background image

A KYOCERA GROUP COMPANY

TPC
Zinc Oxide Varistors

avx-varistors-html.html
background image

TPC

1

Zinc Oxide Varistors

Contents

Page

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Ordering Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

VE / VF Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Electrical Characteristics (VE / VF types) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

VN 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

VB 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Taping Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Manufacturing Process and Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

As we are anxious that our customers should benefit from the latest developments in technology and standards,

AVX reserves the right to modify the characteristics published in this brochure.

avx-varistors-html.html
background image

2

TPC

Zinc Oxide Varistors

General

Metal Oxide Varistors are ceramic passive components
made of zinc oxide sintered together with other metal oxide
additives.

They provide an excellent protective device for limiting surge
voltages and absorbing energy pulses.

Their very good price / performance ratio enables designers
to optimize the transient protection function when designing
the circuits.

Varistors are Voltage Dependent Resistors whose 
resistance decreases drastically when voltage is increased.

When connected in parallel with the equipment to protect,
they divert the transients and avoid any further overvoltage
on the equipment.

Manufactured according to high level standards of quality
and service, our Metal Oxide Varistors are widely used as
protective devices in the telecommunications, industrial,
automotive and consumer markets.

avx-varistors-html.html
background image

TPC

3

TPC

3

Zinc Oxide Varistors

Introduction

ZINC OXIDE VARISTORS.
PROTECTION FUNCTION
APPLICATION

Definition of the varistor effect

The varistor effect is defined as being the property of any
material whose electrical resistance changes non-linearly
with the voltage applied to its terminals. 

In other words, within a given current range, the current-volt-
age relationship can be expressed by the equation:

I = KV

In which K represents a constant depending on the geome-
try of the part and the technology used and 

the non-lin-

earity factor.

The higher the value of this factor, the greater the effect. The
ideal (and theorical) case is shown in Figure1 where 

whereas a linear material has an equation of I = f(V) obeying
the well-known Ohm’s law (

= 1).

The relationship between these two extreme cases is shown
in Figure 2. It should be pointed out that the I = f(V) curve is
symmetrical with respect to zero in the case of zinc oxide
varistors.

ZINC OXIDE VARISTORS

1-Composition of the material

Zinc oxide varistors are a polycrystalline structured material
consisting of semiconducting zinc oxide crystals and a sec-
ond phase located at the boundaries of the crystals.

This second phase consists of a certain number of metallic
oxides (Bi

2

O

3

,MnO,Sb

2

O

3

, etc.). It forms the «heart»of the

varistor effect since its electrical resistivity is a non-linear
function of the applied voltage.

Thus, a zinc oxide varistor consists of a large number of
boundaries (several millions) forming a series-parallel net-
work of resistors and capacitors, appearing somewhat like a
multijunction semiconductor.

Experimentally, it is found that the voltage drop (at 1mA) at
each boundary is about 3V. The total voltage drop for the
thickness of the material is proportional to the number N of
boundaries.

V

1mA

3 N where N = —

in which L represents the average dimension of a zinc oxide
grain and t the thickness of the material.

In other words: V

1mA

3 —

Thus, with a thickness of 1 mm and average dimension of
L = 20 µ, we obtain a voltage of 150 V for a current of 1mA.

The desired voltage at 1mA can thus be obtained either by
changing the thickness of the disc or by controlling the aver-
age dimension of the zinc oxide grain through heat treatment

or, yet again, by changing the chemical composition of the
varistor.

The polycrystal is schematically represented in Figure 3. At
room temperature the semiconducting grains have very low
resistivity (a fews ohms/cm).

On the contrary, the resistivity of the second phase (or inter-
granular layer) basically depends on the value of the applied
voltage.

If the voltage value is low, the phase is insulating (region I of
the I = f(V) curve). As the voltage increases this phase
becomes conductive (region II). At very high current values
the resistivity of the grain can become preponderant and the
I = f(V) curve tends towards a linear law (region III).

The curve I = f(V) for the different types can be found in cor-
responding data sheets.

2 - Equivalent electrical circuit diagram

Figure 4 explains the behavior of a zinc oxide varistor. r rep-
resents the equivalent resistance of all semiconducting
grains and 

that of the intergranular layer (the value of which

basically varies with the applied voltage). Cp corresponds to
the equivalent capacitance of the intergranular layers.

When the applied voltage is low, the resistivity of the inter-
granular layer is quite high and the current passing through
the ceramic is low. When the voltage increases, the resis-
tance 

decreases (region II in Figure 5).

When a certain voltage value is reached, 

becomes lower

than r and the I = f(V) characteristic tends to become ohmic
(region III).

The equivalent capacitance due to the insulating layers
depends on their chemical types and geometries.

Values of a few hundred picofarads are usually found with
commonly used discs.

Capacitance value decreases with the area of the ceramic.
Consequently, this value is lower when maximum permissi-
ble energy and current values in the varistor are low, since
these latter parameters are related to the diameter of the
disc.

Capacitance values are not subject to outgoing inspection.

Current

Voltage

0

Current

Voltage

0

= 1

{

Cp 

{

Zinc oxide
grains

grains
boundaries

ρ

= f (V)

Current

>r    

>r    r>

Voltage

I

II

III

Intergranular
phase

Zinc oxide
grains

t

L

t

L

Figure 1

Figure 2

Figure 4

Figure 5

Figure 3

avx-varistors-html.html
background image

4

TPC

Zinc Oxide Varistors

Introduction

3 - Temperature influence on the I = f(V) characteristic

A typical I = f(V) curve is given in Figure 6.

Different distinct regions can be observed:

• The first one depends on the temperature and corre-

sponds to low applied voltages (corresponding currents
are in the range of the µA). Consequently, a higher leakage
current is noticeable when temperature is increasing.

• The second one shows less variation and corresponds to

the nominal varistor voltage region (Figure 7). The temper-
ature coefficient of the varistor voltage at
1 mA is:

As the temperature coefficient decreases with increasing
current density, this curve also depends on the type of the
varistor.

• For higher voltages, the temperature has no significant

influence. Practically the clamping voltages of the varistors
are not affected by a temperature change.

4 - Varistor characteristics

The choice of a varistor for a specific application should be
guided by the following major characteristics:

1) Working or operating voltage (alternating or direct).
2) Leakage current at the working voltage.
3) Max. clamping voltage for a given current.
4) Maximum current passing through the varistor.
5) Energy of the pulse to be dissipated in the varistor.
6) Average power to be dissipated.

4.1 - Max. operating voltage and leakage current

The maximum operating voltage corresponds to the “rest”
state of the varistor. This “rest” voltage offers a low leakage
current in order to limit the power consumption of the pro-
tective device and not to disturb the circuit to be protected.
The leakage currents usually have values in the range of a
few micro-amperes.

in which:  A = a constant f(

a

)

K = a constant

(I = KV

a

).

P

C

= dissipated power for a DC voltage Vp.

The A versus 

curve

For usual values of 

(30 to 40), the continuously dissipated

power is about 7 times greater than that dissipated by a
sinusoidal signal having the same peak value. For example,
a protective varistor operating at RMS voltage of 250 V has
a power dissipation of a few mW.

4.2 - Non-linearity coefficient

The peak current and voltage values basically depend on the
I = f(V) characteristic or, to be more precise, on the value of
the coefficient defined by:

In which I

1

and I

2

are the current values corresponding to

voltage values V

1

and V

2

.

The value of 

depends on the technology used (chemical

composition, heat synthesis, etc.). Nevertheless, the value is
not constant over the entire current range (several decades).
For example, Figure 9 shows the variation of this coefficient
for currents ranging from 100 nA to 100 A. It can be seen
that 

passes through a maximum value and always stays at

high values, even at high levels of current.

The non-lineary of the varistor can be expressed in another
way by the ratio of the voltages corresponding to 2 current
values.

Where:

V

1

voltage for current I

1

V

2

voltage for current I

2

The curve giving 

b

versus the value of 

is shown in

Figure10 for 2 ratios of I

1

/I

2

=10

3

and 10

6

.

P

A

= AV .lp = AKVp

+

1

P

A

with       = A

P

C

3

V/V 

K =         and has a negative value with 

K

< 9.10

-4

/°C 

3

T

A

1  10  20                50                     100

0.5 

0.1 

60

 

50

 

40

 

30

 

Log l

1

/ l

2

Log V

1

/ V

2

l

1

l

2

where

= 10

(I) A

10

-3

 

10

-6

 

10

 

10

2

 

=

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2

1.1

 

 10       20      30

V

1

V

2

l

1

l

2

l

1

l

2

=

= 10

3

= 10

6

V

= Voltage for l

1

V

= Voltage for l

2

l

> l

2

100

°

C

75

°

C

25

°

C

10

-9

 

10

-8

 

10

-7

 

10

-6

 

10

-5

 

10

-4

 

10

-3

 

A

(V)

(I)

10

 

10

2

 

10

3

 

+2

 

0

 

-2

 

- 4

 

- 25      0        25      50        75    100      125

 

 V 1 mA

V 1 mA

(%)

 

-9.10

-4 

°

C

log (I

1

/I

2

)

log (V

1

/V

2

)

=

b

=  V

1

V

2

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

avx-varistors-html.html
background image

TPC

5

Zinc Oxide Varistors

Introduction

4.3 - Clamping voltage

It is the maximum residual voltage Vp across the varistor
terminals for a through current Ip.

The voltage value gives an indication on the protective func-
tion of the varistor.

4.4 - Permissible peak current

The value of the permissible peak current depends upon the
varistor model and waveform (8 x 20 µs, 10 x 1000 µs, etc.). 

It can be seen that, as a first approximation, the permissible
peak current is proportional to the area of the varistor elec-
trodes.

By way of example, Table I gives the permissible peak cur-
rent values for different diameters and for one current surge
of waveform 8 x 20 µs.

It corresponds to a maximum permissible variation of ±10%
in the voltage measured at 1 mA dc after the surges.

Overloads greater than specified values may result in a
change in varistor voltage by more than ±10% and 
irreversible change in the electrical properties.

In case of heavy overload, surge currents beyond the spec-
ified ratings will puncture the varistor element. In extreme
cases, the varistor will burst.

The permissible peak current also depends on the number
of current surges applied to the varistor. For example, Table
II gives the permissible current values based on the number
of consecutive surges of the same magnitude applied on
varistor model VE24M00251K.

Thus, the smaller the number of surges, the higher the per-
missible current.

4.5 - Permissible energy

The notion of permissible energy relates much more to the
“active” state of the varistor than to its “rest” state where the
average power is the predominant notion.

Indeed, except in special cases, the overvoltages occur at
random and not at a high repetition frequency.

Therefore, aging of the varistor will be related to energy of
the transient defined by the current and peak voltage values
as well as the pulse shape.

Opposite, we have expressed energy W calculated for
different pulse shapes, assuming that the value of the
coefficient 

a

equals 30.

a) Voltage surge

Figure 11 - 12 - 13 - 14

b) Current surge

Figure 15 - 16 - 17 - 18

If, for example, we take a current surge as shown in Figure
19, we demonstrate that the dissipated energy is given by
the approximate expression:

W = Vp Ip (1.4 

t

2

- 0.88 

t

1

) 10

-6

in which Vp is the peak voltage value and Ip the peak current
value.

W is expressed in joules.

t

in µseconds.

Vp in volts.

Ip in amperes.

0

Vc

V

V  = Vc     Ic = KVc

W  =  Ic  Vc  

 

t

0

Vc

V

   V  = Vc 

       I  = KV

W  =  310

-2

 Ic  Vc

 

t

_

  

0

Vc

V

W  =  4.5 10

-2

 Ic Vc 

 

t

   V  = Vc  exp 

Vc/2

-t

1.4 

 

0

Vc

V

W  =  0.22  Ic  Vc  

 

t

   V  = Vc sin  

       

_

Table I

Table II

0

Ic

I

W  =  Ic  Vc  

 

t

I = Ic

0

Ic

I

   V  = Ic 

       

W  =  0.5  Ic  Vc

 

t

_

  

0

Ic

I

W  =  1.4  Ic Vc 

 

t

   I  = Ic  exp 

Ic/2

-t

1.4 

 

0

Ic

I

W  =  0.64  Ic  Vc  

 

t

   I = Ic sin  

       

_

Operating

Uncoated

I max.

Voltage

Disc

(V)

(mm)

(A)

250

5

400

250

7

1200

250

10

2500

250

14

4500

250

20

6500

Permissible

Number of Current

Current

Surges

(A)

(8 x 20 µs)

6500

1

4000

2

1000

10

2

200

10

4

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

avx-varistors-html.html
background image

6

TPC

Table III gives the energies calculated according to waveform
in Figure 19.

The following changes are found when the varistor absorbs an
energy greater than the maximum permissible value:

• Higher leakage current.
• Decrease in the voltage at 1 mA.
• Decrease in coefficient 

a

.

If the energy increases well beyond the maximum value, the
characteristics degrade to such an extent that, even at the
rated voltage, the varistor has a very low resistance value.

The permissible energy for a given varistor is mainly related 
to the size of the part. For example, Table IV gives the per-
missible energy for different varistors sizes with an operating
voltage of 250 V.

4.6 - Average dissipated power

a) Average power dissipated in the “rest” state

Considering the high values of the coefficient 

a

, a special

attention is required concerning the dissipated power value in
case of possible changes in the operating voltage.

Indeed, starting with the equation:

I = KV

a

the average power dissipated by the varistor is given by the
equation:

PC = KV

a

+1

when a direct current voltage is applied, and

P

A

= AP

C

in the case of a sinusoidal voltage having the same peak value
and direct current voltage value.

The A value as a function of 

was given in Figure 8. A small

change of the operating voltage can induce a dissipated
power variation which is all the more greater since the value of
exponent 

is high (Figure 20).

It can be seen that a 10% change in the rated voltage increases
the dissipated power by a factor of 20 when coefficient 

␣ 

equals 30, and by a factor of 150 when the coefficient

equals 50.

Table V gives the power P dissipated at values of the applied
direct current voltage when the value of 

equals 30.

b) Average power dissipated during the transient state

If the transients to which the varistor is subjected are repeated

at

a sufficiently high frequency, there will be an increase 

T in the

average temperature of the part given by the expression:

T = P/

d

in which P represents the average dissipated power which
depends on the energy of the pulse and its repetition fre-
quency and 

the dissipation factor in air of the unit.

This temperature rise should stay below the threshold indicated
by the manufacturer or it may damage the component coat-
ing resin or even cause thermal runaway of the ceramic.

Operating

Uncoated

Voltage

Disc

Energy

(V)

ø (mm)

(J)

250

5

10

250

7

21

250

10

40

250

14

72

250

20

130

Zinc Oxide Varistors

Introduction

Time

Current

Ip

Ip/2

0

1

2

10

5

10

4

= 50

= 30

= 10

10

3

10

2

10

1

1.1

1.2

1.3

V/V

0

P/P

0

Table III

V–

P

(V)

(mW)

180

0.5

220

0.2

230

0.75

Table V

Table IV

Vp

Ip

Waveform

Energy

(V)

(A)

(µs)

(J)

τ

1

τ

2

500

300

1.2

50

10

500

300

8

20

3

500

300

10

1000

210

Figure 19

Figure 20

avx-varistors-html.html
background image

TPC

7

Zinc Oxide Varistors

Introduction

5 - Response time of zinc oxide varistors

5.1 - Intrinsic response time

This response time corresponds to the conduction mecha-
nisms specific to semiconductors, therefore its value is quite
low and is less than one nanosecond.

5.2 - Practical response time

However, the response time will be modified for several
reasons:

• Parasitic capacitance of the component due to the insula-

tion of the intergranular layers.

• Overshoot phenomenon occurring when the varistor is

subjected to a voltage with a steep leading edge (Figure
21) and causing a dynamic voltage peak greater than the
static voltage by a few percent.

• Impedance of the external circuit to the varistor.

In conclusion, the practical response time of a zinc oxide
varistor usually stays below 50 nanoseconds.

6 - Varistor voltage (V

1mA

)

6.1 - Nominal varistor voltage (V

1mA

)

The nominal voltage of a varistor (or “varistor” voltage) is
defined as the voltage drop across the varistor when a dc
test current of 1 mA is applied to the component.

It is defined at a temperature of 25°C.

This parameter is used as a standard to define the varistors
but has no particular electrical or physical significance.

6.2 - Tolerance on the varistor voltage

The standard tolerance is ±10%. Other tolerances may be
defined on custom design products.

To avoid any lack of understanding, different behaviors of
Zn0 varistors should be noted when considering the mea-
surement of V 1 mA.

• The measurement time must not be too short to allow a

“break-in” stabilization of the varistor and not too long so
the measurement is not affected by warming the varistor.
The limits of V

1mA

for our products are given for a measure-

ment time comprised between 100 ms and 300 ms. For
times comprised between 30 ms and 1s, the varistor volt-
age will differ typically by less than 2%.

• The value of the peak varistor voltage measured with ac

current will be slightly higher than the dc value.

• When the varistor has been submitted to unipolar stresses

(pulses, dc life test, ...) the voltage-current characteristic
becomes asymmetrical in polarity.

Nanoseconds

Generator at 50 

 

+ zinc oxide varistor

Generator at 50 

 

Volts

0     20     40    60     80

100

80

60

40

20

Figure 21

avx-varistors-html.html
background image

8

TPC

Zinc Oxide Varistors

Applications

1 - Principle of application

Zinc oxide varistors are essentially used as protective
devices for components or items of equipment subjected to
electrical interference whether accidental or otherwise. To be
more specific, there are two types of interference: those
which can be controlled (switching of resistive or capacitive
circuits) and those which occur at random (high voltage
surges change in the power supply network, etc.)

The “protection” function is related to the non-linear 
I = f(V) characteristic of the varistor. This component is
always connected in parallel with the assembly E to be 
protected (Figure 22B).

The varistor’s “rest” state has a very high impedance (several
megohms) in relation to the component to be protected 
and does not change the characteristics or the electric
circuit.

In the presence of a transient, the varistor then has a very low
impedance (a few ohms) and short circuits the component E.

The “rest” and operating states are shown in Figure 22A 
and 22B. In case of a current surge of a peak value Ip, the
higher the non-linear coefficient 

is, the lower the voltage

across the terminals of the component E will be:

Vp = (Ip/K) 1/

a

In case of a voltage surge Vs, the varistor limits the voltage
across the terminals of component E to a value Vp via
resistor Rc which can be the impedance of the source
(Figure 23).

2 - Main applications

Varistors are widely used in the different electronic equipment:

• telecommunication and data systems

power supply units,
switching equipment,
answering sets, ...

• industrial equipment

control and alarm systems,
proximity switches,
transformers,
motors,
traffic lighting, ...

• consumer electronics

television and video sets,
washing machines,
electronic ballasts, ...

• automotive

all motor and electronic systems.

I

d-c

E

a-c

or

“Rest” state

I

p

E

Protective 
state

V

s

V

p

E

R

c

Figure 22A

Figure 22B

Figure 23

avx-varistors-html.html
background image

TPC

9

Zinc Oxide Varistors

Applications

Three typical examples of applications are shown to
illustrate the “protection” function of zinc oxide
varistors.

1 - Protection of relay contacts

It is a well-known fact that a sudden break in an inductive
circuit causes an overvoltage which can seriously damage
the contacts of relay due to arcing. Overvoltages of several
thousand volts can occur across the terminals of unprotected
relay contacts. This disadvantage can be overcome by limit-
ing the overvoltage due to opening an inductive circuit to a
level such that it cannot generate an arc. Such limitation is
achieved by wiring a zinc oxide varistor in parallel across the
terminals of the relay characterized by the value of its induc-
tance coil L and its resistor R (Figure 24).

2 - Protection of a diode rectifier bridge

Semiconductor components (silicon diodes, thyristors, etc.)
are especially sensitive to transients and must be protected
so that the overvoltage value is limited to levels which are not
dangerous.

An example of protection for a diode rectifier is schematical-
ly represented in Figure 25. The varistor is connected to the
transformer secondary at the input of rectifier bridge.

If the transformer’s magnetizing current is interrupted when
it reaches its maximum value, a voltage ten times greater
than the normal value can then appear at the terminals of the
secondary winding in the absence of a load.

This overvoltage, which is excessive for the semiconductors,
is limited by the presence of the varistor which absorbs the
energy corresponding to the change of state of the primary
circuit.

The same varistor can also protect the rectifier bridge
against overvoltages coming from the mains and reaching
the secondary circuit via the stray capacitance of the trans-
former.

Another practical case to be considered involves closing of
the primary circuit. If the circuit is closed when the primary
voltage reaches its maximum value, the secondary voltage
can be two times greater than its steady-state value.
Although this case is less dangerous than the preceding
one, it still may cause damage to the rectifying diodes.
Connection of a varistor in parallel limits this overvoltage to a
value such that it does not cause any damage to the semi-
conductors.

3 - Opening of a resistive circuit supplied with AC
current with a loadless rectifier

The diagram is given in Figure 26. When the circuit supplied
with AC current is opened, an overvoltage appears across
the rectifier terminals:

- Ldi/dt

The energy stored by the inductance coil (1/2 L I

2

rms) is

transferred to the protective varistor wired in parallel to the
inductance coil.

L

R

L

Figure 24

Figure 25

Figure 26

avx-varistors-html.html
background image

10

TPC

Maximum Operating

RMS Voltage

(V

RMS

)

Maximum Operating

Steady State Voltage

(V

DC

)

Nominal Varistor

Voltage

(V

1mA

)

Zinc Oxide Varistors

Selection Guide

0.3

0.4

2

5

11

0.8

0.9

6

11

23

25

2.0

12

24

45

68

0.4

20

40

75

130

40

85

140

230

200

550

200

550

VE 07

VF 05

VE 09

VF 07

VE 13

VF 10

VE 17

VF 14

VE 24

VF 20

VN 32

VB 32

11

14

75

150

250 300

420

625

14

18

100

200

330 385

560

825

18

22

120

240 390

470

680

1000

Voltage range and admissible energy (J) (1 surge 10 x 1000 µs)

Types

V

RMS

V

DC

V

1mA

avx-varistors-html.html
background image

TPC

11

Zinc Oxide Varistors

Ordering Code

HOW TO ORDER

VE09

M

0

0251

K

– –

Type

VE 07
VE 09
VE 13
VE 17 
VE 24
VF 05
VF 07
VF 10
VF 14
VF 20

VN 32
VB 32

Series

M: Varistors 

for general
applications

P: Varistors for

heavy duty
applications

Marking

AC nominal

voltage

VE:0

Nominal

voltage

at 1 mA dc

VF:1

Tolerance

at 1 mA

K: ±10%

(J: ±5% upon request)

Suffixes

See

on page 32

AC Operating Voltage

(EIA coding)

VE

Operating Voltage

at 1 mA dc

(EIA coding)

VF

1. Operating voltage expressed by

2 significant figures:

1st digit: 0 (zero).
2nd and 3rd digit: 

the two significant figures
of the operating voltage.

4th digit: the number of

ZEROS to be added to
the operating voltage
value.

Examples:

75 V: 0750

250 V: 0251
300 V: 0301

2. Operating voltage expressed by

3 significant figures:

1st, 2nd and 3rd digit:

the 3 significant figures of
the operating voltage.

4th digit: the number of

ZEROS to be added to
the  operating voltage
value.

Examples: 205 V: 2050

275 V: 2750

avx-varistors-html.html
background image

12

TPC

Zinc Oxide Varistors

VE 07/09/13/17/24

VF 05/07/10/14/20

FEATURES

• Radial lead varistors

• Wide operating voltage range from 11 V to 625 V (V

rms

for 

VE types) or 18 V to 1000 V (V

1mA

for VF types)

• Available in tape and reel for use with automatic insertion 

equipment (see pages 31 to 33 for details).

PARTICULAR CHARACTERISTICS

E

D

t

30 (1.18) min

H

VE Series

VF Series

Maximum

Nominal voltage

UL and CSA

P/N codification using

P/N codification  using

operating voltage

at 1 mA dc

approval

(D

max

, V

rms

)

(d

ceramic

, V

1mA

)

V

rms

V

DC

V

1mA mini

V

1mA nominal

V

1mA maxi

VE07M00110K _ _ 

VF05M10180K _ _

11

14

16.0

18

20.0

VE09M00110K _ _

VF07M10180K _ _

VE07M00140K _ _ 

VF05M10220K _ _

14

18

19.8

22

24.2

VE09M00140K _ _

VF07M10220K _ _

VE13M00140K _ _

VF10M10220K _ _

VE17M00140K _ _

VF14M10220K _ _

VE07M00170K _ _

VF05M10270K _ _

17

22

24.0

27

30.0

VE09M00170K _ _

VF07M10270K _ _

Pending

VE13M00170K _ _

VF10M10270K _ _

Pending

VE17M00170K _ _

VF14M10270K _ _

VE07M00200K _ _

VF05M10330K _ _

20

26

29.5

33

36.5

VE09M00200K _ _

VF07M10330K _ _

Pending

VE13M00200K _ _

VF10M10330K _ _

Pending

VE17M00200K _ _

VF14M10330K _ _

VE07M00250K _ _

VF05M10390K _ _

25

31

35

39

43

VE09M00250K _ _

VF07M10390K _ _

VE13M00250K _ _

VF10M10390K _ _

VE17M00250K _ _

VF14M10390K _ _

VE07M00300K _ _

VF05M10470K _ _

30

38

42

47

52

VE09M00300K _ _

VF07M10470K _ _

VE13M00300K _ _

VF10M10470K _ _

VE17M00300K _ _

VF14M10470K _ _

VE07M00350K _ _

VF05M10560K _ _

35

45

50

56

62

VE09M00350K _ _

VF07M10560K _ _

VE13M00350K _ _

VF10M10560K _ _

VE17M00350K _ _

VF14M10560K _ _

VE07M00400K _ _

VF05M10680K _ _

40

56

61

68

75

VE09M00400K _ _

VF07M10680K _ _

VE13M00400K _ _

VF10M10680K _ _

VE17M00400K _ _

VF14M10680K _ _

VE07M00500K _ _

VF05M10820K _ _

50

65

73

82

91

VE09M00500K _ _

VF07M10820K _ _

VE13M00500K _ _

VF10M10820K _ _

VE17M00500K _ _

VF14M10820K _ _

avx-varistors-html.html
background image

TPC

13

* VE13 / VF10: For models with V

RMS

320 V

other version/suffixes available with:
E = 5.08 (0.20) Suffix:
Ø = 0.6 (.024) Bulk: HB
D = 12.5 (.492) max Tape: DA, DB, DC,

DD, DQ, ...

**VE24 / VF20: For lead diameter = 1.0 (.039),

please consult us.

GENERAL CHARACTERISTICS

Storage temperature:

-40°C to +125°C

Max. operating temperature: +85°C
Response time:

< 25 ns

Voltage coefficient temp.:

K

< 0.09%/°C

Voltage proof:

2500 V

Epoxy coating:

Flame retardant
UL94-VO

MARKING

Type
AC nominal voltage (EIA coding) for VE types
V

1mA

varistor voltage (EIA coding) for VF types

Logo
UL logo (when approved)
Lot number (VE13/17/24 and VF10/14/20 only)

D

Maximum

ø

Type

Type Ceramic

coated

H

t

+10%

E

diameter diameter

max.

max. –0.05 (.002)

± 0.8

VE07

VF05

5 (.196)

7 (.275) 10 (.394)

0.6 (.024) 5.08 (0.20)

VE09

VF07

7 (.275)

9 (.354) 12 (.472)

0.6 (.024) 5.08 (0.20)

VE13* VF10* 10 (.393) 13* (.512) 16 (.630) see

0.8* (.031) 7.62*(0.30)

VE17

VF14

14 (.551) 17 (.669) 20 (.787) table 0.8 (.031) 7.62 (0.30)

VE24** VF20** 20 (.787) 24 (.945) 27 (1.06)

0.8** (.031) 7.62 (0.30)

Max. clamping

Max. energy absorption

Max. permissible

Typical

Mean

Maximum

V/I

Derating

voltage (8 x 20 µs)

(10 x 1000 µs)

peak current

capacitance

power

thickness

characteristic

curves

W (J)

(8 x 20 µs)

f = 1kHz

dissipation

t

Vp (V)        Ip (A)

Number of surges

Ip (A)

1                  10

1 surge      2 surges

pF

W

mm (inches)

Page

Page

43

1

0.4

0.2

100

50

1050

0.01

3.6 (.142)

22

24

43

2.5

0.9

0.6

250

125

1900

0.02

3.6 (.142)

22

25

43

5

2

1.3

500

250

4000

0.05

4.3 (.169)

22

26

43

10

4

2.6

1000

500

4000

0.10

4.3 (.169)

23

27

53

1

0.5

0.3

100

50

1050

0.01

3.7 (.146)

22

24

53

2.5

1.1

0.7

250

125

1900

0.02

3.7 (.146)

22

25

53

5

2.5

1.6

500

250

4000

0.05

4.3 (.169)

22

26

53

10

4.7

3.0

1000

500

6800

0.10

4.3 (.169)

23

27

65

1

0.6

0.3

100

50

750

0.01

3.9 (.154)

22

24

65

2.5

1.3

0.9

250

125

1500

0.02

3.9 (.154)

22

25

65

5

3.1

2.0

500

250

3100

0.05

4.5 (.177)

22

26

65

10

5.7

4.0

1000

500

5700

0.10

4.5 (.177)

23

27

77

1

0.7

0.4

100

50

660

0.01

3.6 (.142)

22

24

77

2.5

1.6

1.0

250

125

1250

0.02

3.6 (.142)

22

25

77

5

3.7

3

500

250

2800

0.05

4.4 (.173)

22

26

77

10

7

5

1000

500

4600

0.10

4.4 (.173)

23

27

93

1

0.9

0.4

100

50

580

0.01

3.8 (.150)

22

24

93

2.5

2.0

1

250

125

1050

0.02

3.8 (.150)

22

25

93

5

4.4

4

500

250

2150

0.05

4.4 (.173)

22

26

93

10

9.0

7

1000

500

3500

0.10

4.4 (.173)

23

27

110

1

1.1

0.4

100

50

460

0.01

3.9 (.154)

22

24

110

2.5

2.5

1

250

125

850

0.02

3.9 (.154)

22

25

110

5

5.4

4.4

500

250

1900

0.05

4.7 (.185)

22

26

110

10

10.0

8

1000

500

3100

0.10

4.7 (.185)

23

27

135

1

1.3

0.5

100

50

400

0.01

4.1 (.161)

22

24

135

2.5

3.0

1

250

125

720

0.02

4.1 (.161)

22

25

135

5

8.4

5.9

500

250

1700

0.05

4.9 (.193)

22

26

135

10

13.0

8.5

1000

500

2800

0.10

4.9 (.193)

23

27

135

5

1.8

0.6

400

200

300

0.1

3.5 (.138)

22

24

135

10

4.2

1.6

1200

600

530

0.2

3.5 (.138)

22

25

135

25

8.4

6

2500

1250

950

0.4

4.1 (.161)

22

26

135

50

15.0

11

4500

2500

1800

0.6

4.1 (.161)

23

27

Zinc Oxide Varistors

VE 07/09/13/17/24

VF 05/07/10/14/20

DIMENSIONS 

millimeters (inches)

avx-varistors-html.html
background image

14

TPC

Zinc Oxide Varistors

VE 07/09/13/17/24

VF 05/07/10/14/20

VE Series

VF Series

Maximum

Nominal voltage

UL and CSA

P/N codification using

P/N codification using

operating voltage

at 1 mA dc

approval

(D

max

, V

rms

)

(d

ceramic

, V

1mA

)

V

rms

V

DC

V

1mA mini

V

1mA nominal

V

1mA maxi

VE07M00600K _ _

VF05M10101K _ _

60

80

90

100

110

VE09M00600K _ _

VF07M10101K _ _

VE13M00600K _ _

VF10M10101K _ _

VE17M00600K _ _

VF14M10101K _ _

VE07M00750K _ _

VF05M10121K _ _

75

100

108

120

132

VE09M00750K _ _

VF07M10121K _ _

VE13M00750K _ _

VF10M10121K _ _

VE17M00750K _ _

VF14M10121K _ _

VE24M00750K _ _

VF20M10121K _ _

VE07M00950K _ _

VF05M10151K _ _

95

125

135

150

165

VE09M00950K _ _

VF07M10151K _ _

VE13M00950K _ _

VF10M10151K _ _

VE17M00950K _ _

VF14M10151K _ _

VE24M00950K _ _

VF20M10151K _ _

VE07M01150K _ _

VF05M10181K _ _

115

150

162

180

198

VE09M01150K _ _

VF07M10181K _ _

VE13M01150K _ _

VF10M10181K _ _

VE17M01150K _ _

VF14M10181K _ _

VE24M01150K _ _

VF20M10181K _ _

VE07M00131K _ _

VF05M12050K _ _

130

170

184

205

226

VE09M00131K _ _

VF07M12050K _ _

VE13M00131K _ _

VF10M12050K _ _

VE17M00131K _ _

VF14M12050K _ _

VE24M00131K _ _

VF20M12050K _ _

VE07M00141K _ _

VF05M10221K _ _

140

180

198

220

242

VE09M00141K _ _

VF07M10221K _ _

VE13M00141K _ _

VF10M10221K _ _

VE17M00141K _ _

VF14M10221K _ _

VE24M00141K _ _

VF20M10221K _ _

VE07M00151K _ _

VF05M10241K _ _

150

200

216

240

264

VE09M00151K _ _

VF07M10241K _ _

VE13M00151K _ _

VF10M10241K _ _

VE17M00151K _ _

VF14M10241K _ _

VE24M00151K _ _

VF20M10241K _ _

VE07M01750K _ _

VF05M10271K _ _ 

175

225

243

270

297

VE09M01750K _ _

VF07M10271K _ _

VE13M01750K _ _

VF10M10271K _ _

VE17M01750K _ _

VF14M10271K _ _

VE24M01750K _ _

VF20M10271K _ _

VE07M00211K _ _

VF05M10331K _ _

210

275

297

330

363

VE09M00211K _ _

VF07M10331K _ _

VE13M00211K _ _

VF10M10331K _ _

VE17M00211K _ _

VF14M10331K _ _

VE24M00211K _ _

VF20M10331K _ _

VE07M00231K _ _

VF05M10361K _ _

230

300

324

360

396

VE09M00231K _ _

VF07M10361K _ _

VE13M00231K _ _

VF10M10361K _ _

VE17M00231K _ _

VF14M10361K _ _

VE24M00231K _ _

VF20M10361K _ _

avx-varistors-html.html
background image

TPC

15

Zinc Oxide Varistors

VE 07/09/13/17/24

VF 05/07/10/14/20

Max. clamping

Max. energy absorption

Max. permissible

Typical

Mean

Maximum

V/I

Derating

voltage (8 x 20 µs)

(10 x 1000 µs)

peak current

capacitance

power

thickness

characteristic

curves

W (J)

(8 x 20 µs)

f = 1kHz

dissipation

t

Vp (V)     Ip (A)

Number of surges

Ip (A)

1           10

1 surge      2 surges

pF

W

mm (inches)

Page

Page

165

5

2.2

0.7

400

200

165

0.1

3.8 (.150)

22

24

165

10

4.8

1.7

1200

600

440

0.2

3.8 (.150)

22

25

165

25

10

7

2500

1250

870

0.4

4.5 (.177)

22

26

165

50

17

14

4500

2500

2200

0.6

4.5 (.177)

23

27

200

5

2.5

0.8

400

200

150

0.1

4.0 (.157)

22

24

200

10

5.9

1.8

1200

600

400

0.2

4.0 (.157)

22

25

200

25

12

8

2500

1250

700

0.4

4.4 (.173)

22

26

200

50

20

15

4500

2500

1900

0.6

4.4 (.173)

23

27

200

100

40

30

6500

4000

4200

0.8

4.8 (.189)

23

28

250

5

3.4

1

400

200

110

0.1

4.4 (.173)

22

24

250

10

7.6

3

1200

600

310

0.2

4.4 (.173)

22

25

250

25

15

9

2500

1250

560

0.4

5.0 (.197)

22

26

250

50

25

20

4500

2500

1200

0.6

5.0 (.197)

23

27

250

100

50

33

6500

4000

3400

0.8

5.4 (.213)

23

28

300

5

3.6

1.3

400

200

100

0.1

4.5 (.177)

22

24

300

10

8.4

3.3

1200

600

280

0.2

4.5 (.177)

22

25

300

25

18

10.6

2500

1250

500

0.4

5.1 (.201)

22

26

300

50

30

22

4500

2500

1100

0.6

5.1 (.201)

23

27

300

100

60

40

6500

4000

3000

0.8

5.5 (.217)

23

28

340

5

4.2

1.5

400

200

90

0.1

4.1 (.161)

22

24

340

10

9.5

4

1200

600

250

0.2

4.1 (.161)

22

25

340

25

19

11

2500

1250

450

0.4

4.7 (.185)

22

26

340

50

34

25

4500

2500

1000

0.6

4.7 (.185)

23

27

340

100

74

46

6500

4000

2500

0.8

5.1 (.201)

23

28

360

5

4.5

1.5

400

200

85

0.1

4.2 (.165)

22

24

360

10

10

4

1200

600

235

0.2

4.2 (.165)

22

25

360

25

22

12.5

2500

1250

425

0.4

4.8 (.189)

22

26

360

50

36

26.5

4500

2500

930

0.6

4.8 (.189)

23

27

360

100

78

50

6500

4000

2250

0.8

5.2 (.205)

23

28

400

5

4.9

1.8

400

200

80

0.1

4.3 (.169)

22

24

400

10

11

4.1

1200

600

220

0.2

4.3 (.169)

22

25

400

25

24

13

2500

1250

400

0.4

4.9 (.193)

22

26

400

50

40

30

4500

2500

850

0.6

4.9 (.193)

23

27

400

100

85

56

6500

4000

2000

0.8

5.3 (.209)

23

28

445

5

5.6

1.9

400

200

70

0.1

4.5 (.177)

22

24

445

10

13

4.5

1200

600

190

0.2

4.5 (.177)

22

25

445

25

28

13.5

2500

1250

340

0.4

5.1 (.201)

22

26

445

50

46

31

4500

2500

750

0.6

5.1 (.201)

23

27

445

100

98

56

6500

4000

2000

0.8

5.5 (.217)

23

28

545

5

7.2

2.2

400

200

60

0.1

4.9 (.193)

22

24

545

10

15

5.4

1200

600

155

0.2

4.9 (.193)

22

25

545

25

31

14.0

2500

1250

275

0.4

5.5 (.217)

22

26

545

50

54

35

4500

2500

600

0.6

5.5 (.217)

23

27

545

100

115

70

6500

4000

1650

0.8

5.9 (.232)

23

28

595

5

7.2

2.4

400

200

55

0.1

5.1 (.201)

22

24

595

10

17

6

1200

600

140

0.2

5.1 (.201)

22

25

595

25

36

14.3

2500

1250

250

0.4

5.7 (.224)

22

26

595

50

60

38

4500

2500

550

0.6

5.7 (.224)

23

27

595

100

130

75

6500

4000

1500

0.8

6.1 (.240)

23

28

avx-varistors-html.html
background image

16

TPC

Zinc Oxide Varistors

VE 07/09/13/17/24

VF 05/07/10/14/20

VE Series

VF Series

Maximum

Nominal voltage

UL and CSA

P/N codification using

P/N codification using

operating voltage

at 1 mA dc

approval

(D

max

, V

rms

)

(d

ceramic

, V

1mA

)

V

rms

V

DC

V

1mA mini

V

1mA nominal

V

1mA maxi

VE07M00251K _ _

VF05M10391K _ _

250

320

351

390

429

VE09M00251K _ _

VF07M10391K _ _

VE13M00251K _ _

VF10M10391K _ _

VE17M00251K _ _

VF14M10391K _ _

VE24M00251K _ _

VF20M10391K _ _

VE07M02750K _ _

VF05M10431K _ _

275

350

387

430

473

VE09M02750K _ _

VF07M10431K _ _

VE13M02750K _ _

VF10M10431K _ _

VE17M02750K _ _

VF14M10431K _ _

VE24M02750K _ _

VF20M10431K _ _

VE07M00301K _ _

VF05M10471K _ _

300

385

423

470

517

VE09M00301K _ _

VF07M10471K _ _

VE13M00301K _ _

VF10M10471K _ _

VE17M00301K _ _

VF14M10471K _ _

VE24M00301K _ _

VF20M10471K _ _

VE09M00321K _ _

VF07M10511K _ _

320

420

459

510

561

VE13M00321K _ _

VF10M10511K _ _

VE17M00321K _ _

VF14M10511K _ _

VE24M00321K _ _

VF20M10511K _ _

VE09M00351K _ _

VF07M10561K _ _

350

460

504

560

616

VE13M00351K _ _

VF10M10561K _ _

VE17M00351K _ _

VF14M10561K _ _

VE24M00351K _ _

VF20M10561K _ _

VE09M03850K _ _

VF07M10621K _ _

385

505

558

620

682

VE13M03850K _ _

VF10M10621K _ _

VE17M03850K _ _

VF14M10621K _ _

VE24M03850K _ _

VF20M10621K _ _

VE09M00421K _ _

VF07M10681K _ _

420

560

612

680

748

VE13M00421K _ _

VF10M10681K _ _

VE17M00421K _ _

VF14M10681K _ _

VE24M00421K _ _

VF20M10681K _ _

VE13M00441K _ _

VF10M17150K _ _

440

585

643

715

787

VE17M00441K _ _

VF14M17150K _ _

VE24M00441K _ _

VF20M17150K _ _

VE13M00461K _ _ 

VF10M10751K _ _

460

615

675

750

825

VE17M00461K _ _ 

VF14M10751K _ _

VE24M00461K _ _

VF20M10751K _ _

VE13M00511K _ _

VF10M10821K _ _

510

670

738

820

902

VE17M00511K _ _ 

VF14M10821K _ _

VE24M00511K _ _

VF20M10821K _ _

VE13M00551K _ _

VF10M10861K _ _

550

715

774

860

946

VE17M00551K _ _

VF14M10861K _ _

VE24M00551K _ _

VF20M10861K _ _

VE13M05750K _ _

VF10M10911K _ _

575

730

819

910

1001

VE17M05750K _ _

VF14M10911K _ _

VE24M05750K _ _

VF20M10911K _ _

VE13M06250K _ _

VF10M10102K _ _

625

825

900

1000

1100

VE17M06250K _ _

VF14M10102K _ _

VE24M06250K _ _

VF20M10102K _ _

avx-varistors-html.html
background image

TPC

17

Zinc Oxide Varistors

VE 07/09/13/17/24

VF 05/07/10/14/20

Max. clamping

Max. energy absorption

Max. permissible

Typical

Mean

Maximum

V/I

Derating

voltage (8 x 20 µs)

(10 x 1000 µs)

peak current

capacitance

power

thickness

characteristic

curves

W (J)

(8 x 20 µs)

f = 1kHz

dissipation

t

Vp (V)         Ip (A)

Number of surges

Ip (A)

1               10

1 surge     2 surges

pF

W

mm (inches)

Page

Page

645

5

8.2

2.8

400

200

50

0.1

5.4 (.213)

22

24

645

10

19

7.3

1200

600

130

0.2

5.4 (.213)

22

25

645

25

38

19

2500

1250

230

0.4

5.9 (.232)

22

26

645

50

65

39

4500

2500

500

0.6

5.9 (.232)

23

27

645

100

140

100

6500

4000

1300

0.8

6.3 (.248)

23

28

710

5

8.6

3

400

200

45

0.1

5.7 (.224)

22

24

710

10

21

7.4

1200

600

120

0.2

5.7 (.224)

22

25

710

25

43

20

2500

1250

210

0.4

6.3 (.248)

22

26

710

50

71

40

4500

2500

450

0.6

6.3 (.248)

23

27

710

100

151

105

6500

4000

1200

0.8

6.7 (.264)

23

28

775

5

9

3.3

400

200

40

0.1

6.0 (.236)

22

24

775

10

25

7.5

1200

600

100

0.2

6.0 (.236)

22

25

775

25

45

20

2500

1250

180

0.4

6.6 (.260)

22

26

775

50

80

42

4500

2500

400

0.6

6.6 (.260)

23

27

775

100

150

107

6500

4000

1000

0.8

7.0 (.276)

23

28

840

10

25

7.5

1200

600

100

0.2

6.4 (.252)

22

25

840

25

45

20

2500

1250

170

0.4

7.0 (.276)

22

26

840

50

82

42

4500

2500

380

0.6

7.0 (.276)

23

27

840

100

150

107

6500

4000

950

0.8

7.5 (.276)

23

28

910

10

25

7.5

1200

600

95

0.2

6.6 (.260)

22

25

910

25

45

20

2500

1250

160

0.4

7.3 (.287)

22

26

910

50

85

42

4500

2500

365

0.6

7.3 (.287)

23

27

910

100

155

107

6500

4000

900

0.8

7.8 (.307)

23

28

1025

10

25

7.5

1200

600

95

0.2

7.0 (.276)

22

25

1025 25

45

20

2500

1250

150

0.4

7.7 

(.303)

22

26

1025

50

88

42

4500

2500

350

0.6

7.7 (.303)

23

27

1025

100

155

107

6500

4000

850

0.8

8.1 (.319)

23

28

1120

10

25

7.5

1200

600

80

0.2

7.4 (.291)

22

25

1120

25

45

20

2500

1250

120

0.4

8.2 (.323)

22

26

1120

50

90

42

4500

2500

300

0.6

8.2 (.323)

23

27

1120

100

160

107

6500

4000

700

0.8

8.6 (.339)

23

28

1180

25

45

20

2500

1250

115

0.4

8.4 (.331)

22

26

1180

50

95

44

4500

2500

275

0.6

8.4 (.331)

23

27

1180

100

165

115

6500

4000

650

0.8

8.8 (.346)

23

28

1240 25

45

20

2500

1250

110

0.4

8.5 

(.335)

22

26

1240

50

100

47

4500

2500

250

0.6

8.5 (.335)

23

27

1240

100

175

120

6500

4000

600

0.8

9.0 (.354)

23

28

1350

25

55

22

2500

1250

100

0.4

9.0 (.354)

22

26

1350

50

110

57

4500

2500

220

0.6

9.0 (.354)

23

27

1350

100

190

150

6500

4000

550

0.8

9.4 (.370)

23

28

1420

25

57

24

2500

1250

90

0.4

9.3 (.366)

22

26

1420

50

113

57

4500

2500

200

0.6

9.3 (.366)

23

27

1420

100

200

150

6500

4000

500

0.8

9.7 (.382)

23

28

1500

25

60

25

2500

1250

80

0.4

9.7 (.382)

22

26

1500

50

120

60

4500

2500

180

0.6

9.7 (.382)

23

27

1500

100

210

160

6500

4000

450

0.8

10.1 (.398)

23

28

1650

25

68

25

2500

1250

74

0.4

10.5 (.413)

22

26

1650

50

130

60

4500

2500

165

0.6

10.5 (.413)

23

27

1650

100

230

160

6500

4000

410

0.8

11.0 (.433)

23

28

avx-varistors-html.html
background image

18

TPC

FEATURES

• “P Series” are especially dedicated to heavy duty applica-

tions encountered in the AC power network. Higher surge
current and energy ratings provide an improved protection
and a better reliability

• Radial lead varistors

• Operating voltage range from 130 V to 625 V (V

rms

for 

VE types) or 205 V to 1000 V (V

1mA

for VF types)

• Available in tape and reel for use with automatic insertion 

equipment (see pages 31 to 33 for details).

PARTICULAR CHARACTERISTICS

E

D

t

30 (1.18) min

H

VE Series

VF Series

Maximum

Nominal voltage

P/N codification using

P/N codification  using

operating voltage

at 1 mA dc

(D

max

, V

rms

)

(d

ceramic

, V

1mA

)

V

rms

V

DC

V

1mA mini

V

1mA nominal

V

1mA maxi

VE07P00131K _ _ 

VF05P12050K _ _

130

170

184

205

226

VE09P00131K _ _

VF07P12050K _ _

VE13P00131K _ _

VF10P12050K _ _

VE17P00131K _ _

VF14P12050K _ _

VE24P00131K _ _

VF20P12050K _ _

VE07P00141K _ _

VF05P10221K _ _

140

180

198

220

242

VE09P00141K _ _

VF07P10221K _ _

VE13P00141K _ _

VF10P10221K _ _

VE17P00141K _ _

VF14P10221K _ _

VE24P00141K _ _

VF20P10221K _ _

VE07P00151K _ _

VF05P10241K _ _

VE09P00151K _ _

VF07P10241K _ _

150

200

216

240

264

VE13P00151K _ _

VF10P10241K _ _

VE17P00151K _ _

VF14P10241K _ _

VE24P00151K _ _

VF20P10241K _ _

VE07P01750K _ _

VF05P10271K _ _

175

225

243

270

297

VE09P01750K _ _

VF07P10271K _ _

VE13P01750K _ _

VF10P10271K _ _

VE17P01750K _ _

VF14P10271K _ _

VE24P01750K _ _

VF20P10271K _ _

VE07P00211K _ _

VF05P10331K _ _

210

275

297

330

363

VE09P00211K _ _

VF07P10331K _ _

VE13P00211K _ _

VF10P10331K _ _

VE17P00211K _ _

VF14P10331K _ _

VE24P00211K _ _

VF20P10331K _ _

VE07P00231K _ _

VF05P10361K _ _

230

300

324

360

396

VE09P00231K _ _

VF07P10361K _ _

VE13P00231K _ _

VF10P10361K _ _

VE17P00231K _ _

VF14P10361K _ _

VE24P00231K _ _

VF20P10361K _ _

Zinc Oxide Varistors

VE/VF Types for Heavy Duty Applications (“P Series”)

avx-varistors-html.html
background image

TPC

19

* VE13 / VF10: For models with V

RMS

320 V

other version/suffixes available with:
E = 5.08 (0.20) Suffix:
Ø = 0.6 (.024) Bulk: HB
D = 12.5 (.492) max Tape: DA, DB, DC,

DD, DQ, ...

**VE24 / VF20: For lead diameter = 1.0 (.039),

please consult us.

GENERAL CHARACTERISTICS

Storage temperature:

-40°C to +125°C

Max. operating temperature: +85°C
Response time:

< 25 ns

Voltage coefficient temp.:

K

< 0.09%/°C

Voltage proof:

2500 V

Epoxy coating:

Flame retardant
UL94-VO

MARKING

Type
AC nominal voltage (EIA coding) for VE types
V

1mA

varistor voltage (EIA coding) for VF types

Logo
UL logo (when approved)
Lot number (VE13/17/24 and VF10/14/20 only)

D

Maximum

ø

Type

Type Ceramic

coated

H

t

+10%

E

diameter diameter

max.

max. –0.05 (.002)

± 0.8

VE07

VF05

5 (.196)

7 (.275) 10 (.394)

0.6 (.024) 5.08 (0.20)

VE09

VF07

7 (.275)

9 (.354) 12 (.472)

0.6 (.024) 5.08 (0.20)

VE13* VF10* 10 (.393) 13* (.512) 16 (.630) see

0.8* (.031) 7.62*(0.30)

VE17

VF14

14 (.551) 17 (.669) 20 (.787) table 0.8 (.031) 7.62 (0.30)

VE24** VF20** 20 (.787) 24 (.945) 27 (1.06)

0.8** (.031) 7.62 (0.30)

Max. clamping

Max. energy absorption

Max. permissible

Typical

Mean

Maximum

V/I

Derating

voltage (8 x 20 µs)

(10 x 1000 µs)

peak current

capacitance

power

thickness

characteristic

curves

W (J)

(8 x 20 µs)

f = 1kHz

dissipation

t

Vp (V)        Ip (A)

Number of surges

Ip (A)

1 surge

1 surge      2 surges

pF

W

mm (inches)

Page

Page

340

5

8.5

800

600

90

0.1

4.1 (.161)

34

24

340

10

17.5

1750

1250

250

0.2

4.1 (.161)

34

25

340

25

35

3500

2500

450

0.4

4.7 (.185)

34

26

340

50

70

6000

4500

1000

0.6

4.7 (.185)

35

27

340

100

140

10000

7000

2500

0.8

5.1 (.201)

35

28

360

5

9

800

600

85

0.1

4.2 (.165)

34

24

360

10

19

1750

1250

235

0.2

4.2 (.165)

34

25

360

25

39

3500

2500

425

0.4

4.8 (.189)

34

26

360

50

78

6000

4500`

930

0.6

4.8 (.189)

35

27

360

100

155

10000

7000

2250

0.8

5.2 (.205)

35

28

400

5

10.5

800

600

80

0.1

4.3 (.169)

34

24

400

10

21

1750

1250

220

0.2

4.3 (.169)

34

25

400

25

42

3500

2500

400

0.4

4.9 (.193)

34

26

400

50

85

6000

4500

850

0.6

4.9 (.193)

35

27

400

100

170

10000

7000

2000

0.8

5.3 (.209) 

35

28

445

5

11

800

600

70

0.1

4.5 (.177)

34

24

445

10

24

1750

1250

190

0.2

4.5 (.177)

34

25

445

25

50

3500

2500

340

0.4

5.1 (.201)

34

26

445

50

100

6000

4500

750

0.6

5.1 (.201)

35

27

445

100

190

10000

7000

2000

0.8

5.5 (.217)

35

28

545

5

13

800

600

60

0.1

4.9 (.193)

34

24

545

10

28

1750

1250

155

0.2

4.9 (.193)

34

25

545

25

60

3500

2500

275

0.4

5.5 (.217)

34

26

545

50

115

6000

4500

600

0.6

5.5 (.217)

35

27

545

100

230

10000

7000

1650

0.8

5.9 (.232)

35

28

595

5

16

800

600

55

0.1

5.1 (.201)

34

24

595

10

32

1750

1250

140

0.2

5.1 (.201)

34

25

595

25

65

3500

2500

250

0.4

5.7 (.224)

34

26

595

50

130

6000

4500

550

0.6

5.7 (.224)

35

27

595

100

250

10000

7000

1500

0.8

6.1 (.240)

35

28

DIMENSIONS 

millimeters (inches)

Zinc Oxide Varistors

VE/VF Types for Heavy Duty Applications (“P Series”)

avx-varistors-html.html
background image

20

TPC

VE Series

VF Series

Maximum

Nominal voltage

P/N codification using

P/N codification  using

operating voltage

at 1 mA dc

(D

max

, V

rms

)

(d

ceramic

, V

1mA

)

V

rms

V

DC

V

1mA mini

V

1mA nominal

V

1mA maxi

VE07P00251K _ _ 

VF05P10391K _ _

250

320

351

390

429

VE09P00251K _ _

VF07P10391K _ _

VE13P00251K _ _

VF10P10391K _ _

VE17P00251K _ _

VF14P10391K _ _

VE24P00251K _ _

VF20P10391K _ _

VE07P02750K _ _

VF05P10431K _ _

275

350

387

430

473

VE09P02750K _ _

VF07P10431K _ _

VE13P02750K _ _

VF10P10431K _ _

VE17P02750K _ _

VF14P10431K _ _

VE24P02750K _ _

VF20P10431K _ _

VE07P00301K _ _

VF05P10471K _ _

300

385

423

470

517

VE09P00301K _ _

VF07P10471K _ _

VE13P00301K _ _

VF10P10471K _ _

VE17P00301K _ _

VF14P10471K _ _

VE24P00301K _ _

VF20P10471K _ _

VE09P00321K _ _

VF07P10511K _ _

320

420

459

510

561

VE13P00321K _ _

VF10P10511K _ _

VE17P00321K _ _

VF14P10511K _ _

VE24P00321K _ _

VF20P10511K _ _

VE09P00351K _ _

VF07P10561K _ _

350

460

504

560

616

VE13P00351K _ _

VF10P10561K _ _

VE17P00351K _ _

VF14P10561K _ _

VE24P00351K _ _

VF20P10561K _ _

VE09P03850K _ _

VF07P10621K _ _

385

505

558

620

682

VE13P03850K _ _

VF10P10621K _ _

VE17P03850K _ _

VF14P10621K _ _

VE24P03850K _ _

VF20P10621K _ _

VE09P00421K _ _

VF07P10681K _ _

420

560

612

680

748

VE13P00421K _ _

VF10P10681K _ _

VE17P00421K _ _

VF14P10681K _ _

VE24P00421K _ _

VF20P10681K _ _

VE13P00441K _ _

VF10P17150K _ _

440

585

643

715

787

VE17P00441K _ _

VF14P17150K _ _

VE24P00441K _ _

VF20P17150K _ _

VE13P00461K _ _

VF10P10751K _ _

460

615

675

750

825

VE17P00461K _ _

VF14P10751K _ _

VE24P00461K _ _

VF20P10751K _ _

VE13P00511K _ _

VF10P10821K _ _

510

670

738

820

902

VE17P00511K _ _

VF14P10821K _ _

VE24P00511K _ _

VF20P10821K _ _

VE13P00551K _ _

VF10P10861K _ _

550

715

774

860

946

VE17P00551K _ _

VF14P10861K _ _

VE24P00551K _ _

VF20P10861K _ _

VE13P05750K _ _

VF10P10911K _ _

575

730

819

910

1001

VE17P05750K _ _

VF14P10911K _ _

VE24P05750K _ _

VF20P10911K _ _

VE13P06250K _ _

VF10P10102K _ _

625

825

900

1000

1100

VE17P06250K _ _

VF14P10102K _ _

VE24P06250K _ _

VF20P10102K _ _

Zinc Oxide Varistors

VE/VF Types for Heavy Duty Applications (“P Series”)

avx-varistors-html.html
background image

TPC

21

Max. clamping

Max. energy absorption

Max. permissible

Typical

Mean

Maximum

V/I

Derating

voltage (8 x 20 µs)

(10 x 1000 µs)

peak current

capacitance

power

thickness

characteristic

curves

W (J)

(8 x 20 µs)

f = 1kHz

dissipation

t

Vp (V)        Ip (A)

Number of surges

Ip (A)

1 surge

1 surge      2 surges

pF

W

mm (inches)

Page

Page

645

5

17

800

600

50

0.1

5.4 (.213)

34

24

645

10

35

1750

1250

130

0.2

5.4 (.213)

34

25

645

25

70

3500

2500

230

0.4

5.9 (.232)

34

26

645

50

140

6000

4500

500

0.6

5.9 (.232)

35

27

645

100

280

10000

7000

1300

0.8

6.3 (.248)

35

28

710

5

20

800

600

45

0.1

5.7 (.224)

34

24

710

10

40

1750

1250

120

0.2

5.7 (.224)

34

25

710

25

80

3500

2500

210

0.4

6.3 (.248)

34

26

710

50

160

6000

4500

450

0.6

6.3 (.248)

35

27

710

100

310

10000

7000

1200

0.8

6.7 (.264)

35

28

775

5

21

800

600

40

0.1

6.0 (.236)

34

24

775

10

42

1750

1250

100

0.2

6.0 (.236)

34

25

775

25

85

3500

2500

180

0.4

6.6 (.260)

34

26

775

50

170

6000

4500

400

0.6

6.6 (.260)

35

27

775

100

340

10000

7000

1000

0.8

7.0 (.276) 

35

28

840

10

45

1750

1250

100

0.2

6.4 (.252)

34

25

840

25

90

3500

2500

170

0.4

7.0 (.276)

34

26

840

50

180

5000

4000

380

0.6

7.0 (.276)

35

27

840

100

360

8000

6000

950

0.8

7.5 (.295)

35

28

910

10

47

1750

1250

95

0.2

6.6 (.260)

34

25

910

25

95

3500

2500

160

0.4

7.3 (.287)

34

26

910

50

190

5000

4000

365

0.6

7.3 (.287)

35

27

910

100

380

8000

6000

900

0.8

7.8 (.307)

35

28

1025

10

50

1750

1250

95

0.2

7.0 (.276)

34

25

1025

25

100

3500

2500

150

0.4

7.7 (.303)

34

26

1025

50

200

5000

4000

350

0.6

7.7 (.303)

35

27

1025

100

400

8000

6000

850

0.8

8.1 (.319)

35

28

1120

10

52

1750

1250

80

0.2

7.4 (.291)

34

25

1120

25

105

3500

2500

120

0.4

8.2 (.323)

34

26

1120

50

210

5000

4000

300

0.6

8.2 (.323)

35

27

1120

100

420

8000

6000

700

0.8

8.6 (.339)

35

28

1180

25

105

3500

2500

115

0.4

8.4 (.331)

34

26

1180

50

210

5000

4000

275

0.6

8.4 (.331)

35

27

1180

100

420

8000

6000

650

0.8

8.8 (.346)

35

28

1240

25

105

3500

2500

110

0.4

8.5 (.335)

34

26

1240

50

210

5000

4000

250

0.6

8.5 (.335)

35

27

1240

100

420

8000

6000

600

0.8

9.0 (.354)

35

28

1350

25

110

3500

2500

100

0.4

9.0 (.354)

34

26

1350

50

225

5000

4000

220

0.6

9.0 (.354)

35

27

1350

100

450

7500

6000

550

0.8

9.4 (.370)

35

28

1420

25

120

3500

2500

90

0.4

9.3 (.366)

34

26

1420

50

240

5000

4000

200

0.6

9.3 (.366)

35

27

1420

100

480

7500

6000

500

0.8

9.7 (.382)

35

28

1500

25

125

3500

2500

80

0.4

9.7 (.382)

34

26

1500

50

250

5000

4000

180

0.6

9.7 (.382)

35

27

1500

100

500

7500

6000

450

0.8

10.1 (.398)

35

28

1650

25

140

3500

2500

74

0.4

10.5 (.413)

34

26

1650

50

230

5000

4000

165

0.6

10.5 (.413)

35

27

1650

100

560

7500

6000

410

0.8

11.0 (.433)

35

28

Zinc Oxide Varistors

VE/VF Types for Heavy Duty Applications (“P Series”)

avx-varistors-html.html
background image

22

TPC

Zinc Oxide Varistors

Electrical Characteristics VE / VF Types

14

U(V)

I(A)

10

3

8

6

4

2

8

6

10

2

10

10

-5

10

-4

10

-3

10

-2

10

-1

10

10

2

10

3

1

VE 09/VF 07

385

275

230

150

130

60

40

30

20

17

25

35

50

75

115

160

175

210

250

300

420

385

275

230

150

130

95

60

50
40

30

20

17

25

35

75

115

130

175

210

250

300

420

95

14

U(V)

I(A)

10

3

8

6

4

2

8

6

10

2

10

-5

10

-4

10

-3

10

-2

10

-1

10

10

2

10

3

1

10

 

VE 07/VF 05

275

300

275

300

250

210

250

175

240

115

75

50

35

15

17

14

14

230

150

210

230

160

130

95

20 

30 

60 

175

140

115

75

50

40

35 

25 

17 

130

95

95

60

40

30

20

10

U(V)

I(A)

10

3

8

6

4

2

8

6

10

2

10

-5

10

-4

10

-3

10

-2

10

-1

10

10

2

10

3

1

VE 13/VF 10

510

420

300

250

210

175

140

115

175

50

35

25

17

20

30

40

60

95

130

150

230

275

385

550

510

420

300

250

210

175

140

115

130

150

230

275

385

460

550

625

575

75

50

35

25

17

20

30

60

95

14

14

575

625

VOLTAGE-CURRENT CHARACTERISTICS

I/V characteristics give:
- for I below 1 mA the maximum leakage current under V

dc

- for I above 1 mA the maximum clamping voltage

avx-varistors-html.html
background image

TPC

23

Zinc Oxide Varistors

Electrical Characteristics VE / VF Types

VE17M/VF14M

U(V)

10

3

10

2

10

8

6

4

2

8
6

4

2

575

625

550

510

460

420

385

320

300

275

280

230

175

150

140

130

115

95

75

80

50

40

36

30

25

20

14

17

575

625

550

510

460

420

385

320

300

275

250

230

175

150

140

130

115

95

75

60

50

40

35

30

25

20

17

14

10

-5        

10

-4

    10

-3

    10

-2

     10

-1

     1        10      10

2

    10

3

      I(A)   

 

VE24M/VF20M

10

-5        

10

-4

    10

-3

    10

-2

     10

-1

     1        10      10

2

    10

3

   I(A)   

             

U(V)

10

3

10

2

10

8

6

4

2

8
6

4

2

625

550

510

46                                                                                                                                         0

420

385

320

300

275

280

230

175

150

140

130

115

95

75

625

550

510

460

420

385

320

300

275

250

230

175

150

140

130

115

95

75

VOLTAGE-CURRENT CHARACTERISTICS

avx-varistors-html.html
background image

24

TPC

Zinc Oxide Varistors

Electrical Characteristics VE / VF Types

Ip

(A)

400

200

100

80

60

40

20

10

8
6

4

2

1

0.8

0.6

0.4

0.2

0.1

20                            200                         2.000

 (

µ

S)

VE07M/VF05M 

 

40V

RMS

300

1

2

10

 10

2

10

3

10

4

10

5

10

6

Ip

(A)

20                           200                       2.000

 (

µ

S)

VE07P/VF05P 

 

130V

RMS

2

10

3

10

4

10

5

1000

10000

10000

100

10

1

10

6

10

1

 10

2

Ip

(A)

400

200

100

80

60

40

20

10

8
6

4

2

1

0.8

0.6

0.4

0.2

0.1

20                            200                         2.000

(

µ

S)

VE07M/VF05M 

>

 

40V

RMS

300

1

2

10

 10

2

10

3

10

4

10

5

10

6

MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH (

) AND FREQUENCY

avx-varistors-html.html
background image

TPC

25

Zinc Oxide Varistors

Electrical Characteristics VE / VF Types

Ip

(A)

20                           200                       2.000

 (

µ

S)

VE09M/VF07M 

 

40V

RMS

1

2

 10

2

10

3

10

4

10

10

5

10

6

800
600
400

300

200

100

80
60

40

20

10

8
6

4

2

1

0.8

0.6

0.4

0.2

0.1

Ip

(A)

20                           200                       2.000

 (

µ

S)

VE09P/VF07P 

 

130V

RMS

2

10

4

10

5

1000

10000

100

10

1

10

6

10

1

 10

2

10

3

20                           200                       2.000

 (

µ

S)

VE09M/VF07M 

40V

RMS

1

2

 10

2

10

10

5

10

6

Ip

(A)

10

3

10

4

2.000

1.000

800
600

400

200

100

80

60

40

20

10

8

6

4

2

1

0.8
0.6

0.4

0.2

MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH (

) AND FREQUENCY

avx-varistors-html.html
background image

26

TPC

Zinc Oxide Varistors

Electrical Characteristics VE / VF Types

Ip

(A)

20                           200                       2.000

 (

µ

S)

VE13M/VF10M 

 

40V

RMS

1

 10

2

10

3

10

4

10

10

5

10

6

2

500

400

300
200

100

80

60

40

20

10

8
6

4

2

1

0.8
0.6

0.4

0.2

0.1

0.08

0.06

Ip

(A)

20                           200                       2.000

 (

µ

S)

VE13P/VF10P 

 

130V

RMS

2

10

4

10

5

1000

10000

10000

100

10

1

10

6

10

1

 10

2

10

3

20                           200                       2.000

 (

µ

S)

VE13M/VF10M

>

40V

RMS

2

 10

2

10

10

5

10

6

Ip

(A)

10

3

10

4

1

3.000

2.000

1.000

800

600

400

200

100

80

60

40

20

10

8
6

4

2

1

0.8

0.6

0.4

MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH (

) AND FREQUENCY

avx-varistors-html.html
background image

TPC

27

Zinc Oxide Varistors

Electrical Characteristics VE / VF Types

1.000

Ip

(A)

800
600

400

200

100

80

60

40

20

10

8
6

4

2

1

0.8

0.6

0.4

0.2

0.1

20                            200                         2.000

 (

µ

S)

VE17M/VF14M 

 

40V

RMS

1

2

10

 10

2

10

3

10

4

10

5

10

6

Ip

(A)

20                           200                       2.000

 (

µ

S)

VE17P/VF14P 

 

130V

RMS

Ⲑ艋

 

130V

RMS

10

4

10

5

1000

10000

10000

100

10

1

10

6

10

1

 10

2

10

3

2

Ip

(A)

20                            200                         2.000

 (

µ

S)

VE17M/VF14M 

40 V

RMS

5.000

4.000
3.000

2.000

1.000

800
600

400

200

100

80

60

40

20

10

8
6

4

2

1

0.8

0.6

1

2

10

 10

2

10

3

10

4

10

5

10

6

MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH (

) AND FREQUENCY

avx-varistors-html.html
background image

28

TPC

Zinc Oxide Varistors

Electrical Characteristics VE / VF Types

VE24M/VF20M 

>

 

75 V

RMS

Ip

(A)

20                            200                         2.000

 (

µ

S)

7.000

6.000

5.000

4.000

3.000

2.000

1.000

800

600

400

200

100

80

60

40

20

10

8
6

4

2

1

0.8

1

2

10

 10

2

10

3

10

4

10

5

10

6

Ip

(A)

20                           200                       2.000

 (

µ

S)

VE24P/VF20P 

 

130V

RMS

Ⲑ艋

 

130V

RMS

10

4

10

5

1000

10000

10000

100

10

1

10

6

10

1

 10

2

10

3

2

MAXIMUM SURGE CURRENT (Ip)
DERATING CURVES WITH PULSE WIDTH (

) AND FREQUENCY

avx-varistors-html.html
background image

TPC

29

Zinc Oxide Varistors

VN 32 Uncoated Discs

t

d
D

5750
0511
0461
0421
0381
0321
2750
0251

U (v)

10,000

2

4

5

1,000

2

100

10

-5

10

-4

10

-3

10

-2

10

-1

1

I (A)

10

100

1,000

10,000

4

5

8

Max. operating

Nominal voltage

Clamping voltage

Energy

Max. peak current

voltage

at 1 mA DC

Vp(V)

1 surge

with insulating coating

Type

(10 x 1000 µs)

(8 x 20 µs)

V

RMS

V

DC

V

R

W

lp (kA)

(V)         (V)

(V)

at 2.5 kA

at 2.5 kA

(J)

1 pulse

2 pulses

VN32M00251K- -

250

330

390

970

1100

200

25

15

VN32M02750K- -

275

369

430

1075

1230

260

25

15

VN32M00321K- -

320

420

510

1200

1380

300

25

15

VN32M00381K- -

380

500

610

1350

1550

350

25

15

VN32M00421K- -

420

560

680

1500

1700

400

25

15

VN32M00461K- -

460

615

750

1650

1900

450

25

15

VN32M00511K- -

510

675

820

1800

2070

500

25

15

VN32M00750K- -

575

730

910

2000

2300

550

25

15

GENERAL CHARACTERISTICS

Max. operating temperature: +85°C
Storage temperature: -40°C to +125°C
Ceramic discs with silver layer on each face

MARKING

On packaging only

REMARK

Discs of 14 mm and 20 mm available upon request

PARTICULAR CHARACTERISTICS

VOLTAGE-CURRENT CHARACTERISTICS

VN32

Type

M

Material

0461

RMS

Operating Voltage

K

Tolerance

– –

Suffix

HOW TO ORDER

Type

D

d

t

±1.5

±1

max.

VN32M00251K- -

32 (1.26)

28 (1.10)

2.8  (.110)

VN32M02750K- -

32 (1.26)

28 (1.10)

3.1  (.122)

VN32M00321K- -

32 (1.26)

28 (1.10)

3.7  (.146)

VN32M00381K- -

32 (1.26)

28 (1.10)

4.4  (.173)

VN32M00421K- -

32 (1.26)

28 (1.10)

4.9 (.193)

VN32M00461K- -

32 (1.26)

28 (1.10)

5.5 (.217)

VN32M00511K- -

32 (1.26)

28 (1.10)

6.0 (.236)

VN32M00750K- -

32 (1.26)

28 (1.10)

6.6 (.260)

0

DIMENSIONS: 

millimeters (inches)

avx-varistors-html.html
background image

30

TPC

Zinc Oxide Varistors

VB 32 Blocks

20 (.787)

~

40 (1.57)

o

5.1 (.201)

20 (.787)

44 (1.73)

15...45

°

54 (2.13)

44 (1.73)

24 (.945)

5 (.197)

5 (.197)

Max. operating

Nominal voltage

Clamping voltage

Energy

Max. peak current

voltage

at 1 mA DC

at 2.5 kA

1 surge

with insulating coating

Type

(10 x 1000 µs)

(8 x 20 µs)

V

RMS

V

DC

V

R

Vp

W

lp (kA)

(V)         (V)

(V)

(V)

(J)

1 pulse

2 pulses

VB32M00251K- -

250

330

390

970

200

25

15

VB32M02750K- -

275

369

430

1075

260

25

15

VB32M00321K- -

320

420

510

1200

300

25

15

VB32M00381K- -

380

500

610

1350

350

25

15

VB32M00421K- -

420

560

680

1500

400

25

15

VB32M00461K- -

460

615

750

1650

450

25

15

VB32M00511K- -

510

675

820

1800

500

25

15

VB32M00750K- -

575

730

910

2000

550

25

15

GENERAL CHARACTERISTICS

Max. operating temperature: +85°C
Storage temperature: -40°C to +85°C

MOUNTING

Ø 5 mm holes for screwing
500 mm long, 6 mm

2

insulated copper cables

PACKAGING

Bulk or three units per box (one for each phase)

MARKING

Type
AC nominal voltage (EIA code)
Logo

PARTICULAR CHARACTERISTICS

VOLTAGE-CURRENT CHARACTERISTICS

DIMENSIONS 

millimeters (inches)

VB32

Type

M

Material

0421

RMS

Operating Voltage

K

Tolerance

– –

Suffix

HOW TO ORDER

0

5750
0511
0461
0421
0381
0321
2750
0251

U (v)

10,000

2

4

5

1,000

2

100

10

-5

10

-4

10

-3

10

-2

10

-1

1

I (A)

10

100

1,000

10,000

4

5

8

avx-varistors-html.html
background image

TPC

31

Zinc Oxide Varistors

Taping Characteristics

TAPING OF OUR VARISTORS IS MADE ACCORDING TO IEC 286-2

h

h

H

1

H

1

H

P

1

P

0

P

d

W

E

t

A

B

W

2

W

1

H

0

E

I

2

D

0

p

p

W

0

A - B

Cross section

Direction of unreeling

Marking on
this side 

Adhesive
tape

Reference plane

h

h

H

1

P

0

P

1

P

d

W

A

B

W

2

W

1

H

0

E

I

2

D

0

W

0

Reference plane

H

1

H

E

t

A - B

Cross section

Direction of unreeling

p

p

Marking on
this side 

Adhesive
tape

Types: VE07/09 - VF05/07

Types: VE13/17 - VF10/14

Dimension Characteristics

Value

Tolerance

Sprocket holes pitch

12.7 (0.50)

±0.3

P

0

Distance between the sprocket

3.8 (.150)

±0.7

P

1

hole axe and the lead axe

Total thickness of tape

0.9 (.035) max

t

Verticality of components

0

±2

p

Alignment of components

0

±2

h

Dimension Characteristics

Value

Tolerance

Leading tape width

18

(.709)

+1/-0.5

W

The hold down tape shall

Adhesive tape width

not protrude beyond the

W

0

carrier tape

Sprocket hole position

9

(.354)

+0.75/-0.5 W

1

Distance between the tops of

3

(.118) max

W

2

the tape and the adhesive

Diameter of sprocket hole

4

(.157)

±0.2

D

0

Distance between the tape axis
and the bottom plane of

16/

(.630)/

±0.5/

H

component body

or 18 (.709)

-0/+2

Distance between the tape axis

16/

(.630)/

±0.5/

H

0

and the kink

or 18 (.709)

-0/+2

Distance between the tape axis
and the top of component body
VE 07/09 - VF 05/07

33.0 (1.30) max

H

1

VE 13/17 - VF 10/14

45.0 (1.77) max

Lead diameter

0.6

0.8

+10%

d

(.024)

(.031)

-0.05

Protrusions beyond the lower

5 (.197) max

I

2

side of the hold down tape

Lead spacing

5.08

7.62

±0.8

E

(0.20)

(0.30)

Components pitch

12.7

25.4

±0.3

p

(0.50)

(0.10)

DIMENSIONS: 

millimeters (inches)

DIMENSIONS: 

millimeters (inches)

avx-varistors-html.html
background image

32

TPC

Zinc Oxide Varistors

Taping Characteristics

PACKAGING

For automatic insertion, the following types can be ordered
on tape either in AMMOPACK (fan folder) or on REEL in
accordance to IEC 286-2.

LEADS CONFIGURATION AND
PACKAGING SUFFIXES

The tables below indicate the suffixes to be specified when
ordering kink and packaging types. For devices on tape, it is
necessary to specify the height (H or Ho) which is the
distance between the tape axis (sprocket holes) and the
sitting plane on the printed circuit board.

MISSING COMPONENTS

A maximum of 3 consecutive components may be missing
from the bandolier, surrounded by at least 6 filled positions.
The number of missing components may not exceed 0.5%
of the total per packing module.

– Straight leads

H

represents the distance between the sprocket holes axis

and the bottom plane of component body (base of resin or
base of stand off).

– Kinked leads

Ho

represents the distance between the sprocket holes axis

and the base of the knee.

295 (11.6)

335 (13.2)

50 (1.97)

360 (14.2)

31 (1.22)

52 (2.05)

Types

VE 07/09 - VF 05/07 (VE13 - VF10  320 V

rms

upon request)

Leads

Straight

Kinked (type 1)

Kinked (type 2)

Packaging

AMMOPACK

REEL

AMMOPACK

REEL

AMMOPACK

REEL

H/Ho = 16 ± 0.5

DA(*)

DB(*)

DQ(**)

DR(**)

D7(**)

D5(**)

H/Ho = 18 -0/+2

DC(**)

DD(**)

DS

DT

D8

D6

0.6 (.024)

5.08 (0.2)

0.6 (.024)

5.08 (0.2)

0.6 (.024)

5.08 (0.2)

Types

VE 13/17 - VF 10/14

Leads

Straight

Kinked (type 1)

Kinked (type 2)

Packaging

AMMOPACK

REEL

AMMOPACK

REEL

AMMOPACK

REEL

H/Ho = 16 ± 0.5

EA(*)

EN(*)

EC(**)

EF(**)

EQ(**)

ER(**)

H/Ho = 18 -0/+2

EB(**)

ED(**)

EG

EH

ES

ET

0.8 (.031)

7.62 (0.3)

0.8 (.031)

7.62 (0.3)

0.8 (.031)

7.62 (0.3)

(*) DA, DB, EA, EN suffixes are not available for varistors with V

RMS

300V and available only upon request for other types.

(**) Preferred versions according to IEC 286-2

Dimensions

Dimensions

AMMOPACK

millimeters (inches)

REEL

millimeters (inches)

avx-varistors-html.html
background image

TPC

33

Zinc Oxide Varistors

Packaging

Type

Bulk

AMMOPACK

REEL

VE07 - VF05 all

1500

1500

1500

VE09 - VF07

<   230 V

1000

1500

1500

VE09 - VF07

230 V V

RMS

300 V

1000

1000

1000

VE09 - VF07

>   300 V

RMS

750

1000

1000

VE13 - VF10

230 V

RMS

500

750

750

VE13 - VF10

230 V

RMS

500

500

500

VE13 - VF10

300 V

RMS

500

300 V

RMS

VE17 - VF14

230 V

RMS

500

750

750

VE17 - VF14

230 V

RMS

500

500

500

300 V

RMS

500

VE17 - VF14

300 V

RMS

VE24 - VF20

250

>   300 VRMS

{

>

>

{

>

>

IDENTIFICATION - TRACEABILITY

On the packaging of all shipped varistors, you will find a bar code label.

This label gives systematic information on the type of product, part number, lot number,
manufacturing date and quantity.

An example is given below:

This information allows complete traceability of the entire manufacturing process,
from raw materials to final inspection.

This is extremely useful for any information request.

Lot number

Manufacturing date (YYMMDD)

Quantity per packaging

Part number

PACKAGING QUANTITIES

avx-varistors-html.html
background image

34

TPC

Zinc Oxide Varistors

Quality

QUALITY SYSTEM

A high level of performance, quality and service has been
achieved in setting up a quality system based on the ISO
9000 standard.

The system includes:

• A quality manual ensuring the proper organization

• Incoming inspection

• Manufacturing process control and final inspection as

described on page 35

• Reliability tests according to IEC 68 and CECC 42000

standards as described on page 36

• Continuous improvement programs

APPROVALS

The quality of our products and organization has been recognized by the following approvals:

ISO 9002

Certificate of approval n° 928373

CECC, EN100114-1

Certificate of approval of manufacturer n° 004-96

CECC 42201-005

Qualification approval certificate N° 96-024
All VE/VF types

VDE

Certificate of approval n° 94763E
All VE/VF types with V

RMS

from 25V to 575V

Underwriters Laboratories, Inc./Canadian Standards Association

• UL 1449 Transient Voltage Surge Suppressors

File E 84108 (S)

• UL 1414 - Across the line components

File 184 051

All types VE/VF with V

RMS

from 130V to 275V

List GAM T1

Types VB1 (VE09) to VB4 (VE24)

List LNZ 44004

Types EPV-7A (VE09) to EPV-20A (VE24)

avx-varistors-html.html
background image

TPC

35

Zinc Oxide Varistors

Manufacturing Process and Quality Assurance

Raw material incoming

Weight: every batch

Grinding

Grinding time: every batch

Mixing

Density and viscosity: 1 time per batch

Spray drying

Temperature, pressure, particle size: every batch

Mixing

Weight, mixing time, moist: every batch

Electrical test

Every batch by sampling - Voltage/current characteristics
degradation, physical characteristics

Pressing

Weight, thickness, visual inspection: every batch

by sampling

Binder burn out

Thermal cycle: every batch

Stacking

Visual inspection 100%

Sintering

Thermal cycle: every batch

Electrical test

Every batch by sampling: physical characteristics, capacitance,

V1mA, leakage current, clamping voltage, degradation

Silvering

Visual inspection: every batch 100%

Silver firing

Thermal cycle: every batch

Soldering

Temperature, visual inspection: every batch 100%.
Every batch by sampling: spacing between leads

Cleaning

Thermal cycle: every batch

Coating

Thermal cycle, visual inspection: every batch by sampling

Marking

Visual inspection: every batch 100%

Polymerization

Thermal cycle: every batch

Cutting leads

Visual inspection lead length: every batch by sampling

Final control

Electrical: every batch 100%: V1mA; leakage current:
sampling. Visual: every batch 100%, aspect, marking

Quality control

Every batch by sampling. AQL: V1mA, leakage current
clamping voltage, visual inspection, dimensions, solderability

Packaging

Bulk: every batch pieces quantity. On tape: batch by
sampling, visual inspection of taping

Packaging Quality Control

Every batch, taping dimensions, missing parts, taping
defects, label check

Shipping consignment

Outgoing shipping - Verification

Every batch, every shipment, packaging, documentation

avx-varistors-html.html
background image

Zinc Oxide Varistors

Reliability

36

TPC

PRODUCT QUALITY ASSURANCE

TPC has a Quality System that complies with the ISO &
CECC quality requirements.

All products are tested and released by the quality depart-
ment based on the compliance to established customer
specifications. Critical raw materials are inspected for dimen-
sional, electrical and physical properties prior to releasing to
the production floor.

Routine checks are carried out at crucial processes. The 
finished products are submitted to Quality Control for inspec-
tion on electrical, dimensional, physical & visual conformance
to relevant specifications, based on established AQLs.

The average outgoing quality level is < 10ppm on TPC 
varistors. The low ppm value is applicable for total function-
al failures, i.e. short circuit and open circuit.

TPC varistors are subjected to reliability tests stated in page
00 (per CECC 42000).

Life test is conducted to determine the life time of varistors.
The test conditions used are stated in page 00. The varistors
are subjected to these conditions for a minimum period of
1000 hours.

Failure in time (FIT) is computed for all tested parts based on
Arrhenius equation. The definition of failure is a shift in the
nominal voltage exceeding ± 10%. The FIT calculation is
computed in units of 10

-8

/h.

Figures below give the FIT for low and high voltage varistors.
The FIT values at various stresses are extrapolated based 
on Arrhenius equation.

RELIABILITY

1.0 V

RMS

0.9 V

RMS

0.8 V

RMS

0.7 V

RMS

100,000

10,000

1,000

100

10

1

40

60

80

Temperature (

°

C)

FIT (Failure in Time)

100

120

1.0 V

RMS

0.9 V

RMS

0.8 V

RMS

0.7 V

RMS

1,000,000

100,000

10,000

1,000

100

10

1

40

20

60

80

Temperature (

°

C)

FIT (Failure in Time)

100

120

FIT OF VARISTORS (Vrms > 40 V)

FIT OF VARISTORS (Vrms </= 40 V)

avx-varistors-html.html
background image

TPC

37

Zinc Oxide Varistors

Reliability

Test Description

Test Condition

Test Requirement

SURGE CURRENT DERATING

CECC 42000, Test C 2.1

• I Delta V/V (1 mA) I max 10%

8/20 MICRO SECONDS

100 surge currents (8/20 µs), unipolar,

Measured in the direction of the

interval 30 s, amplitude corresponding

surge current

to derating curve for 20 µs.

• No visible damage

SURGE CURRENT DERATING

CECC 42000, Test C 2.1

• I Delta V/V (1 mA) I max 10%

10/1000 MICRO SECONDS

100 surge currents (10/1000 µs), unipolar,

Measured in the direction of the

interval 120 s, amplitude corresponding

surge current

to derating curve for 1000 µs.

• No visible damage

RESISTANCE TO SOLDERING

IEC 68-2-20, Test Tb Method 1A

• I Delta V/V (1 mA) I max 5%

HEAT

260°C, 5 s

RAPID CHANGE IN

IEC 68-2-14, Test Na

• I Delta V/V (1 mA) I max 5%

TEMPERATURE

Ta = -40°C; Tb = +85°C

Duration: 1 H

min/cycle

• No visible damage

Total: 5 cycles

SHOCK

IEC 68-2-27, Test Ea

• I Delta V/V (1 mA) I max 5%

Pulse shape: half sine

Acceleration: 490 m/s/s

• No visible damage

Pulse duration: 11 ms

3 x 6 shocks

VIBRATION

IEC 68-2-6, Test Fc Method B4

• I Delta V/V (1 mA) I max 5%

Freq. range: 10 Hz ... 55 Hz

Amplitude: 0.75 mm or 98 m/s/s

• No visible damage

Duration: 6 h (3 x 2 h)

CLIMATIC SEQUENCE

CECC 42000, Test 4.16

• I Delta V/V (1 mA) I max 10%

a) Dry heat - Test Ba

Temperature / Duration: 125°C / 2 h

• Insulation Resistance min 1 Mohm

b) Damp heat cyclic 1st cycle - Test Db

Temperature / Duration: 55°C / 24 h

Humidity: 95-100% RH

c) Cold - Test Aa

Temperature / Duration: -40°C / 2 h

d) Damp heat cyclic test remaining

5 humidity cycles - Test Db

Duration: 24 h/cycle

LIFE TEST

CECC 42000, Test 4.20

• I Delta V/V (1 mA) I max 10%

Applied voltage: max continuous a.c.

Voltage, continuous application

• Insulation Resistance min 10 Mohm

Temperature / Duration: 85°C / 1000 h

DAMP HEAT, STEADY STATE

IEC 68-2-3

• I Delta V/V (1 mA) I max 10%

Temperature / Duration: 40°C / 56 days

Humidity: 93%

• Insulation Resistance min 1 Mohm

FLAMMABILITY -

IEC 695-2-2

• Burning max 10 s

NEEDLE FLAME TEST

Vertical application: 10 s

TEMPERATURE COEFFICIENT

Current: 1 mA

• - (0.09%/K) max

OF VOLTAGE

Temperature: -40°C / +25°C / +85°C

avx-varistors-html.html
background image

S-ZOV10M698-N

Contact:

USA

AVX Myrtle Beach, SC

Corporate Offices

Tel: 843-448-9411

FAX: 843-448-1943

AVX Northwest, WA

Tel: 360-669-8746

FAX: 360-699-8751

AVX North Central, IN

Tel: 317-848-7153

FAX: 317-844-9314

AVX Northeast, MA

Tel: 508-485-8114

FAX: 508-485-8471

AVX Mid-Pacific, CA

Tel: 408-436-5400

FAX: 408-437-1500

AVX Southwest, AZ

Tel: 602-539-1496

FAX: 602-539-1501

AVX South Central, TX

Tel: 972-669-1223

FAX: 972-669-2090

AVX Southeast, NC

Tel: 919-878-6357

FAX: 919-878-6462

AVX Canada

Tel: 905-564-8959

FAX: 905-564-9728

EUROPE

AVX Limited, England

European Headquarters

Tel: ++44 (0)1252 770000

FAX: ++44 (0)1252 770001

AVX S.A., France

Tel: ++33 (1) 69.18.46.00

FAX: ++33 (1) 69.28.73.87

AVX GmbH, Germany - AVX

Tel: ++49 (0) 8131 9004-0

FAX: ++49 (0) 8131 9004-44

AVX GmbH, Germany - Elco

Tel: ++49 (0) 2741 2990

FAX: ++49 (0) 2741 299133

AVX srl, Italy

Tel: ++39 (0)2 665 00116
FAX: ++39 (0)2 614 2576

AVX sro, Czech Republic

Tel: ++420 (0)467 558340

FAX: ++420 (0)467 2844

ASIA-PACIFIC

AVX/Kyocera, Singapore

Asia-Pacific Headquarters

Tel: (65) 258-2833

FAX: (65) 350-4880

AVX/Kyocera, Hong Kong

Tel: (852) 2-363-3303

FAX: (852) 2-765-8185

AVX/Kyocera, Korea

Tel: (82) 2-785-6504

FAX: (82) 2-784-5411

AVX/Kyocera, Taiwan

Tel: (886) 2-2516-7010

FAX: (886) 2-2506-9774

AVX/Kyocera, China

Tel: (86) 21-6249-0314-16

FAX: (86) 21-6249-0313

AVX/Kyocera, Malaysia

Tel: (60) 4-228-1190

FAX: (60) 4-228-1196

Elco, Japan

Tel: 045-943-2906

FAX: 045-943-2910

Kyocera, Japan

Tel: (81) 75-593-4518

FAX: (81) 75-502-2705

A KYOCERA GROUP COMPANY

http://www.avxcorp.com