background image

Top View

Z-1 Foil Ultra High Precision Wrap-around Chip Resistor for 

Improved Load Life Stability of 0.0025% (25 ppm) with TCR of 

± 0.05 ppm/°C and withstands ESD of 25 KV min 

FRSM Series of Precision Chip Resistors

Vishay Foil Resistors

 

Document Number: 63209

For any questions, contact: 

foil@vishaypg.com

www.vishayfoilresistors.com

Revision: 8-Nov-12

1

INTRODUCTION

The FRSM is based on the new generation Z1- technology of 
the Bulk Metal® Precision Foil resistor elements by Vishay 
Precision Group (VPG), which makes these resistors 
virtually insensitive to destabilizing factors. Their element, 
based on the new Z-1 Foil is a solid alloy that displays the 
desirable bulk properties of its parent material; thus, it is 
inherently stable (remarkably improved load life stability of 
25 ppm), noise-free and withstands ESD to 25KV or more. 
The alloy is matched to the substrate and forms a single 
entity with balanced temperature characteristics for an 
unusually low and predictable TCR over a wide range from 
-55 C° to more than 175C°. Resistance patterns are 
photo-etched to permit trimming of resistance values to very 
tight tolerances.

Our application engineering department is available to 
advise and make recommendations. For non-standard 
technical requirements and special applications, please 
contact us using the e-mail address in the footer below.

FIGURE 1 - POWER DERATING CURVE

100

75

50

25

0

 

- 75

- 50

- 25

0

+ 25

+ 50

+ 75 + 100 + 125 + 150 + 175

Ambient Temperature (°C) 

Rated Power (%)

+ 70 °C

- 55 °C

Lead (Pb)-free terminals

Tin/lead alloy terminals

FEATURES

Temperature coefficient of resistance (TCR):

0.05 ppm/°C typical (0 °C to + 60 °C)

0.2 ppm/°C typical (- 55 °C to + 125 °C, + 25 °C ref.)

Resistance tolerance: to ± 0.01 %

Power coefficient “

R due to self heating”:

5 ppm at rated power

Power rating: to 750 mW at + 70 °C

Load life stability: 

± 0.0025 % at 70 °C, 2000 h at rated power.

± 0.005 % at 70 °C, 10,000 h at rated power.

Resistance Range: 5



 to 125 k



(for higher and lower 

values, please contact us)

Vishay Foil resistors are not restricted to standard values; 

we can supply specific “as required” values at no extra cost 

or delivery (e.g. 1K2345 vs. 1K)

Thermal stabilization time < 1 s (nominal value achieved 

within 10 ppm of steady state value) 

Electrostatic discharge (ESD) at least to 25kV

Short time overload: 0.005 %

Rise time: 1 ns effectively no ringing

Current noise: 0.010 µV

RMS

/V of applied voltage

(< - 40 dB) 

Voltage coefficient: 0.1 ppm/V

Non inductive: 0.08 µH

Non hot spot design

Terminal finishes available: lead (Pb)-free, tin/lead alloy

(1)

Matched sets are available on request

Prototype quantities available in just 5 working days 

or sooner. For more information, please contact 

foil@vishaypg.com

For higher temperature application up to +240 °C and for 

better performances, please contact us

TABLE 1 - TOLERANCE AND TCR VS. 

RESISTANCE VALUE 

(1)

(- 55 °C to + 125 °C, + 25 °C Ref.)

RESISTANCE 

VALUE

(

)

TOLERANCE 

(%)

TYPICAL TCR AND 

MAX. SPREAD

(ppm/°C)

250

to 125K

± 0.01

± 0.2 ± 1.8

100

to < 250

± 0.02

± 0.2 ± 1.8

50

to < 100

± 0.05

± 0.2 ± 2.8

25

to < 50

± 0.1

± 0.2 ± 3.8

10

to < 25

± 0.25

± 0.2 ± 3.8

5

to < 10

± 0.5

± 0.2 ± 7.8

(1)

 Pb containing terminations are not RoHS compliant, exemptions may apply

.

frsm-html.html
background image

FRSM Series of Precision Chip Resistors

Vishay Foil Resistors

 

www.vishayfoilresistors.com

For any questions, contact: 

foil@vishaypg.com

Document Number: 63209

2

Revision: 8-Nov-12

ABOUT THE FRSM

Several factors need to be considered when choosing a resistor for 
applications that require long term stability, including TCR (ambient 
temperature), Power TCR (self heating), load-life stability for more 
than 10K hours (instead of the typical 1000 or 2000 hours load-life),

 

 

end-of-life tolerance (which is more important than the initial 
tolerance), thermal EMF (low values, D.C), thermal stabilization and 
ESD. Some precision resistor technologies such as Precision Thin 
Film offer designers tight initial tolerances as low as 0.02 % but have 
poor load life stability, high end-of-life tolerance, long thermal 
stabilization, high drifts during operational life and ESD sensitivity. 
Other resistor technologies, such as Wirewounds, provide low 
absolute TCR and excellent current noise of -40 dB but have high 
inductance and poor rise time (or thermal lag) for more than a few 
seconds.

 

 

There are essentially only three resistance technologies widely used 
for precision resistors in military and space applications:

 

 Thin Film, 

Wirewound and Bulk Metal® Foil.

  

 Each has its own balance of 

characteristics and costs that justify its selection in these 
applications.

 

 Thin Films are most cost-efficient within their normal 

range of characteristics but have the highest TCR, highest noise and 
have the least stability of the three technologies.

 

 Wirewounds have 

low noise, low TCR and a high level of stability at moderate cost but 
also have high impedance and slow signal response.

 

 Wirewounds 

can also have a higher power density, but some stability is lost 
through temperature cycling and load-life when made in smaller 
configurations. Bulk Metal® Foil resistors have the lowest noise, 
lowest TCR, highest stability and highest speed of any technology 
but may have a higher cost, depending upon model. With Bulk 
Metal® Foil resistors, savvy designers often save overall by 
concentrating the circuit stability in the foil resistors where 
exceptional stability allows for use of less-costly active devices---an 
option not available with other resistor technologies because foil 
requires a smaller total error budget through all cumulative resistor 
life exposures.

 

 Also, foil often eliminates extra circuitry added 

merely for the purpose of correcting the limitations of other resistor 
components. FRSM’s Bulk Metal® Foil resistors, based on new 
generation technology and improved production methods starting 
from February 2011, offer designers the complete set of top 
performance characteristics to simplify circuitry and lower overall 
system costs by reducing the number of required parts while 
assuring a better end product. The new series of FRSM feature a 
long-term load-life stability within 0.0025 % after 2000 hours and 
0.005% after 10000 hours under full rated power at + 70 °C, first time 
in the history of all resistor technologies. In addition to their low 
absolute TCR of almost zero TCR , the devices offer Power TCR 
(“

R due to self heating”) to ±5 ppm at rated power; tight tolerance 

from 0.01% and thermal EMF of 0.05 µV/°C. Current design practice 
has been to over specify resistors to allow for expected tolerance 
degradation during service and there is a trend to move to 
commercial off the shelf (COTS) parts instead of MIL spec Qualified 
(QPL) parts.

 

 Vishay Precision Group offers a new approach with 

lower prices to bring Foil resistors within the reach of designers 
whose end-of-life tolerance target is 0.05 % (total end of life 
cumulative deviation from nominal) or less with COTS resistors 
having all the inherent features for long term reliability.

While other resistor technologies can take several seconds or even 
minutes to achieve a steady state thermal stabilization (thermal lag), 
Vishay Foil resistors feature an almost instantaneous thermal 
stabilization time and a nearly immeasurable 1 ns rise time 
effectively with no ringing. The stress levels of each application are 
different so the designer must make an estimation of what they might 
be and assign a stress factor to each one.

 

 The stress may normally 

be low but for these purposes, we must assure that the installed 
precision resistor is capable of reliability withstanding all potential 
stresses.

 

 For example, if the resistor is installed in a piece of 

equipment that is expected to go out into an oil field in the back of a 
pickup truck, shock and vibration and heat from the sun are obvious 
factors.

 

 The specific causes of resistor drift are listed in Table 4 and 

the allowances shown are for full scale exposure. The designer may 
choose to use a percentage of full scale stress factor if the 
equipment will never see the full scale conditions.

 

 For example, a 

laboratory instrument that is expected to be permanently installed in 
an air-conditioned laboratory does not need an end-of-life allowance 
for excessive heat. There are other reasons for tolerancing the 
resistors tighter than the initial calculation:

 

 Measurement equipment 

accuracy is traditionally ten times better than the expected accuracy 
of the devices under test. So, these tighter tolerance applications 
require a Foil resistor.

 

 Also, the drift of the resistor without any 

stress factor considerations results in a shift over time that must be 
considered. FRSMs have the least amount of time shift.

 

 The 

manufacturer’s recommended recalibration cycle is a factor in the 
saleability of the product and the longer the cycle, the more 
acceptable the product.

 

 Foil resistors contribute significantly to the 

longer calibration cycle.

  

FIGURE 2 - TRIMMING TO VALUES*

(Conceptual Illustration)

Mutual Inductance
Reduction due
to Change in
Current Direction

Current Path

Before Trimming

Note:

 Foil shown in black, etched spaces in white

Interloop Capacitance
Reduction in Series

Trimming Process

Removes this Material

from Shorting Strip Area

Changing Current Path

and Increasing

Resistance

Current Path

After Trimming

* To acquire a precision resistance value, the Bulk Metal® Foil chip 
is trimmed by selectively removing built-in “shorting bars.” To 
increase the resistance in known increments, marked areas are cut, 
producing progressively smaller increases in resistance. This 
method eliminates “hot spot” and improves the long term stability of 
the resistor.

frsm-html.html
background image

FIGURE 3 - TYPICAL RESISTANCE/ 

TEMPERATURE CURVE

(2)

Δ

R

R

(ppm)

  +250

+200
+150
+100

+50

0

-50

-100
-150
-200
-250

+250
+200
+150
+100
+50
0

-50

-100
-150
-200
-250 

-55

0.05 ppm/ºC

- 0.1 ppm/ºC

- 0.16 ppm/ºC

0.2 ppm/ºC

0.14 ppm/ºC

0.1 ppm/ºC

-25

0

+25

+65

+75

+100 +125

TABLE 3 - SPECIFICATIONS

(1)

CHIP

SIZE

RATED 

POWER 

(mW)

at + 70 °C

MAX. 

WORKING 

VOLTAGE 

(



P R

)

RESISTANCE 

RANGE

(

)

MAXIMUM 

WEIGHT

(mg)

0402

(3)

 

50

5 V

100 to 500

2

0603

100

22 V

100 to 4K*

4

0805

200

40 V

5

to 8K

6

1206

300

87 V

5

to 25K

11

1506

300

95 V

5

to 30K

12

2010

500

187 V

5

to 70K

27

2512

750

220 V

5

to 125K

40

FRSM Series of Precision Chip Resistors

Vishay Foil Resistors

 

Document Number: 63209

For any questions, contact: 

foil@vishaypg.com

www.vishayfoilresistors.com

Revision: 8-Nov-12

3

* For 0603 values between 4K and 5K, please contact us

TABLE 2 - DIMENSIONS 

in Inches (Millimeters)

Top View

D

T

W

L

CHIP

SIZE

L

± 0.005 (0.13)

W

± 0.005 (0.13)

THICKNESS

MAXIMUM

D

± 0.005 (0.13)

0603

0.063 (1.60)

0.032 (0.81)

0.025 (0.64)

0.011 (0.28)

0805

0.080 (2.03)

0.050 (1.27)

0.025 (0.64)

0.015 (0.38)

1206

0.126 (3.20)

0.062 (1.57)

0.025 (0.64)

0.020 (0.51)

1506

0.150 (3.81)

0.062 (1.57)

0.025 (0.64)

0.020 (0.51)

2010

0.198 (5.03)

0.097 (2.46)

0.025 (0.64)

0.025 (0.64)

2512

0.249 (6.32)

0.127 (3.23)

0.025 (0.64)

0.032 (0.81)

Notes

(1)

For tighter performances and non-standard values up to 150K, please contact VPG application engineering using the e-mail addresses in the 

footer below.

(2)

The TCR values for < 100 

 are influenced by the termination composition and result in deviation from this curve.

TABLE 4 - PERFORMANCES

TEST OR CONDITIONS

R LIMITS OF 

PRECISION THIN FILM

TYPICAL

R LIMITS OF FRSM 

SERIES

MAXIMUM

R LIMITS OF FRSM 

SERIES

(3)

Thermal Shock, 100 x (- 65 °C to + 150 °C) 

(see Figure 6)

± 0.1 %

± 0.005% (50 ppm)

± 0.01% (100 ppm)

Low Temperature Operation, - 65 °C, 45 min at P

nom

± 0.1 %

± 0.0025% (25 ppm)

± 0.005% (50 ppm)

Short Time Overload, 6.25 x Rated Power, 5 s

± 0.1 %

± 0.005% (50 ppm)

± 0.01% (100 ppm)

High Temperature Exposure, + 150 °C, 100 h

± 0.1 %

± 0.0025% (25 ppm)

± 0.005% (50 ppm)

Resistance to Soldering Heat, +245°C for 5 sec,+235°C 

for 30 sec

± 0.1 %

± 0.005 % (50 ppm)

± 0.01% (100 ppm)

Moisture Resistance

± 0.1 %

± 0.003% (30 ppm)

± 0.01% (100 ppm)

Load Life Stability + 70 °C for 2000 h at Rated Power 

(see Figure 8)

± 0.1 %

0.0025% (25 ppm)

± 0.005% (50ppm)

Load Life Stability + 70 °C for 10,000 h at Rated Power

± 0.5 %

 0.005% (50 ppm) 

± 0.015% (150ppm)

Note

(3)

As shown + 0.01 

 to allow for measurement errors at low values.

frsm-html.html
background image

FIGURE 4 - RECOMMENDED MOUNTING

Notes

(1)

IR and vapor phase reflow are recommended.

(2)

 Avoid the use of cleaning agents which could attack epoxy resins, which form part 

of the resistor construction

(3)

 Vacuum pick up is recommended for handling

(4)

If the use of a soldering iron becomes necessary, precautionary measures should 

be taken to avoid any possible damage / overheating of the resistor

*  Recommendation: The solder fillet profile should be such as to avoid running over 

the top metallization

*

FRSM Series of Precision Chip Resistors

Vishay Foil Resistors

 

www.vishayfoilresistors.com

For any questions, contact: 

foil@vishaypg.com

Document Number: 63209

4

Revision: 8-Nov-12

PULSE TEST

TEST DESCRIPTION

All parts baked at +125°C for 1 hr and allowed to cool at room 
temperature for 1 hr, prior to testing. By using an electrolytic 0.01µF 
capacitor charged to 1000 VDC, a single pulse was performed on 20 
units of 1206, for each value: 100

, 1K

 and 10K

 of Surface 

Mount Vishay Foil resistor and Thin Film resistor. The unit was 
allowed time to cool down, after which the resistance measurement 
was taken and displayed in ppm deviation from the initial reading. 

TEST RESULTS

FIGURE 5 - PULSE TEST DESCRIPTION

"*

!!!

#$

!!+-

TABLE 5 - PULSE TEST RESULTS

VALUE

VOLTAGE

T= RC

AVERAGE DEVIATION 

(%)

VISHAY 

FOIL 

RESISTOR

THIN 
FILM

100R

1000VDC

1µsec

<0.001

Open

1K

10 µsec

>35

10K

100 µsec

>0.008

FIGURE 6 - THERMAL SHOCK TEST

-20 

20 

40 

60 

80 

100 

R (ppm) 

  

Test per MIL PRF 55342 4.8.3 Mil STD 202, Method 107

Test Conditions: 100 X (-65°C to +150°C), n=10

1206

25K 

0805

1K

0805

8K 

1206

1K 

2512

1K 

2512

75K 

ELECTROSTATIC DISCHARGE (ESD)

ESD can be categorized into three types of damages

Parametric Failure

 - occurs when the ESD event alters one or more 

device parameters (resistance in the case of resistors), causing it to 
shift from its required tolerance. This failure does not directly pertain 
to functionality; thus a parametric failure may be present while the 
device is still functional.

Catastrophic Damage

 - occurs when the ESD event causes the 

device to immediately stop functioning. This may occur after one or 
a number of ESD events with diverse causes, such as human body 
discharge or the mere presence of an electrostatic field. 

Latent Damage

 - occurs when the ESD event causes moderate 

damage to the device, which is not noticeable, as the device appears 
to be functioning correctly. However, the load life of the device has 
been dramatically reduced, and further degradation caused by 
operating stresses may cause the device to fail during service. 
Latent damage is the source for greatest concern, since it is very 
difficult to detect by re-measurement or by visual inspection, since 
damage may have occurred under the external coating.

frsm-html.html
background image

FRSM Series of Precision Chip Resistors

Vishay Foil Resistors

 

Document Number: 63209

For any questions, contact: 

foil@vishaypg.com

www.vishayfoilresistors.com

Revision: 8-Nov-12

5

TEST DESCRIPTION

 

By using a electrolytic 500 pF capacitor charged up to 4500 V, 
pulses were performed on 10 units of 1206, 10K

 of three different 

Surface Mount Chip Resistors technologies, with an initial voltage 
spike of 2500 V (Figure 7). The unit was allowed time to cool down, 
after which the resistance measurement was taken and displayed in 
ppm deviation from the initial reading. Readings were then taken in 
500 V increments up to 4500 V.

TEST RESULTS

FIGURE 7 - ESD TEST DESCRIPTION

2500 V to 4500 V

Rx

500 pF

DMM

1 M

Ω

TABLE 6 - ESD TEST RESULTS

VOLTS

R (%)

THICK FILM

THIN FILM

FOIL

2500

-2.7

97

<0.005

3000

-4.2

366

<0.005

3500

-6.2

>5000

<0.005

4000

-7.4

>5000

<0.005

4500

-8.6

OPEN

<0.005

FIGURE 8 - LOAD LIFE TEST FOR 

2000 HRS @ +70°C  
AT RATED POWER

-100 

-80 

-60 

-40 

-20 

20 

40 

60 

80 

100 

0  250  500  750  1000 1250 1500 1750 2000 2250 

∆R (ppm) 

Time (hrs) 

0805-1K 

0805-8K 

1206-1K 

1206-25K 

2512-75K 

2512-125K 

POWER COEFFICIENT OF RESISTANCE 
(PCR)

In precision resistors with low TCR, the self heating (Joule effect) 
causes the resistor not to perform strictly to its TCR specifications. 
This inaccuracy will result in an error at the end in the resistance 
value under applied power. Vishay Foil Resistors introduced a new 
concept of Power Coefficient of Resistance (PCR) along with a new 
Z-Foil technology which leads to reduction of the sensitivity of 
precision resistor to ambient temperature variations and changes of 
applied power.

Figure 9 represents PCR behavior of three different resistor 
technologies under applied power.

FIGURE 9 - BEHAVIOR OF THREE 

DIFFERENT RESISTOR 
TECHNOLOGIES UNDER 
APPLIED POWER (POWER 
COEFFICIENT TEST)

(ppm)

Applied power, (W)

0.1

0.2

0.3

0.4

0.5

+ 100 ppm

0 ppm

- 100 ppm

Thick Film

Surface

Mount Chip

Thin Film

Surface

Mount Chip

Z-Foil

Surface

Mount Chip

Δ

R

R

-------

-

Note: Size 1206, value: 1K

FIGURE 10 - CURRENT PATH IN A 

RESISTIVE ALLOY

Noise generation is minimal when current

flow is through multiple paths as exists in

Bulk Metal

®

 Foil resistive alloy.

frsm-html.html
background image

FRSM Series of Precision Chip Resistors

Vishay Foil Resistors

 

www.vishayfoilresistors.com

For any questions, contact: 

foil@vishaypg.com

Document Number: 63209

6

Revision: 8-Nov-12

POST MANUFACTURE OPERATIONS (PMO)

What is the importance of resistor stability in an electronic circuit?

Answer:

 

 The circuit was probably not intended for just a onetime 

use.

 

 Also, the equipment may have to endure some environmental 

and operational stresses. So, the ongoing use of the equipment is 
expected and the more stable the resistors, the longer the time 
before recalibrations. FRSM offers the most stability in all categories 
but there is more than recalibration at stake here:

 

 extremes of surge 

voltage can cause thin film resistors to go open while the Foil resistor 
based on the Z-1 technology is not affected.

 

 An open means the 

equipment must be returned to the maintenance department to have 
the resistor replaced or, worse yet, mission failure. The cost of a Foil 
resistor would have been insignificant compared to the cost of 
mission failure or the cost of returning an instrument for repair or 
replacement of a blown resistor.

 

 Add to this the down time of the 

equipment.

Designing for extended service - All electronic equipment is 
expected to do something useful for a specified period of time.

 

 At 

the end of that period, and in spite of permissible service conditions, 
the equipment is expected to still be functional in its intended service 
and within its accuracy limits.

 

 All the components contribute in some 

way to the stability of the equipment but the resistors are the devices 
relied upon most to retain the original accuracy of the equipment.

 

 

Any departure from the end-of-life accuracy limits set for one resistor 
renders the entire equipment “out of service” and subject to repair or 
recalibration. The prospect of repair or recalibration is unthinkable in 
certain applications (space for example) and only devices that can 
be given an appropriate initial tolerance with the expectation of 
retaining proximity to the initial value throughout the service life are 
suitable.

 

 This is especially true of the resistors in a circuit which may 

have power applied causing self heating, load applied for extended 
periods or load life and load applied differentially from other resistors 
resulting in a ratio offset.

 

 The equipment itself may see elevated 

temperatures for extended periods of storage.

 

 Foil resistors are the 

best solution when these factors come into play.

 

 

TABLE 7 - GLOBAL PART NUMBER INFORMATION

 (1)

NEW GLOBAL PART NUMBER:  Y402412K7560T9R  (preferred part number format)

DENOTES PRECISION

VALUE

CHARACTERISTICS

Y

R

 = 



K

 = k

0

 = standard

9

 = lead (Pb)-free

1 to 999

 = custom

PRODUCT CODE

RESISTANCE TOLERANCE

PACKAGING

     4020

 = FRSM0402 

(2)

4021

 = FRSM0603

4022 

= FRSM0805

4023 

= FRSM1206

4024 

= FRSM1506

4025 

= FRSM2010

4027 

= FRSM2512

T

= ± 0.01 %

Q

= ± 0.02 %

A

= ± 0.05 %

B

= ± 0.10 %

C

= ± 0.25 %

D

= ± 0.5 %

F

= ± 1.0 %

R

= tape and reel

W

= waffle pack

FOR EXAMPLE: ABOVE GLOBAL ORDER Y4024 12K7560 T 9 R:
TYPE: FRSM1506

VALUES: 12.7560 k



ABSOLUTE TOLERANCE: 0.01 %

TERMINATION: lead (Pb)-free

PACKAGING: tape and reel

HISTORICAL PART NUMBER: FRSM1506  12K756  TCR0.2  T  S  T  (will continue to be used)

FRSM1506

12K756

TCR0.2

T

S

T

MODEL

RESISTANCE 

VALUE

TCR 

CHARACTERISTICS

TOLERANCE

TERMINATION

PACKAGING

             FRSM0402 

(2)

FRSM0603
FRSM0805
FRSM1206
FRSM1506
FRSM2010
FRSM2512

12.756 k

T

= ± 0.01 %

Q

= ± 0.02 %

A

= ± 0.05 %

B

= ± 0.10 %

C

= ± 0.25 %

D

= ± 0.5 %

F

= ± 1.0 %

S

= lead (Pb)-free

B

= tin/lead

T

= tape and reel

W

= waffle pack

Note

(1)

For non-standard requests, please contact application engineering.

(2)

 0402 is planned to be released to production at  2012.

0

2

4

1

K

7

5

2

Y

4

T

9

6

R

0