-k

Ω

 internal 

pull-down resistors that are always active.

nCONFIG

N/A

All

Input

This pin is a configuration control input. If this pin is 
pulled low during user mode, the FPGA loses its 
configuration data, enters a reset state, and tri-states 
all I/O pins. Transitioning this pin high initiates a 
reconfiguration.

If your configuration scheme uses an enhanced 
configuration device or EPC2 device, you can 
connect the 

nCONFIG

 pin directly to V

C C

 or to the 

configuration device's 

nINIT_CONF

 pin. 

The input buffer on this pin supports hysteresis using 
Schmitt trigger circuitry.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–65

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

nSTATUS

N/A

All

Bidirectional 
open-drain

The Cyclone II device drives 

nSTATUS

 low 

immediately after power-up and releases it after the 
POR time.

This pin provides a status output and input for the 
Cyclone II device. If the Cyclone II device detects an 
error during configuration, it drives the 

nSTATUS

 pin 

low to stop configuration. If an external source (for 
example, another Cyclone II device) drives the 

nSTATUS

 pin low during configuration or 

initialization, the target device enters an error state. 

Driving 

nSTATUS

 low after configuration and 

initialization does not affect the configured device. If 
your design uses a configuration device, driving 

nSTATUS

 low causes the configuration device to 

attempt to configure the FPGA, but since the FPGA 
ignores transitions on 

nSTATUS

 in user mode, the 

FPGA does not reconfigure. To initiate a 
reconfiguration, pull the 

nCONFIG

 pin low.

The enhanced configuration devices’ and EPC2 
devices’ 

OE

 and 

nCS

 pins are connected to the 

Cyclone II device’s 

nSTATUS

 and 

CONF_DONE

 pins, 

respectively, and have optional internal 
programmable pull-up resistors. If you use these 
internal pull-up resistors on the enhanced 
configuration device, do not use external 10-k

Ω

 pull-

up resistors on these pins. When using EPC2 
devices, you should only use external 10-k

Ω

 pull-up 

resistors.

The input buffer on this pin supports hysteresis using 
Schmitt trigger circuitry.

Table 13–11. Dedicated Configuration Pins on the Cyclone II Device (Part 2 of 5)

Pin Name

User 

Mode

Configuration 

Scheme

Pin Type

Description

ac/package_outlines/cyc_c52006-html.html
background image

13–66

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Device Configuration Pins

CONF_DONE

N/A

All

Bidirectional 
open-drain

This pin is a status output and input.

The target Cyclone II device drives the 

CONF_DONE

 

pin low before and during configuration. Once the 
Cyclone II device receives all the configuration data 
without error and the initialization cycle starts, it 
releases 

CONF_DONE

. Driving 

CONF_DONE

 low 

during user mode does not affect the configured 
device. Do not drive 

CONF_DONE

 low before the 

device enters user mode.

After the Cyclone II device receives all the data, the 

CONF_DONE

 pin transitions high, and the device 

initializes and enters user mode. The 

CONF_DONE

 

pin must have an external 10-k

Ω

 pull-up resistor in 

order for the device to initialize.

Driving 

CONF_DONE

 low after configuration and 

initialization does not affect the configured device.

The enhanced configuration devices’ and EPC2 
devices’ 

OE

 and 

nCS

 pins are connected to the 

Cyclone II device’s 

nSTATUS

 and 

CONF_DONE

 pins, 

respectively, and have optional internal 
programmable pull-up resistors. If internal pull-up 
resistors on the enhanced configuration device are 
used, external 10-k

Ω

 pull-up resistors should not be 

used on these pins. When using EPC2 devices, you 
should only use external 10-k

Ω

 pull-up resistors.

The input buffer on this pin supports hysteresis using 
Schmitt trigger circuitry.

nCE

N/A

All

Input

This pin is an active-low chip enable. The 

nCE

 pin 

activates the device with a low signal to allow 
configuration. The 

nCE

 pin must be held low during 

configuration, initialization, and user mode. In single 
device configuration, it should be tied low. In multiple 
device configuration, 

nCE

 of the first device is tied low 

while its 

nCEO

 pin is connected to 

nCE

 of the next 

device in the chain.

The 

nCE

 pin must also be held low for successful 

JTAG programming of the FPGA.

The input buffer on this pin supports hysteresis using 
Schmitt trigger circuitry.

Table 13–11. Dedicated Configuration Pins on the Cyclone II Device (Part 3 of 5)

Pin Name

User 

Mode

Configuration 

Scheme

Pin Type

Description

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–67

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

nCEO

N/A if 
option 
is on. 
I/O if 
option 
is off.

All

Output

This pin is an output that drives low when device 
configuration is complete. In single device 
configuration, you can leave this pin floating or use it 
as a user I/O pin after configuration. In multiple 
device configuration, this pin inputs the next device's 

nCE

 pin. The 

nCEO

 of the last device in the chain can 

be left floating or used as a user I/O pin after 
configuration. 

If you use the 

nCEO

 pin to feed next device’s 

nCE

 pin, 

use an external 10-k

Ω

 pull-up resistor to pull the 

nCEO

 pin high to the V

C C I O

 voltage of its I/O bank to 

help the internal weak pull-up resistor.

Use the Quartus II software to make this pin a user 
I/O pin.

ASDO

N/A in 
AS 
mode
I/O in 
PS and 
JTAG 
mode

AS

Output

This pin sends a control signal from the Cyclone II 
device to the serial configuration device in AS mode 
and is used to read out configuration data.

In AS mode, 

ASDO

 has an internal pull-up that is 

always active.

nCSO

N/A in 
AS 
mode
I/O in 
PS and 
JTAG 
mode

AS

Output

This pin sends an output control signal from the 
Cyclone II device to the serial configuration device in 
AS mode that enables the configuration device.

In AS mode, 

nCSO

 has an internal pull-up resistor 

that is always active.

Table 13–11. Dedicated Configuration Pins on the Cyclone II Device (Part 4 of 5)

Pin Name

User 

Mode

Configuration 

Scheme

Pin Type

Description

ac/package_outlines/cyc_c52006-html.html
background image

13–68

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Device Configuration Pins

DCLK

N/A

PS,
AS

Input (PS)
Output (AS)

In PS configuration, 

DCLK

 is the clock input used to 

clock data from an external source into the target 
device. Data is latched into the Cyclone II device on 
the rising edge of 

DCLK

.

In AS mode, 

DCLK

 is an output from the Cyclone II 

device that provides timing for the configuration 
interface. In AS mode, 

DCLK

 has an internal pull-up 

that is always active.

After configuration, this pin is tri-stated. If you are 
using a configuration device, it drives 

DCLK

 low after 

configuration is complete. If your design uses a 
control host, drive 

DCLK

 either high or low. Toggling 

this pin after configuration does not affect the 
configured device. 

The input buffer on this pin supports hysteresis using 
Schmitt trigger circuitry.

DATA0

N/A

All

Input

This is the data input pin. In serial configuration 
modes, bit-wide configuration data is presented to the 
target device on the 

DATA0

 pin. 

In AS mode, 

DATA0

 has an internal pull-up resistor 

that is always active.

After configuration, EPC1 and EPC1441 devices 
tri-state this pin, while enhanced configuration and 
EPC2 devices drive this pin high. 

The input buffer on this pin supports hysteresis using 
Schmitt trigger circuitry.

Table 13–11. Dedicated Configuration Pins on the Cyclone II Device (Part 5 of 5)

Pin Name

User 

Mode

Configuration 

Scheme

Pin Type

Description

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–69

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

Table 13–12

 describes the optional configuration pins. If these optional 

configuration pins are not enabled in the Quartus II software, they are 
available as general-purpose user I/O pins. Therefore during 
configuration, these pins function as user I/O pins and are tri-stated with 
weak pull-up resistors.

Table 13–12. Optional Configuration Pins

Pin Name

User Mode

Pin Type

Description

CLKUSR

N/A if option is 
on. I/O if option 
is off.

Input

This is an optional user-supplied clock input that 
synchronizes the initialization of one or more devices. This 
pin is enabled by turning on the 

Enable user-supplied 

start-up clock (CLKUSR)

 option in the Quartus II software

INIT_DONE

N/A if option is 
on. I/O if option 
is off.

Output open-
drain

This is a status pin that can be used to indicate when the 
device has initialized and is in user mode. When 

nCONFIG

 

is low and during the beginning of configuration, the 

INIT_DONE

 pin is tri-stated and pulled high due to an 

external 10-k

Ω

 pull-up resistor. Once the option bit to 

enable 

INIT_DONE

 is programmed into the device (during 

the first frame of configuration data), the 

INIT_DONE

 pin 

goes low. When initialization is complete, the 

INIT_DONE

 

pin is released and pulled high and the FPGA enters user 
mode. Thus, the monitoring circuitry must be able to detect 
a low-to-high transition. This pin is enabled by turning on 
the 

Enable INIT_DONE output

 option in the Quartus II 

software.

DEV_OE

N/A if option is 
on. I/O if option 
is off.

Input

Optional pin that allows the user to override all tri-states on 
the device. When this pin is driven low, all I/O pins are tri-
stated. When this pin is driven high, all I/O pins behave as 
programmed. This pin is enabled by turning on the 

Enable 

device-wide output enable (DEV_OE)

 option in the 

Quartus II software.

DEV_CLRn

N/A if option is 
on. I/O if option 
is off.

Input

Optional pin that allows you to override all clears on all 
device registers. When this pin is driven low, all registers 
are cleared. When this pin is driven high, all registers 
behave as programmed. This pin is enabled by turning on 
the 

Enable device-wide reset (DEV_CLRn)

 option in the 

Quartus II software.

ac/package_outlines/cyc_c52006-html.html
background image

13–70

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Conclusion

Table 13–13

 describes the dedicated JTAG pins. JTAG pins must be kept 

stable before and during configuration to prevent accidental loading of 
JTAG instructions. The 

TCK

 pin has a weak internal pull-down resistor 

and the 

TDI

 and 

TMS

 JTAG input pins have weak internal pull-up 

resistors. 

Conclusion

Cyclone II devices can be configured in AS, PS or JTAG configuration 
schemes to fit your system's need. The AS configuration scheme 
supported by Cyclone II devices can now operate at a higher 

DCLK

 

Table 13–13. Dedicated JTAG Pins

Pin Name

User Mode

Pin Type

Description

TDI

N/A

Input

Serial input pin for instructions as well as test and programming 
data. Data is shifted in on the rising edge of TCK.

If the JTAG interface is not required on the board, the JTAG 
circuitry can be disabled by connecting this pin to V

C C

.

The input buffer on this pin supports hysteresis using Schmitt 
trigger circuitry.

TDO

N/A

Output

Serial data output pin for instructions as well as test and 
programming data. Data is shifted out on the falling edge of 
TCK. The pin is tri-stated if data is not being shifted out of the 
device. 

If the JTAG interface is not required on the board, the JTAG 
circuitry can be disabled by leaving this pin unconnected.

TMS

N/A

Input

Input pin that provides the control signal to determine the 
transitions of the TAP controller state machine. Transitions 
within the state machine occur on the rising edge of TCK. 
Therefore, TMS must be set up before the rising edge of TCK. 
TMS is evaluated on the rising edge of TCK.

If the JTAG interface is not required on the board, the JTAG 
circuitry can be disabled by connecting this pin to V

CC

.

The input buffer on this pin supports hysteresis using Schmitt 
trigger circuitry.

TCK

N/A

Input

The clock input to the BST circuitry. Some operations occur at 
the rising edge, while others occur at the falling edge.

If the JTAG interface is not required on the board, the JTAG 
circuitry can be disabled by connecting this pin to GND.

The input buffer on this pin supports hysteresis using Schmitt 
trigger circuitry.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

13–71

February 2007

Cyclone II Device Handbook, Volume 1

Configuring Cyclone II Devices

frequency (up to 40 MHz), which reduces your configuration time. In 
addition, Cyclone II devices can receive a compressed configuration 
bitstream and decompress this data on-the-fly in the AS or PS 
configuration scheme, which further reduces storage requirements and 
configuration time.

ac/package_outlines/cyc_c52006-html.html
background image

13–72

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

Document 
Revision History

Table 13–14

 shows the revision history for this document.

Table 13–14. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v3.1

Added document revision history.

Added 

Note (1)

 to 

Table 13–1

.

Added 

Note (1)

 to 

Table 13–4

.

Updated 

Figure 13–3

.

Updated 

Figures 13–6

 and 

13–7

.

Updated 

Note (2)

 to 

Figure 13–13

.

Updated 

“Single Device PS Configuration 

Using a Configuration Device”

 section.

Updated 

Note (2)

 to 

Figure 13–14

.

Updated 

Note (2)

 to 

Figure 13–15

.

Updated 

Note (2)

 to 

Figure 13–16

.

Updated 

Note (2)

 to 

Figure 13–17

.

Updated 

Note (4)

 to 

Figure 13–21

.

Updated 

Note (2)

 to 

Figure 13–25

.

Changed unit ‘kw’ to ‘k

Ω

’ in 

Figures 13–6

 

and 

13–7

.

Added note about serial configuration 
devices supporting 20 MHz and 40 MHz 

DCLK

.

Added infomation about the need for a 
resistor on 

nCONFIG

 if reconfiguration is 

required.

Added information about 

MSEL[1..0]

 

internal pull-down resistor value.

July 2005 v2.0

Updated 

“Configuration Stage”

 section.

Updated 

“PS Configuration Using a 

Download Cable”

 section.

Updated 

Figures 13–8

13–12

, and 

13–18

.

November 2004 
v1.1

Updated 

“Configuration Stage”

 section in 

“Single Device AS Configuration”

 section.

Updated 

“Initialization Stage”

 section in 

“Single Device AS Configuration”

 section.

Updated 

Figure 13–8

.

Updated 

“Initialization Stage”

 section in 

“Single Device PS Configuration Using a 
MAX II Device as an External Host”

 

section.

Updated 

Table 13–7

.

Updated 

“Single Device PS Configuration 

Using a Configuration Device”

 section.

Updated 

“Initialization Stage”

 section in 

“Single Device PS Configuration Using a 
Configuration Device”

 section.

Updated 

Figure 13–18

.

Updated 

“Single Device JTAG 

Configuration”

 section.

June 2004 v1.0

Added document to the Cyclone II Device 
Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

14–1

February 2007

14. IEEE 1149.1 (JTAG)

Boundary-Scan Testing for

Cyclone II Devices

Introduction

As printed circuit boards (PCBs) become more complex, the need for 
thorough testing becomes increasingly important. Advances in surface-
mount packaging and PCB manufacturing have resulted in smaller 
boards, making traditional test methods (e.g., external test probes and 
“bed-of-nails” test fixtures) harder to implement. As a result, cost savings 
from PCB space reductions are sometimes offset by cost increases in 
traditional testing methods.

In the 1980s, the Joint Test Action Group (JTAG) developed a specification 
for boundary-scan testing that was later standardized as the 
IEEE Std. 1149.1 specification. This boundary-scan test (BST) architecture 
offers the capability to efficiently test components on PCBs with tight lead 
spacing.

This BST architecture tests pin connections without using physical test 
probes and captures functional data while a device is operating normally. 
Boundary-scan cells in a device force signals onto pins or capture data 
from pin or logic array signals. Forced test data is serially shifted into the 
boundary-scan cells. Captured data is serially shifted out and externally 
compared with expected results. 

Figure 14–1

 shows the concept of 

boundary-scan testing.

Figure 14–1. IEEE Std. 1149.1 Boundary-Scan Testing

Core

Logic

Serial
Data In

Boundary-Scan Cell

IC

Core

Logic

Serial
Data Out

JTAG Device 1

JTAG Device 2

Pin Signal

Tested

Connection

CII51014-2.1

ac/package_outlines/cyc_c52006-html.html
background image

14–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 BST Architecture

This chapter discusses how to use the IEEE Std. 1149.1 BST circuitry in 
Cyclone

™ 

II devices, including:

IEEE Std. 1149.1 BST architecture

IEEE Std. 1149.1 boundary-scan register 

IEEE Std. 1149.1 BST operation control

I/O voltage support in JTAG chain

Using IEEE Std. 1149.1 BST circuitry

Disabling IEEE Std. 1149.1 BST circuitry 

Guidelines for IEEE Std. 1149.1 boundary-scan testing

Boundary-Scan Description Language (BSDL) support

In addition to BST, you can use the IEEE Std. 1149.1 controller for 
Cyclone II device in-circuit reconfiguration (ICR). However, this chapter 
only discusses the BST feature of the IEEE Std. 1149.1 circuitry. 

f

For information on configuring Cyclone II devices via the 
IEEE Std. 1149.1 circuitry, see the 

Configuring Cyclone II Devices

 chapter in 

Volume 1 of the 

Cyclone II Device Handbook

.

IEEE Std. 1149.1 
BST Architecture 

A Cyclone II device operating in IEEE Std. 1149.1 BST mode uses four 
required pins, 

TDI

TDO

TMS

 and 

TCK

. The optional 

TRST

 pin is not 

available in Cyclone II devices. 

TDI

 and 

TMS

 pins have weak internal 

pull-up resistors while 

TCK

 has weak internal pull-down resistors. All 

user I/O pins are tri-stated during JTAG configuration. 

Table 14–1

 

summarizes the functions of each of these pins.

Table 14–1. IEEE Std. 1149.1 Pin Descriptions

Pin

Description

Function

TDI

Test data input

Serial input pin for instructions as well as test and programming data. 
Signal applied to 

TDI

 is expected to change state at the falling edge 

of 

TCK

. Data is shifted in on the rising edge of 

TCK

.

TDO

Test data output

Serial data output pin for instructions as well as test and programming 
data. Data is shifted out on the falling edge of 

TCK

. The pin is tri-stated 

if data is not being shifted out of the device.

TMS

Test mode select

Input pin that provides the control signal to determine the transitions of 
the 

TAP

 controller state machine. Transitions within the state machine 

occur at the rising edge of 

TCK

. Therefore, 

TMS

 must be set up before 

the rising edge of 

TCK

TMS

 is evaluated on the rising edge of 

TCK

During non-JTAG operation, 

TMS

 is recommended to be driven high.

TCK

Test clock input

The clock input to the BST circuitry. Some operations occur at the 
rising edge, while others occur at the falling edge. The clock input 
waveform should have a 50% duty cycle.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–3

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

The IEEE Std. 1149.1 BST circuitry requires the following registers:

The instruction register determines the action to be performed and 
the data register to be accessed.

The bypass register is a 1-bit-long data register that provides a 
minimum-length serial path between 

TDI

 and 

TDO

.

The boundary-scan register is a shift register composed of all the 
boundary-scan cells of the device.

Figure 14–2

 shows a functional model of the IEEE Std. 1149.1 circuitry.

Figure 14–2. IEEE Std. 1149.1 Circuitry

Note to 

Figure 14–2

:

(1)

For register lengths, see the device data sheet in the 

Configuration & Testing

 chapter in Volume 1 of the 

Cyclone II 

Device Handbook.

IEEE Std. 1149.1 boundary-scan testing is controlled by a test access port 
(TAP) controller. For more information on the TAP controller, see 

“IEEE 

Std. 1149.1 BST Operation Control” on page 14–6

. The 

TMS

 and 

TCK

 pins 

UPDATEIR

CLOCKIR

SHIFTIR

UPDATEDR

CLOCKDR

SHIFTDR

TDI

Instruction Register

Bypass Register

Boundary-Scan Register 

Instruction Decode

TMS

TCLK

TAP

Controller

ICR Registers

TDO

Data Registers

Device ID Register

(1)

(1)

ac/package_outlines/cyc_c52006-html.html
background image

14–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 Boundary-Scan Register

operate the TAP controller, and the 

TDI

 and 

TDO

 pins provide the serial 

path for the data registers. The 

TDI

 pin also provides data to the 

instruction register, which then generates control logic for the data 
registers.

IEEE Std. 1149.1 
Boundary-Scan 
Register 

The boundary-scan register is a large serial shift register that uses the 

TDI

 

pin as an input and the 

TDO

 pin as an output. The boundary-scan register 

consists of 3-bit peripheral elements that are associated with Cyclone II 
I/O pins. You can use the boundary-scan register to test external pin 
connections or to capture internal data.

f

See the 

Configuration & Testing 

chapter in Volume 1 of the

 Cyclone II 

Device Handbook

 for the Cyclone II device boundary-scan register 

lengths.

Figure 14–3

 shows how test data is serially shifted around the periphery 

of the IEEE Std. 1149.1 device. 

Figure 14–3. Boundary-Scan Register

Boundary-Scan Cells of a Cyclone II Device I/O Pin

The Cyclone II device 3-bit boundary-scan cell (BSC) consists of a set of 
capture registers and a set of update registers. The capture registers can 
connect to internal device data via the 

OUTJ

 and 

OEJ

 signals, and connect 

TCK

TMS

TAP Controller

TDI

Internal Logic

TDO

Each peripheral
element is either an
I/O pin, dedicated
input pin, or
dedicated
configuration pin.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–5

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

to external device data via the 

PIN_IN

 signal, while the update registers 

connect to external data through the 

PIN_OUT

 and 

PIN_OE

 signals. The 

global control signals for the IEEE Std. 1149.1 BST registers (for example, 
shift, clock, and update) are generated internally by the TAP controller. 
The 

MODE

 signal is generated by a decode of the instruction register. The 

data signal path for the boundary-scan register runs from the serial data 
in (

SDI

) signal to the serial data out (

SDO

) signal. The scan register begins 

at the 

TDI

 pin and ends at the 

TDO

 pin of the device.

Figure 14–4

 shows the Cyclone II device’s user I/O boundary-scan cell.

Figure 14–4. Cyclone II Device's User I/O BSC with IEEE Std. 1149.1 BST Circuitry 

0

1

D

Q

OUTPUT

D

Q

OE

D

Q

INPUT

D

Q

INPUT

D

Q

OUTPUT

D

Q

OE

From or

To Device

I/O Cell

Circuitry

and/or

Logic
Array

0

1

0

1

0

1

0

1

0

1

0

1

PIN_OUT

INJ

OEJ

OUTJ

V

CC

SDO

Pin

SHIFT

SDI

CLOCK

UPDATE

HIGHZ

MODE

PIN_OE

PIN_IN

Output

Buffer

Capture

Registers

Update

Registers

Global

Signals

ac/package_outlines/cyc_c52006-html.html
background image

14–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 BST Operation Control

Table 14–2

 describes the capture and update register capabilities of all 

types of boundary-scan cells within Cyclone II devices.

IEEE Std. 1149.1 
BST Operation 
Control 

Cyclone II devices implement the following IEEE Std. 1149.1 BST 
instructions: 

SAMPLE/PRELOAD

EXTEST

BYPASS

IDCODE

USERCODE

CLAMP,

 and 

HIGHZ

. The BST instruction length is 10 bits. These 

instructions are described later in this chapter. 

f

For summaries of the BST instructions and their instruction codes, see 
the 

Configuration & Testing

 chapter in Volume 1 of the 

Cyclone II Device 

Handbook

.

The IEEE Std. 1149.1 test access port (TAP) controller, a 16-state state 
machine clocked on the rising edge of 

TCK

, uses the 

TMS

 pin to control 

IEEE Std. 1149.1 operation in the device. 

Figure 14–5

 shows the TAP 

controller state machine.

Table 14–2. Cyclone II Device Boundary Scan Cell Descriptions

Note (1)

Pin Type

Captures

Drives

Comments

Output

Capture 

Register

OE 

Capture 

Register

Input 

Capture 

Register

Output 

Update 

Register

OE 

Update 

Register

Input 

Update 

Register

User I/O pins

OUTJ

OEJ

PIN_IN PIN_OUT

PIN_OE

INJ

Dedicated clock 
input

0

1

PIN_IN

N.C. 

(2)

N.C. 

(2)

N.C. 

(2)

PIN_IN 

drives to 

clock network or 
logic array

Dedicated input 

(3)

0

1

PIN_IN

N.C. 

(2)

N.C. 

(2)

N.C. 

(2)

PIN_IN

 drives to 

control logic

Dedicated 
bidirectional 
(open drain) 

(4)

0

OEJ

PIN_IN

N.C. 

(2)

N.C. 

(2)

N.C. 

(2)

PIN_IN

 drives to 

configuration 
control

Dedicated 
bidirectional 

(5)

OUTJ

OEJ

PIN_IN

N.C. 

(2)

N.C. 

(2)

N.C. 

(2)

OUTJ

 drives to 

output buffer

Notes to 

Table 14–2

:

(1)

TDI

TDO

TMS

TCK

, all V

CC

 and GND pin types do not have BSCs.

(2)

N.C.: no connect.

(3)

This includes 

nCONFIG

MSEL0

MSEL1

DATA0

, and 

nCE

 pins and 

DCLK

 (when not used in Active Serial mode).

(4)

This includes 

CONF_DONE

 and 

nSTATUS

 pins.

(5)

This includes 

DCLK

 (when not used in Active Serial mode).

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–7

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

Figure 14–5. IEEE Std. 1149.1 TAP Controller State Machine 

SELECT_DR_SCAN

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

TMS = 0

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

RUN_TEST/

IDLE

TMS = 0

TEST_LOGIC/

RESET

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 1

TMS = 1

CAPTURE_IR

SELECT_IR_SCAN

ac/package_outlines/cyc_c52006-html.html
background image

14–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 BST Operation Control

When the TAP controller is in the 

TEST_LOGIC/RESET

 state, the BST 

circuitry is disabled, the device is in normal operation, and the instruction 
register is initialized with 

IDCODE

 as the initial instruction. At device 

power-up, the TAP controller starts in this 

TEST_LOGIC/RESET

 state. In 

addition, forcing the TAP controller to the 

TEST_LOGIC/RESET

 state is 

done by holding 

TMS

 high for five 

TCK

 clock cycles. Once in the 

TEST_LOGIC/RESET

 state, the TAP controller remains in this state as 

long as 

TMS

 is held high (while 

TCK

 is clocked). 

Figure 14–6

 shows the 

timing requirements for the IEEE Std. 1149.1 signals.

Figure 14–6. IEEE Std. 1149.1 Timing Waveforms 

To start IEEE Std. 1149.1 operation, select an instruction mode by 
advancing the TAP controller to the shift instruction register (

SHIFT_IR

state and shift in the appropriate instruction code on the 

TDI

 pin. The 

waveform diagram in 

Figure 14–7

 represents the entry of the instruction 

code into the instruction register. It shows the values of 

TCK

TMS

TDI

TDO

, and the states of the TAP controller. From the 

RESET

 state, 

TMS

 is 

clocked with the pattern 

01100

 to advance the TAP controller to 

SHIFT_IR

.

TDO

TCK

t

JPZX

t

JPCO

t

JPH

t

JPXZ

 t

JCP

 t

JPSU

 t

JCL

 t

JCH

TDI

TMS

Signal

to be

Captured

Signal

to be

Driven

t

JSZX

t

JSSU

t

JSH

t

JSCO

t

JSXZ

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–9

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

Figure 14–7. Selecting the Instruction Mode 

The 

TDO

 pin is tri-stated in all states except in the 

SHIFT_IR

 and 

SHIFT_DR

 states. The 

TDO

 pin is activated at the first falling edge of 

TCK

 

after entering either of the shift states and is tri-stated at the first falling 
edge of 

TCK

 after leaving either of the shift states.

When the 

SHIFT_IR

 state is activated, 

TDO

 is no longer tri-stated, and the 

initial state of the instruction register is shifted out on the falling edge of 

TCK

TDO

 continues to shift out the contents of the instruction register as 

long as the 

SHIFT_IR

 state is active. The TAP controller remains in the 

SHIFT_IR

 state as long as 

TMS

 remains low. 

During the 

SHIFT_IR

 state, an instruction code is entered by shifting 

data on the 

TDI

 pin on the rising edge of 

TCK

. The last bit of the 

instruction code must be clocked at the same time that the next state, 

EXIT1_IR

, is activated. Set 

TMS

 high to activate the 

EXIT1_IR

 state. 

Once in the 

EXIT1_IR

 state, 

TDO

 becomes tri-stated again. 

TDO

 is always 

tri-stated except in the 

SHIFT_IR

 and 

SHIFT_DR

 states. After an 

instruction code is entered correctly, the TAP controller advances to 
serially shift test data in one of seven modes (

SAMPLE/PRELOAD,

 

EXTEST,

 

BYPASS,

 

IDCODE,

 

USERCODE,

 

CLAMP,

 or 

HIGHZ

) that are 

described below.

SAMPLE/PRELOAD Instruction Mode 

The 

SAMPLE/PRELOAD

 instruction mode allows you to take a snapshot of 

device data without interrupting normal device operation. You can also 
use this instruction to preload the test data into the update registers prior 
to loading the 

EXTEST

 instruction. 

Figure 14–8

 shows the capture, shift, 

and update phases of the 

SAMPLE/PRELOAD

 mode.

TCK

TMS

TDI

TDO

TAP_STATE

SHIFT_IR

RUN_TEST/IDLE SELECT_IR_SCAN

SELECT_DR_SCAN

TEST_LOGIC/RESET

CAPTURE_IR

EXIT1_IR

ac/package_outlines/cyc_c52006-html.html
background image

14–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 BST Operation Control

Figure 14–8. IEEE Std. 1149.1 BST SAMPLE/PRELOAD Mode

1

0

D

Q

D

Q

1

0

1

0

1

0

D

Q

D

Q

1

0

D

Q

D

Q

1

0

OUTJ

OEJ

MODE

INJ

Capture

Registers

Update

Registers

SDO

SDI

SHIFT

CLOCK

UPDATE

1

0

D

Q

D

Q

1

0

1

0

1

0

D

Q

D

Q

1

0

D

Q

D

Q

1

0

OUTJ

OEJ

SDI

SHIFT

CLOCK

UPDATE

MODE

SDO

INJ

Capture

Registers

Update

Registers

Capture Phase 

In the capture phase, the 
signals at the pin, OEJ and 
OUTJ, are loaded into the 
capture registers. The CLOCK 
signals are supplied by the 
TAP controller’s CLOCKDR 
output. The data retained in 
these registers consists of 
signals from normal device 
operation.

Shift & Update Phases 

In the shift phase, the 
previously captured signals at 
the pin, OEJ and OUTJ, are 
shifted out of the boundary-
scan register via the TDO pin 
using CLOCK. As data is 
shifted out, the patterns for 
the next test can be shifted in 
via the TDI pin. 

In the update phase, data is 
transferred from the capture 
to the UPDATE registers using 
the UPDATE clock. The data 
stored in the UPDATE 
registers can be used for the 
EXTEST instruction.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–11

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

During the capture phase, multiplexers preceding the capture registers 
select the active device data signals. This data is then clocked into the 
capture registers. The multiplexers at the outputs of the update registers 
also select active device data to prevent functional interruptions to the 
device. During the shift phase, the boundary-scan shift register is formed 
by clocking data through capture registers around the device periphery, 
then out of the 

TDO

 pin. The device can simultaneously shift new test data 

into 

TDI

 and replace the contents of the capture registers. During the 

update phase, data in the capture registers is transferred to the update 
registers. This data can then be used in the 

EXTEST

 instruction mode. See 

“EXTEST Instruction Mode” on page 14–11

 for more information.

Figure 14–9

 shows the 

SAMPLE/PRELOAD

 waveforms. The 

SAMPLE/PRELOAD

 instruction code is shifted in through the 

TDI

 pin. The 

TAP controller advances to the 

CAPTURE_DR

 state, then to the 

SHIFT_DR

 

state, where it remains if 

TMS

 is held low. The data that was present in the 

capture registers after the capture phase is shifted out of the 

TDO

 pin. New 

test data shifted into the 

TDI

 pin appears at the 

TDO

 pin after being 

clocked through the entire boundary-scan register

Figure 14–9

 shows 

that the instruction code at 

TDI

 does not appear at the 

TDO

 pin until after 

the capture register data is shifted out. If 

TMS

 is held high on two 

consecutive 

TCK

 clock cycles, the TAP controller advances to the 

UPDATE_DR

 state for the update phase.

Figure 14–9. SAMPLE/PRELOAD Shift Data Register Waveforms 

EXTEST Instruction Mode 

The 

EXTEST

 instruction mode is used to check external pin connections 

between devices. Unlike the 

SAMPLE/PRELOAD

 mode, 

EXTEST

 allows 

test data to be forced onto the pin signals. By forcing known logic high 
and low levels on output pins, opens and shorts can be detected at pins 
of any device in the scan chain. 

Data stored in
boundary-scan
register is shifted
out of TDO.

After boundary-scan
register data has been
shifted out, data
entered into TDI will
shift out of TDO.

UPDATE_IR

SHIFT_DR

EXIT1_DR

SELECT_DR

CAPTURE_DR

EXIT1_IR

UPDATE_DR

SHIFT_IR

Instruction Code

TCK

TMS

TDI

TDO

TAP_STATE

ac/package_outlines/cyc_c52006-html.html
background image

14–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 BST Operation Control

Figure 14–10

 shows the capture, shift, and update phases of the 

EXTEST

 

mode.

Figure 14–10. IEEE Std. 1149.1 BST EXTEST Mode 

1

0

D

Q

D

Q

1

0

1

0

1

0

D

Q

D

Q

1

0

D

Q

D

Q

1

0

OUTJ

OEJ

MODE

INJ

Capture

Registers

Update

Registers

SDI

SHIFT

CLOCK

UPDATE

SDO

1

0

D

Q

D

Q

1

0

1

0

1

0

D

Q

D

Q

1

0

D

Q

D

Q

1

0

OUTJ

OEJ

MODE

INJ

Capture

Registers

Update

Registers

SDI

SHIFT

CLOCK

UPDATE

SDO

Capture Phase 

In the capture phase, the 
signals at the pin, OEJ and 
OUTJ, are loaded into the 
capture registers. The CLOCK 
signals are supplied by the 
TAP controller’s CLOCKDR 
output. Previously retained 
data in the update registers 
drive the PIN_IN, INJ, and 
allows the I/O pin to tri-state 
or drive a signal out. 

A “1” in the OEJ update 
register tri-states the output 
buffer.

Shift & Update Phases 

In the shift phase, the 
previously captured signals at 
the pin, OEJ and OUTJ, are 
shifted out of the boundary-
scan register via the TDO pin 
using CLOCK. As data is 
shifted out, the patterns for 
the next test can be shifted in 
via the TDI pin. 

In the update phase, data is 
transferred from the capture 
registers to the update 
registers using the UPDATE 
clock. The update registers 
then drive the PIN_IN, INJ, 
and allow the I/O pin to tri-
state or drive a signal out.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–13

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

EXTEST

 selects data differently than 

SAMPLE/PRELOAD

EXTEST

 chooses 

data from the update registers as the source of the output and output 
enable signals. Once the 

EXTEST

 instruction code is entered, the 

multiplexers select the update register data. Thus, data stored in these 
registers from a previous 

EXTEST

 or 

SAMPLE/PRELOAD

 test cycle can be 

forced onto the pin signals. In the capture phase, the results of this test 
data are stored in the capture registers, then shifted out of 

TDO

 during the 

shift phase. New test data can then be stored in the update registers 
during the update phase.

The 

EXTEST

 waveform diagram in 

Figure 14–11

 resembles the 

SAMPLE/PRELOAD

 waveform diagram, except for the instruction code. 

The data shifted out of 

TDO

 consists of the data that was present in the 

capture registers after the capture phase. New test data shifted into the 

TDI

 pin appears at the 

TDO

 pin after being clocked through the entire 

boundary-scan register.

Figure 14–11. EXTEST Shift Data Register Waveforms 

BYPASS Instruction Mode 

The 

BYPASS

 mode is activated when an instruction code of all 1’s is 

loaded in the instruction register. The waveforms in 

Figure 14–12

 show 

how scan data passes through a device once the TAP controller is in the 

SHIFT_DR

 state. In this state, data signals are clocked into the bypass 

register from 

TDI

 on the rising edge of 

TCK

 and out of 

TDO

 on the falling 

edge of the same clock pulse. 

Data stored in
boundary-scan
register is shifted
out of TDO.

After boundary-scan
register data has been
shifted out, data
entered into TDI will
shift out of TDO.

UPDATE_IR

SHIFT_DR

EXIT1_DR

SELECT_DR

CAPTURE_DR

EXIT1_IR

UPDATE_DR

SHIFT_IR

Instruction Code

TCK

TMS

TDI

TDO

TAP_STATE

ac/package_outlines/cyc_c52006-html.html
background image

14–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

IEEE Std. 1149.1 BST Operation Control

Figure 14–12. BYPASS Shift Data Register Waveforms 

IDCODE Instruction Mode

The 

IDCODE

 instruction mode is used to identify the devices in an 

IEEE Std. 1149.1 chain. When 

IDCODE

 is selected, the device 

identification register is loaded with the 32-bit vendor-defined 
identification code. The device ID register is connected between the 

TDI

 

and 

TDO

 ports, and the device 

IDCODE

 is shifted out. The 

IDCODE

 for 

Cyclone II devices are listed in the

 Configuration & Testing

 chapter in 

Volume 1 of the 

Cyclone II Device Handbook

USERCODE Instruction Mode 

The 

USERCODE

 instruction mode is used to examine the user electronic 

signature (UES) within the devices along an IEEE Std. 1149.1 chain. When 
this instruction is selected, the device identification register is connected 
between the 

TDI

 and 

TDO

 ports. The user-defined UES is shifted into the 

device ID register in parallel from the 32-bit 

USERCODE

 register. The UES 

is then shifted out through the device ID register. The UES value is not 
user defined until after the device has been configured. Before 
configuration, the UES value is set to the default value.

CLAMP Instruction Mode 

The 

CLAMP

 instruction mode is used to allow the boundary-scan register 

to determine the state of the signals driven from the pins. In 

CLAMP

 

instruction mode, the bypass register is selected as the serial path 
between the 

TDI

 and 

TDO

 ports.

Data shifted into TDI on
the rising edge of TCK is
shifted out of TDO on the
falling edge of the same
TCK pulse.

UPDATE_IR

SELECT_DR_SCAN

CAPTURE_DR

EXIT1_IR

EXIT1_DR

UPDATE_DR

SHIFT_DR

Instruction Code

TCK

TMS

TDI

TDO

TAP_STATE

SHIFT_IR

Bit 2

Bit 3

Bit 1

Bit 2

Bit 4

Bit 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–15

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

If you are testing the device after configuring it, the programmable weak 
pull-up resister or the bus hold feature overrides the 

CLAMP

 value (the 

value stored in the update register of the boundary-scan cell) at the pin.

HIGHZ Instruction Mode 

The 

HIGHZ

 instruction mode is used to set all of the user I/O pins to an 

inactive drive state. These pins are tri-stated until a new JTAG instruction 
is executed. When this instruction is loaded into the instruction register, 
the bypass register is connected between the 

TDI

 and 

TDO

 ports.

If you are testing the device after configuring it, the programmable weak 
pull-up resistor or the bus hold feature overrides the 

HIGHZ

 value at the 

pin.

I/O Voltage Support in JTAG Chain 

A JTAG chain can contain several different devices. However, you should 
be cautious if the chain contains devices that have different V

CCIO

 levels. 

The output voltage level of the 

TDO

 pin must meet the specifications of 

the 

TDI

 pin it drives. For Cyclone II devices, the 

TDO

 pin is powered by 

the V

CCIO

 power supply. Since the V

CCIO

 supply is 3.3 V, the 

TDO

 pin 

drives out 3.3 V.

Devices can interface with each other although they might have different 
V

CCIO

 levels. For example, a device with a 3.3-V 

TDO

 pin can drive to a 

device with a 5.0-V 

TDI

 pin because 3.3 V meets the minimum TTL-level 

V

IH

 for the 5.0-V 

TDI

 pin. JTAG pins on Cyclone II devices can support 

2.5- or 3.3-V input levels.

f

For more information on MultiVolt I/O support, see the

 Cyclone II 

Architecture 

chapter

 

in Volume 1 of the 

Cyclone II Device Handbook

.

You can also interface the 

TDI

 and 

TDO

 lines of the devices that have 

different V

CCIO

 levels by inserting a level shifter between the devices. If 

possible, the JTAG chain should be built such that a device with a higher 
V

CCIO

 level drives to a device with an equal or lower V

CCIO

 level. This 

way, a level shifter may be required only to shift the 

TDO

 level to a level 

acceptable to the JTAG tester

Figure 14–13

 shows the JTAG chain of 

mixed voltages and how a level shifter is inserted in the chain.

ac/package_outlines/cyc_c52006-html.html
background image

14–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Using IEEE Std. 1149.1 BST Circuitry

Figure 14–13. JTAG Chain of Mixed Voltages

Using IEEE Std. 
1149.1 BST 
Circuitry 

Cyclone II devices have dedicated JTAG pins, and the IEEE Std. 1149.1 
BST circuitry is enabled upon device power-up. You can perform BST on 
Cyclone II FPGAs not only before and after configuration, but also during 
configuration. Cyclone II FPGAs support the 

BYPASS

IDCODE,

 and 

SAMPLE

 instructions during configuration without interrupting 

configuration. To send all other JTAG instructions, you must interrupt 
configuration using the 

CONFIG_IO

 instruction.

The 

CONFIG_IO

 instruction allows you to configure I/O buffers via the 

JTAG port, and when issued, interrupts configuration. This instruction 
allows you to perform board-level testing prior to configuring the 
Cyclone II FPGA or waiting for a configuration device to complete 
configuration. Once configuration has been interrupted and JTAG BST is 
complete, the part must be reconfigured via JTAG (

PULSE_CONFIG

 

instruction) or by pulsing 

nCONFIG

 low.

When you perform JTAG boundary-scan testing before configuration, the 

nCONFIG

 pin must be held low.

The device-wide reset (

DEV_CLRn

) and device-wide output enable 

(

DEV_OE

) pins on Cyclone II devices do not affect JTAG boundary-scan or 

configuration operations. Toggling these pins does not disrupt BST 
operation any more than usual.

Tester

3.3 V

V

CCIO

2.5 V

V

CCIO

1.5 V

V

CCIO

1.8 V

V

CCIO

Level

Shifter

Shift TDO to

level accepted by

tester if necessary

Must be

1.8 V

tolerant

Must be

2.5 V

tolerant

Must be

3.3 V

tolerant

TDI

TDO

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–17

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

When designing a board for JTAG configuration of Cyclone II devices, the 
connections for the dedicated configuration pins need to be considered. 

f

For more information on using the IEEE Std.1149.1 circuitry for device 
configuration, see the 

Configuring Cyclone II Devices

 chapter in Volume 1 

of the 

Cyclone II Device Handbook

.

BST for 
Configured 
Devices

For a configured device, the input buffers are turned off by default for 
I/O pins that are set as output only in the design file. Nevertheless, 
executing the SAMPLE instruction will turn on the input buffers for the 
output pins. You can set the Quartus II software to always enable the 
input buffers on a configured device so it behaves the same as an 
unconfigured device for boundary-scan testing, allowing sample 
function on output pins in the design. This aspect can cause slight 
increase in standby current because the unused input buffer is always on. 
In the Quartus II software, do the following:

1.

Choose 

Settings

 (Assignment menu).

2.

Click 

Assembler

.

3.

Turn on 

Always Enable Input Buffers

.

4.

If you use the default setting with input disabled, you need to 
convert the default BSDL file to the design-specific BSDL file using 
the BSDLCustomizer script. For more information regarding BSDL 
file, refer to 

“Boundary-Scan Description Language (BSDL) 

Support”

.

ac/package_outlines/cyc_c52006-html.html
background image

14–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Disabling IEEE Std. 1149.1 BST Circuitry

Disabling IEEE 
Std. 1149.1 BST 
Circuitry 

The IEEE Std. 1149.1 BST circuitry for Cyclone II devices is enabled upon 
device power-up. Because this circuitry may be used for BST or in-circuit 
reconfiguration, this circuitry must be enabled only at specific times as 
mentioned in 

“Using IEEE Std. 1149.1 BST Circuitry” on page 14–16

.

If the IEEE Std. 1149.1 circuitry will not be utilized at any time, the 
circuitry should be permanently disabled. 

Table 14–3

 shows the pin 

connections necessary for disabling the IEEE Std. 1149.1 circuitry in 
Cyclone II devices to ensure that the circuitry is not inadvertently enabled 
when it is not needed.

Guidelines for 
IEEE Std. 1149.1 
Boundary-Scan 
Testing 

Use the following guidelines when performing boundary-scan testing 
with IEEE Std. 1149.1 devices: 

If the 10-bit checkerboard pattern “1010101010” does not shift out of 
the instruction register via the 

TDO

 pin during the first clock cycle of 

the 

SHIFT_IR

 state, the TAP controller has not reached the proper 

state. To solve this problem, try one of the following procedures: 

Verify that the TAP controller has reached the 

SHIFT_IR

 state 

correctly. To advance the TAP controller to the 

SHIFT_IR

 state, 

return to the 

RESET

 state and send the code 

01100

 to the 

TMS

 

pin.

Check the connections to the V

CC

, GND, JTAG, and dedicated 

configuration pins on the device.

Table 14–3. Disabling IEEE Std. 1149.1 Circuitry

JTAG Pins

(1)

Connection for Disabling

TMS

V

C C

TCK

GND

TDI

V

C C

TDO

Leave open

Note to 

Table 14–3

:

(1)

There is no software option to disable JTAG in Cyclone II devices. The JTAG pins 
are dedicated.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

14–19

February 2007

Cyclone II Device Handbook, Volume 1

IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices

Perform a 

SAMPLE/PRELOAD

 test cycle prior to the first 

EXTEST

 test 

cycle to ensure that known data is present at the device pins when 
the 

EXTEST

 mode is entered. If the 

OEJ

 update register contains a 0, 

the data in the 

OUTJ

 update register is driven out. The state must be 

known and correct to avoid contention with other devices in the 
system. 

Do not perform 

EXTEST

 testing during ICR. This instruction is 

supported before or after ICR, but not during ICR. Use the 

CONFIG_IO

 instruction to interrupt configuration, then perform 

testing, or wait for configuration to complete.

If performing testing before configuration, hold the 

nCONFIG

 pin 

low.

After configuration, any pins in a differential pin pair cannot be 
tested. Therefore, performing BST after configuration requires 
editing BSC group definitions that correspond to these differential 
pin pairs. The BSC group should be redefined as an internal cell. See 
the BSDL file for more information on editing.

For more information on boundary scan testing, contact Altera 
Applications.

Boundary-Scan 
Description 
Language 
(BSDL) Support 

The Boundary-Scan Description Language (BSDL), a subset of VHDL, 
provides a syntax that allows you to describe the features of an 
IEEE Std. 1149.1 BST-capable device that can be tested. Test software 
development systems then use the BSDL files for test generation, 
analysis, and failure diagnostics. For more information, or to receive 
BSDL files for IEEE Std. 1149.1-compliant Cyclone II devices, visit the 
Altera web site at 

www.altera.com

.

Conclusion

The IEEE Std. 1149.1 BST circuitry available in Cyclone II devices 
provides a cost-effective and efficient way to test systems that contain 
devices with tight lead spacing. Circuit boards with Altera and other 
IEEE Std. 1149.1-compliant devices can use the 

EXTEST

SAMPLE/PRELOAD

BYPASS,

 

IDCODE,

 

USERCODE,

 

CLAMP,

 and 

HIGHZ 

modes to create serial patterns that internally test the pin connections 
between devices and check device operation. 

References

Bleeker, H., P. van den Eijnden, and F. de Jong. 

Boundary-Scan Test: A 

Practical Approach

. Eindhoven, The Netherlands: Kluwer Academic 

Publishers, 1993. 

Institute of Electrical and Electronics Engineers, Inc. 

IEEE Standard Test 

Access Port and Boundary-Scan Architecture

 (IEEE Std 1149.1-2001). New 

York: Institute of Electrical and Electronics Engineers, Inc., 2001.

ac/package_outlines/cyc_c52006-html.html
background image

14–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History

Maunder, C. M., and R. E. Tulloss. 

The Test Access Port and Boundary-Scan 

Architecture

. Los Alamitos: IEEE Computer Society Press, 1990.

Document 
Revision History

Table 14–4

 shows the revision history for this document.

Table 14–4. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v2.1

Added document revision history.

Added new sectio

“BST for Configured Devices”

.

Added infomation about 
‘Always Enable Input 
Buffer’ option.

July 2005 v2.0

Moved the “JTAG Timing Specifications” section to the 

DC 

Characteristics & Timing Specifications

 chapter.

June 2004 v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

Section VII–1

Preliminary

Section VII. PCB Layout

Guidelines

This section provides information for board layout designers to 
successfully layout their boards for Cyclone

®

II devices. The chapters in 

this section contain the required PCB layout guidelines and package 
specifications.

This section includes the following chapters:

Chapter 15, Package Information for Cyclone II Devices

Revision History 

Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.

ac/package_outlines/cyc_c52006-html.html
background image

Section VII–2

 

Altera Corporation

Preliminary

Revision History

Cyclone II Device Handbook, Volume 1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

 

15–1

February 2007

15. Package Information for

Cyclone II Devices

Introduction

This chapter provides package information for Altera

®

 Cyclone

®

II 

devices, including:

Device and package cross reference

Thermal resistance values

Package outlines

Table 15–1

 shows Cyclone II device package options.

Table 15–1.  Cyclone II Device Package Options

Device

Package

Pins

EP2C5

Plastic Thin Quad Flat Pack (TQFP) – Wirebond

144

Plastic Quad Flat Pack (PQFP) – Wirebond

208

Low profile FineLine BGA

® 

– Wirebond

256

EP2C8

TQFP – Wirebond

144

PQFP – Wirebond

208

Low profile FineLine BGA – Wirebond

256

EP2C15

Low profile FineLine BGA, Option 2 – Wirebond

256

FineLine BGA, Option 3– Wirebond

484

EP2C20

PQFP – Wirebond

240

Low profile FineLine BGA, Option 2 – Wirebond

256

FineLine BGA, Option 3– Wirebond

484

EP2C35

FineLine BGA, Option 3 – Wirebond

484

Ultra FineLine BGA – Wirebond

484

FineLine BGA, Option 3 – Wirebond

672

EP2C50

FineLine BGA, Option 3 – Wirebond

484

Ultra FineLine BGA – Wirebond

484

FineLine BGA, Option 3 – Wirebond

672

EP2C70

FineLine BGA, Option 3 – Wirebond

672

FineLine BGA – Wirebond

896

CII51015-2.3

ac/package_outlines/cyc_c52006-html.html
background image

15–2

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Thermal Resistance

Thermal 
Resistance

Thermal resistance values for Cyclone II devices are provided for a board 
meeting JEDEC specifications and for a typical board. The values 
provided are as follows:

θ

JA

 (

°

C/W) Still Air—Junction-to-ambient thermal resistance with 

no airflow when a heat sink is not being used. 

θ

JA

 (

°

C/W) 100 ft./minute—Junction-to-ambient thermal resistance 

with 100 ft./minute airflow when a heat sink is not being used. 

θ

JA

 (

°

C/W) 200 ft./minute—Junction-to-ambient thermal resistance 

with 200 ft./minute airflow when a heat sink is not being used. 

θ

JA

 (

°

C/W) 400 ft./minute—Junction-to-ambient thermal resistance 

with 400 ft./minute airflow when a heat sink is not being used. 

θ

JC

 (

°

C/W)—Junction-to-case thermal resistance for device.

θ

JB

 (

°

C/W)—Junction-to-board thermal resistance for specific board 

being used.

Table 15–2

 provides 

θ

JA

 (junction-to-ambient thermal resistance) values 

and 

θ

JC

 (junction-to-case thermal resistance) values for Cyclone II devices 

on a board meeting JEDEC specifications for thermal resistance 
calculation. The JEDEC board specifications require two signal and two 
power/ground planes and are available at 

www.jedec.org

.

Table 15–2. Thermal Resistance of Cyclone II Devices for Board Meeting JEDEC Specifications (Part 1 of 2)

Device

Pin 

Count

Package

θ

J A

 (

°

C/W) 

Still Air

θ

J A

 (

°

C/W) 

100 ft./min.

θ

J A

 (

°

C/W) 

200 ft./min.

θ

J A

 (

°

C/W) 

400 ft./min.

θ

J C

 

(

°

C/W)

EP2C5

144

TQFP

31

29.3

27.9

25.5

10

208

PQFP

30.4

29.2

27.3

22.3

5.5

256

FineLine BGA

30.2

26.1

23.6

21.7

8.7

EP2C8

144

TQFP

29.8

28.3

26.9

24.9

9.9

208

PQFP

30.2

28.8

26.9

21.7

5.4

256

FineLine BGA

27

23

20.5

18.5

7.1

EP2C15

256

FineLine BGA

24.2

20

17.8

16

5.5

484

FineLine BGA

21

17

14.8

13.1

4.2

EP2C20

240

PQFP

26.6

24

21.4

17.4

4.2

256

FineLine BGA

24.2

20

17.8

16

5.5

484

FineLine BGA

21

17

14.8

13.1

4.2

EP2C35

484

FineLine BGA

19.4

15.4

13.3

11.7

3.3

484

Ultra FineLine BGA

20.6

16.6

14.5

12.8

5

672

FineLine BGA

18.6

14.6

12.6

11.1

3.1

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–3

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

Table 15–3

 provides board dimension information for each package.

EP2C50

484

FineLine BGA

18.4

14.4

12.4

10.9

2.8

484

Ultra FineLine BGA

19.6

15.6

13.6

11.9

4.4

672

FineLine BGA

17.7

13.7

11.8

10.2

2.6

EP2C70

672

FineLine BGA

16.9

13

11.1

9.7

2.2

896

FineLine BGA

16.3

11.9

10.5

9.1

2.1

Table 15–2. Thermal Resistance of Cyclone II Devices for Board Meeting JEDEC Specifications (Part 2 of 2)

Device

Pin 

Count

Package

θ

J A

 (

°

C/W) 

Still Air

θ

J A

 (

°

C/W) 

100 ft./min.

θ

J A

 (

°

C/W) 

200 ft./min.

θ

J A

 (

°

C/W) 

400 ft./min.

θ

J C

 

(

°

C/W)

Table 15–3. PCB Dimensions

Notes (1)

(2)

2.5 mm 

Thick

Signal 

Layers

Power/Ground 

Layers

Package 

Dimension 

(mm)

Board 

Dimension 

(mm)

F896

10

10

31

91

F672

8

8

27

87

F672

7

7

27

87

F484

7

7

23

83

F484

6

6

23

83

U484

7

7

19

79

U484

6

6

19

79

F256

6

6

17

77

Notes to 

Table 15–3

:

(1)

Power layer Cu thickness 35 um, Cu 90%

(2)

Signal layer Cu thickness 17 um, Cu 15%

ac/package_outlines/cyc_c52006-html.html
background image

15–4

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Table 15–4

 provides 

θ

JA

 (junction-to-ambient thermal resistance) values, 

θ

J C

 (junction-to-case thermal resistance) values, 

θ

JB

 (junction-to-board 

thermal resistance) values for Cyclone II devices on a typical board.

Package 
Outlines

The package outlines on the following pages are listed in order of 
ascending pin count.

144-Pin Plastic Thin Quad Flat Pack (TQFP) – Wirebond

All dimensions and tolerances conform to ASME Y14.5M – 1994.

Controlling dimension is in millimeters.

Pin 1 may be indicated by an ID dot, or a special feature, in its 
proximity on package surface.

Table 15–4. Thermal Resistance of Cyclone II Devices for Typical Board

Device

Pin 

Count

Package

θ

J A

 

(

°

C/W) 

Still Air

θ

J A

 (

°

C/W) 

100 ft./min.

θ

J A

 (

°

C/W) 

200 ft./min.

θ

J A

 (

°

C/W) 

400 ft./min.

θ

J C

 

(

°

C/W)

θ

J B

 

(

°

C/W)

EP2C5

256

FineLine BGA

30.2

25.8

22.9

20.6

8.7

14.8

EP2C8

256

FineLine BGA

27.9

23.2

20.5

18.4

7.1

12.3

EP2C15 256

FineLine BGA

24.7

20.1

17.5

15.3

5.5

9.1

484

FineLine BGA

20.5

16.2

13.9

12.2

4.2

7.2

EP2C20 256

FineLine BGA

24.7

20.1

17.5

15.3

5.5

9.1

484

FineLine BGA

20.5

16.2

13.9

12.2

4.2

7.2

EP2C35 484

FineLine BGA

18.8

14.5

12.3

10.6

3.3

5.7

484

Ultra FineLine BGA

20

15.5

13.2

11.3

5

5.3

672

FineLine BGA

17.4

13.3

11.3

9.8

3.1

5.5

EP2C50 484

FineLine BGA

17.7

13.5

11.4

9.8

2.8

4.5

484

FineLine BGA

18.1

13.8

11.7

10.1

2.8

4.6

484

Ultra FineLine BGA

19

14.6

12.3

10.6

4.4

4.4

484

Ultra FineLine BGA

19.4

15

12.7

10.9

4.4

4.6

672

FineLine BGA

16.5

12.4

10.5

9

2.6

4.6

EP2C70 672

FineLine BGA

15.7

11.7

9.8

8.3

2.2

3.8

672

FineLine BGA

15.9

11.9

9.9

8.4

2.2

3.9

896

FineLine BGA

14.6

10.7

8.9

7.6

2.1

3.7

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–5

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

Tables 15–5

 and 

15–6

 show the package information and package outline 

figure references, respectively, for the 144-pin TQFP package.

Table 15–5. 144-Pin TQFP Package Information

Description

Specification

Ordering code reference

T

Package acronym

TQFP

Lead frame material

Copper

Lead finish (plating)

Regular: 85Sn:15Pb (Typ.)
Pb-free: Matte Sn

JEDEC Outline Reference

MS-026 Variation: BFB

Maximum lead coplanarity

0.003 inches (0.08mm)

Weight

1.3 g

Moisture sensitivity level

Printed on moisture barrier bag

Table 15–6. 144-Pin TQFP Package Outline Dimensions

Symbol

Millimeter

Min.

Nom.

Max.

A

1.60

A1

0.05

0.15

A2

1.35

1.40

1.45

D

22.00 BSC

D1

20.00 BSC

E

22.00 BSC

E1

20.00 BSC

L

0.45

0.60

0.75

L1

1.00 REF

S

0.20

b

0.17

0.22

0.27

c

0.09

0.20

e

0.50 BSC

θ

0

°

3.5

°

7

°

ac/package_outlines/cyc_c52006-html.html
background image

15–6

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Figure 15–1

 shows a 144-pin TQFP package outline.

Figure 15–1. 144-Pin TQFP Package Outline

Pin 1 ID

E

E1

D1

D

Pin 144

S

L

L1

DETAIL A

Gage   

Plane

0.25mm

C

b

e

See Detail A

Pin 1

A

A2

A1

Pin 36

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–7

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

208-Pin Plastic Quad Flat Pack (PQFP) – Wirebond

All dimensions and tolerances conform to ASME Y14.5M - 1994.

Controlling dimension is in millimeters.

Pin 1 may be indicated by an ID dot in its proximity on package 
surface.

Tables 15–7

 and 

15–8

 show the package information and package outline 

figure references, respectively, for the 208-pin PQFP package.

Table 15–7. 208-Pin PQFP Package Information

Description

Specification

Ordering code reference

Q

Package acronym

PQFP

Lead material

Copper

Lead finish (plating)

Regular: 85Sn:15Pb (Typ.)
Pb-free: Matte Sn

JEDEC Outline Reference

MS-029 Variation: FA-1

Maximum lead coplanarity

0.003 inches (0.08 mm)

Weight

5.7 g

Moisture sensitivity level

Printed on moisture barrier bag

Table 15–8. 208-Pin PQFP Package Outline Dimensions (Part 1 of 2)

Symbol

Millimeter

Min.

Nom.

Max.

A

4.10

A1

0.25

0.50

A2

3.20

3.40

3.60

D

30.60 BSC

D1

28.00 BSC

E

30.60 BSC

E1

28.00 BSC

L

0.50

0.60

0.75

L1

1.30 REF

S

0.20

b

0.17

0.27

c

0.09

0.20

ac/package_outlines/cyc_c52006-html.html
background image

15–8

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Figure 15–2

 shows a 208-pin PQFP package outline.

Figure 15–2. 208-pin PQFP Package Outline

e

0.50 BSC

q

3.5°

Table 15–8. 208-Pin PQFP Package Outline Dimensions (Part 2 of 2)

Symbol

Millimeter

Min.

Nom.

Max.

Pin 1 ID

E

D1

D

Pin 208

A

A2

A1

S

L

L1

Detail A

Gage

Plane

0.25mm

C

b

e

See Detail A

E1

Pin 1

Pin 52

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–9

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

240-Pin Plastic Quad Flat Pack (PQFP)

All dimensions and tolerances conform to ASME Y14.5M – 1994.

Controlling dimension is in millimeters.

Pin 1 may be indicated by an ID dot, or a special feature, in its 
proximity on package surface.

Tables 15–9

 and 

15–10

 show the package information and package outline 

figure references, respectively, for the 240-pin PQFP package.

Table 15–9. 240-Pin PQFP Package Information

Description

Specification

Ordering Code Reference

Q

Package Acronym

PQFP

Leadframe Material

Copper

Lead Finish (Plating)

Regular: 85Sn:15Pb (Typ.)
Pb-free: Matte Sn

JEDEC Outline Reference

MS-029 Variation: GA

Maximum Lead Coplanarity

0.003 inches (0.08mm)

Weight

7.0 g

Moisture Sensitivity Level

Printed on moisture barrier bag

Table 15–10. 240-Pin PQFP Package Outline Dimensions (Part 1 of 2)

Symbol

Millimeter

Min.

Nom.

Max.

A

4.10

A1

0.25

0.50

A2

3.20

3.40

3.60

D

34.60 BSC

D1

32.00 BSC

E

34.60 BSC

E1

32.00 BSC

L

0.45

0.60

0.75

L1

1.30 REF

S

0.20

b

0.17

0.27

c

0.09

0.20

ac/package_outlines/cyc_c52006-html.html
background image

15–10

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Figure 15–3

 shows a 240-pin PQFP package outline.

Figure 15–3. 240-pin PQFP Package Outline

e

0.50 BSC

θ

0

°

3.5

°

8

°

Table 15–10. 240-Pin PQFP Package Outline Dimensions (Part 2 of 2)

Symbol

Millimeter

Min.

Nom.

Max.

S

L

L1

DETAIL A

Gage
Plane

0.25mm

C

b

e

See Detail A

D

D1

E

E1

A2

A

A1

Pin 1 ID

Pin 1

Pin 60

Pin 240

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–11

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

256-Pin FineLine Ball-Grid Array, Option 2 – Wirebond

All dimensions and tolerances conform to ASME Y14.5M - 1994.

Controlling dimension is in millimeters.

Pin A1 may be indicated by an ID dot, or a special feature, in its 
proximity on the package surface. 

1

This POD is applicable to the F256 package of the Cyclone II 
product only.

Tables 15–11

 and 

15–12

 show the package information and package 

outline figure references, respectively, for the 256-pin FineLine BGA 
package.

Table 15–11. 256-Pin FineLine BGA Package Information

Description

Specification

Ordering code reference

F

Package acronym

FineLine BGA

Substrate material

BT

Solder ball composition

Regular: 63Sn:37Pb (Typ.)
Pb-free: Sn:3Ag:0.5Cu (Typ.)

JEDEC Outline Reference

MO-192    Variation: AAF-1

Maximum lead coplanarity

0.008 inches (0.20 mm)

Weight

1.9 g

Moisture sensitivity level

Printed on moisture barrier bag

Table 15–12. 256-Pin FineLine BGA Package Outline Dimensions

Symbol

Millimeter

Min.

Nom.

Max.

A

1.55

A1

0.25

A2

1.05 REF

A3

0.80

D

17.00 BSC

E

17.00 BSC

b

0.40

0.50

0.55

e

1.00  BSC

ac/package_outlines/cyc_c52006-html.html
background image

15–12

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Figure 15–4

 shows a 256-pin FineLine BGA package outline.

Figure 15–4. 256-Pin FineLine BGA Package Outline

D

E

Pin A1 ID

b

e

e

A3

A1

A2

A

Pin A1 

Corner

BOTTOM VIEW

TOP VIEW

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–13

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

484-Pin FineLine BGA, Option 3 – Wirebond

All dimensions and tolerances conform to ASME Y14.5M – 1994.

Controlling dimension is in millimeters.

Pin A1 may be indicated by an ID dot, or a special feature, in its 
proximity on package surface.

Tables 15–13

 and 

15–14

 show the package information and package 

outline figure references, respectively, for the 484-pin FineLine BGA 
package.

Table 15–13. 484-Pin FineLine BGA Package Information

Description

Specification

Ordering code reference

F

Package acronym

FineLine BGA

Substrate material

BT

Solder ball composition

R

egular: 63Sn:37Pb (Typ.) 

Pb-free: Sn:3Ag:0.5Cu (Typ.)

JEDEC Outline Reference

MS-034    Variation: AAJ-1

Maximum lead coplanarity

0.008 inches (0.20 mm)

Weight

5.7 g

Moisture sensitivity level

Printed on moisture barrier bag

Table 15–14. 484-Pin FineLine BGA Package Outline Dimensions

Symbol

Millimeter

Min.

Nom.

Max.

A

2.60

A1

0.30

A2

2.20

A3

1.80

D

23.00 BSC

E

23.00 BSC

b

0.50

0.60

0.70

e

1.00 BSC

ac/package_outlines/cyc_c52006-html.html
background image

15–14

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Figure 15–5

 shows a 484-pin FineLine BGA package outline.

Figure 15–5. 484-Pin FineLine BGA Package Outline

D

E

Pin A1 ID

b

e

A1

A2

Pin A1 
Corner

A

V

U

R

T

P

L

N

M

K

J

2

F

H

G

E

D

A

B

C

1

A3

TOP VIEW

BOTTOM VIEW

AA

AB

Y

W

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

e

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–15

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

484-Pin Ultra FineLine BGA – Wirebond

All dimensions and tolerances conform to ASME Y14.5M – 1994.

Controlling dimension is in millimeters.

Pin A1 may be indicated by an ID dot, or a special feature, in its 
proximity on package surface.

Tables 15–15

 and 

15–16

 show the package information and package 

outline figure references, respectively, for the 484-pin Ultra FineLine 
BGA package.

Table 15–15. 484-Pin Ultra FineLine BGA Package Information

Description

Specification

Ordering Code Reference

U

Package Acronym

UBGA

Substrate Material

BT

Solder Ball Composition

Regular: 63Sn:37Pb (Typ.)
Pb-free: Sn:3Ag:0.5Cu (Typ.)

JEDEC Outline Reference

MO-216 Variation: BAP-2

Maximum Lead Coplanarity

0.005 inches (0.12mm)

Weight

1.8 g

Moisture Sensitivity Level

Printed on moisture barrier bag

Table 15–16. 484-Pin Ultra FineLine BGA Package Outline Dimensions

Symbol

Millimeter

Min.

Nom.

Max.

A

2.20

A1

0.20

A2

0.65

A3

0.80 TYP

D

19.00 BSC

E

19.00 BSC

b

0.40

0.50

0.60

e

0.80 BSC

ac/package_outlines/cyc_c52006-html.html
background image

15–16

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Figure 15–6

 shows a 484-pin Ultra FineLine BGA package outline.

Figure 15–6. 484-Pin Ultra FineLine BGA Package Outline

BOTTOM VIEW

TOP VIEW

D

E

Pin A1 ID

b

A3

A1

A2

A

Pin A1 

Corner

e

e

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–17

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

672-Pin FineLine BGA Package, Option 3 – Wirebond

All dimensions and tolerances conform to ASME Y14.5M - 1994.

Controlling dimension is in millimeters.

Pin A1 may be indicated by an ID dot, or a special feature, in its 
proximity on the package surface.

Tables 15–17

 and 

15–18

 show the package information and package 

outline figure references, respectively, for the 672-pin FineLine BGA 
package. 

Table 15–17. 672-Pin FineLine BGA

 

Package Information 

Description

Specification

Ordering code reference

F

Package acronym

FineLine BGA

Substrate material

BT

Solder ball composition

Regular: 63Sn:37Pb (Typ.)
Pb-free: Sn:3Ag:0.5Cu (Typ.)

JEDEC Outline Reference

MS-034    Variation: AAL-1

Maximum lead coplanarity

0.008 inches (0.20 mm)

Weight

7.7 g

Moisture sensitivity level

Printed on moisture barrier bag

Table 15–18. 672-Pin FineLine BGA Package Outline Dimensions

Symbol

Dimensions (mm)

Min.

Nom.

Max.

A

2.60

A1

0.30

A2

2.20

A3

1.80

D

27.00 BSC

E

27.00 BSC

b

0.50

0.60

0.70

e

1.00 BSC

ac/package_outlines/cyc_c52006-html.html
background image

15–18

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Figure 15–7

 shows a 672-pin FineLine BGA package outline.

Figure 15–7. 672-Pin FineLine BGA Package Outline

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

e

D

E

Pin A1 ID

b

e

A1

A2

Pin A1 
Corner

A

V

U

R

T

P

L

N

M

K

J

2

F

H

G

E

D

A

B

C

1

AA

AB

Y

W

3

4

5

25 23

26 24

AE

AF

AC

AD

A3

BOTTOM VIEW

TOP VIEW

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–19

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

896-Pin FineLine BGA Package – Wirebond

All dimensions and tolerances conform to ASME Y14.5M - 1994.

Controlling dimension is in millimeters.

Pin A1’s location may be indicated by an ID dot in its proximity on 
the package surface.

Tables 15–19

 and 

15–20

 show the package information and package 

outline figure references, respectively, for the 896-pin FineLine BGA.

Table 15–19. 896-Pin FineLine BGA Package Information

Description

Specification

Ordering code reference

F

Package acronym

FineLine BGA

Substrate material

BT

Solder ball composition

Regular: 63Sn: 37Pb (typical)
Pb-free: Sn: 3.0Ag: 0.5Cu (typical)

JEDEC outline reference

MS-034 variation AAN-1

Maximum lead coplanarity

0.008 inches (0.20 mm)

Weight

11.5 g

Moisture sensitivity level

Printed on moisture barrier bag

Table 15–20. 896-Pin FineLine BGA Package Outline Dimensions

Symbol

Dimensions (mm)

Min.

Nom.

Max.

A

2.60

A1

0.30

A2

2.20

A3

1.80

D

31.00 BSC

E

31.00 BSC

b

0.50

0.60

0.70

e

1.00 BSC

ac/package_outlines/cyc_c52006-html.html
background image

15–20

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Package Outlines

Figure 15–8

 shows a 896-pin FineLine BGA package outline.

Figure 15–8. 896-Pin FineLine BGA Package Outline

25 23

26 24

AE

AF

AC

AD

27

29

30 28

AG

AK

AJ

AH

A3

BOTTOM VIEW

TOP VIEW

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

e

D

E

Pin A1 ID

b

e

A1

A2

Pin A1 
Corner

A

V

U

R

T

P

L

N

M

K

J

2

F

H

G

E

D

A

B

C

1

AA

AB

Y

W

3

4

5

ac/package_outlines/cyc_c52006-html.html
background image

Altera Corporation 

15–21

February 2007

Cyclone II Device Handbook, Volume 1

Package Information for Cyclone II Devices

Document 
Revision History

Table 15–21

 shows the revision history for this document.

Table 15–21. Document Revision History

Date & 

Document 

Version

Changes Made

Summary of Changes

February 2007 
v2.3

Added document revision history.

November 2005 
v2.1

Updated information throughout.

July 2005 v2.0

Updated packaging information.

November 2004 
v1.0

Added document to the Cyclone II Device Handbook.

ac/package_outlines/cyc_c52006-html.html
background image

15–22

Altera Corporation

Cyclone II Device Handbook, Volume 1

February 2007

Document Revision History